

EM02R2XX Family - Combination SRAM with ROM

Low Power 32Kx8 SRAM with on board 256Kx8 Mask ROM

Overview

The EM02R2XX is an integrated memory device containing both a low power 256 Kbit Static Random Access Memory (organized as 32,768 words by 8 bits), and a 2 Mbit Mask ROM (organized as 262,144 words by 8 bits). It is fabricated using an advanced CMOS process and NanoAmp's high-speed/low-Power circuit technology. This device is designed for low voltage operation and is very suitable for battery powered devices. Low power applications are also well served by this device due to its very low operating and standby current. Also, this device allows the user to make independent requests to the ROM or RAM without incurring unwanted I_{CC} overhead.

FIGURE 1: Pin Configuration

FIGURE 2: Operating Envelope

Features

- Extended Operating Voltage Range 1.5 to 3.6 V
- Very Low Standby Voltage 1.2 V
- Extended Temperature Range -20° to +80°C
- Fast Cycle Time 100 ns (@ 2.7V)
- Very Low Operating Current
 I_{CC} < 1 mA typical at 3V, 1 Mhz
- Very Low Standby Current I_{SB} = 100 nA typical
- Available in 32-pin STSOP or TSOP package

TABLE 1: Pin Descriptions

Pin Name	Pin Function
A0-A14	Address Inputs
D0-D7	Data Inputs/Outputs
CE	Chip Enable (Active Low)
OE	Output Enable (Active Low)
WE	Write Enable (Active Low)
V _{CC}	Power
V _{SS}	Ground
NC	Not Connected (Floating)

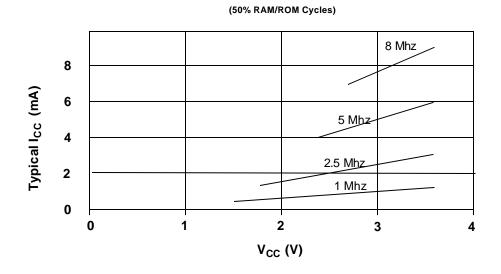
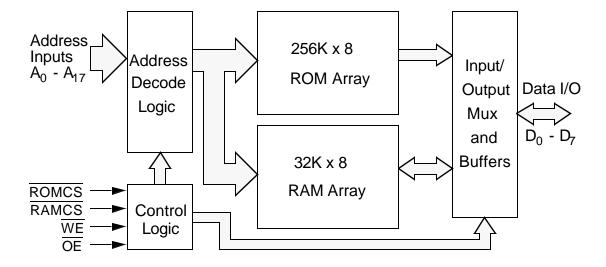



FIGURE 3: Functional Block Diagram

TABLE 2: Functional Description

ROMCS	RAMCS	WE	ŌĒ	D0-D7	MODE	POWER
Н	Н	Х	Х	High Z	Standby	Standby
L	Н	Х	Н	High Z	Standby	Standby*
L	Н	L	L	High Z	ROM READ**	Active -> Standby
L	Н	Н	L	Data Out	ROM READ	Active -> Standby
Н	L	Н	Н	High Z	Standby	Standby*
Н	L	Н	L	Data Out	RAM READ	Active -> Standby
Н	L	L	Х	Data In	RAM WRITE	Active -> Standby

^{*}The device will consume active power in this mode whenever addresses are changed

TABLE 3: Absolute Maximum Ratings*

Item	Symbol	Rating	Unit
Voltage on any pin relative to V _{SS}	V _{IN,OUT}	-0.3 to V _{CC} +0.3	V
Voltage on V _{CC} Supply Relative to V _{SS}	V _{CC}	-0.3 to 4.6	V
Power Dissipation	P_{D}	500	mW
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature - Extended Commercial	T _A	-20 to +80	°C

^{*}Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{**} No output is available

TABLE 4: Operating Characteristics (Over specified temperature range)

Item	Symbol	Test Conditions	Min.	Typical	Max.	Unit
Supply Voltage	V _{CC}		1.5		3.6	V
Data Retention Supply Voltage	V _{DR}	$\frac{\text{RAMCS}}{\text{ROMCS}} = V_{\text{CC}}$	1.2		3.6	V
Input High Voltage	V _{IH}		0.7V _{CC}		V _{CC} +0.3	V
Input Low Voltage	V _{IL}		-0.3		0.3V _{CC}	V
Output High Voltage	V _{OH}	I _{OH} = -100 μA	V _{CC} -0.2			V
Output Low Voltage	V _{OL}	I _{OL} = 100 μA			0.2	V
Input Leakage Current	I _{LI}	$V_{IN} = 0$ to V_{CC}			1	μΑ
Output Leakage Current	I _{LO}	$\overline{OE} = V_{IH} \text{ or}$ $\overline{RAMCS} = 1, \overline{ROMCS} = 1$			1	μА
ROM Operating Supply Current (Note 1)	I _{CC1}	$\frac{V_{IN} = V_{CC} \text{ or } 0V}{RAMCS} = 1, ROMCS = 0$		0.4 * f * V	0.5 * f * V	mA
RAM Operating Supply Current (Note 1)	I _{CC2}	$\frac{V_{IN} = V_{CC} \text{ or } 0V}{RAMCS} = 0, \overline{ROMCS} = 1$		0.25 * f * V	0.3 * f * V	mA
Standby Current (Note 2)	I _{SB}	$V_{IN} = V_{CC}$ or $0V$		0.1	10	μΑ

Notes:

Note 1. Operating current is a linear function of frequency and voltage. You may calculate operating current using the formula shown with operating frequency (f) expressed in Mhz and operating voltage (V) in volts. Example: Operating at 2 Mhz in the RAM selected mode at 2.0 volts will draw a typical current of 0.25*2*2 = 1.0 mA.

Note 2. This device assumes a standby mode if both \overline{ROMCS} and \overline{RAMCS} are disabled (high). It will also automatically go into a standby mode whenever all input signals are quiescent (not toggling) for more than one cycle time regardless of the states of \overline{ROMCS} and \overline{RAMCS} . In order to achieve low standby current all input levels must be within 0.2 volts of either V_{CC} or GND.

TABLE 5: Capacitance*

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	C _{IN}	$V_{IN} = 0V, f = 1 \text{ Mhz}, T_A = 25^{\circ}\text{C}$		5	pF
I/O Capacitance	C _{I/O}	V _{IN} = 0V, f = 1 Mhz, T _A = 25°C		5	pF

Note: These parameters are verified in device characterization and are not 100% tested

TABLE 6: Timing Test Conditions

Item	
Input Pulse Level	0.1V _{CC} to 0.9 V _{CC}
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	0.5V _{CC}
Output Load	CL = 30pF
Operating Temperature (Unless otherwise stated)	-20 to +80 °C

TABLE 7: RAM Read Cycle Timing

Item	Symbol	Min/Max	1.5V	1.8V	2.4V	2.7-3.6V	Units
Read Cycle Time	t _{RC}	Min	750	250	150	100	ns
Address-RAMCS Setup Time	t _{ASC}	Min	-80	-40	-25	-15	ns
Address-RAMCS Hold Time	t _{AHC}	Min	600	200	120	75	ns
Address Access Time	t _{AA}	Max	750	250	150	100	ns
RAM Select Access Time	t _{CS}	Max	750	250	150	100	ns
Output Enable to Valid Output	t _{OE}	Max	250	70	50	30	ns
RAM Select to Low-Z output	t _{LZ}	Min	0	0	0	0	ns
Output Enable to Low-Z Output	t _{OLZ}	Min	0	0	0	0	ns
RAM Select to High-Z Output	t _{HZ}	Min	0	0	0	0	ns
KAW Select to High-2 Output	'HZ	Max	100	50	40	25	115
Output Disable to High-Z Output	tou-	Min	0	0	0	0	ns
	t _{OHZ}	Max	100	50	40	25	115
Output Hold from Address Change	t _{OH}	Min	40	20	15	10	ns

TABLE 8: RAM Write Cycle Timing

Item	Symbol	Min/Max	1.5V	1.8V	2.4V	2.7-3.6V	Unit
Write Cycle Time	t _{WC}	Min	750	250	150	100	ns
Address-RAMCS Setup Time	t _{ASC}	Min	-80	-40	-30	-20	ns
Address-RAMCS Hold Time	t _{AHC}	Min	600	200	120	75	ns
RAM Select to End of Write	t _{CW}	Min	750	250	150	100	ns
Address Valid to End of Write	t _{AW}	Min	750	250	150	100	ns
Address Set-Up Time	t _{AS}	Min	0	0	0	0	ns
Write Pulse Width	t _{WP}	Min	400	150	75	65	ns
Write Recovery Time	t _{WR}	Min	0	0	0	0	ns
Write to High-Z Output	t _{WHZ}	Min	0	0	0	0	ns
Write to Flight-2 Output	WHZ	Max	150	70	50	30	113
Data to Write Time Overlap	t _{DW}	Min	400	150	75	50	ns
Data Hold from Write Time	t _{DH}	Min	0	0	0	0	ns
End Write to Low-Z Output	t _{OW}	Min	40	20	15	10	ns

TABLE 9: ROM Read Timing

Item	Symbol	Min/Max	1.5V	1.8V	2.4	2.7-3.6V	Unit
Read Cycle Time	t _{RC}	Min	1000	400	200	150	ns
Address-ROMCS Setup Time	t _{ASC}	Min	-80	-40	-25	-15	ns
Address-ROMCS Hold Time	t _{AHC}	Min	750	300	170	120	ns
Address Access Time	t _{ACC}	Max	1000	400	200	150	ns
ROM Select Access Time	t _{CS}	Max	1000	400	200	150	ns
Output Enable Access Time	t _{OE}	Max	250	100	50	30	ns
Output Hold Time	t _{OH}	Min	0	0	0	0	ns
Output Floating Time	t _{DF}	Max	100	50	40	25	ns

FIGURE 4: ROM Read Timing (ROMCS = 0)

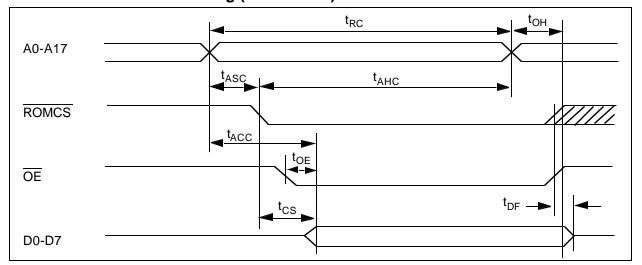


FIGURE 5: RAM Read Cycle Timing (WE = V_{IH})

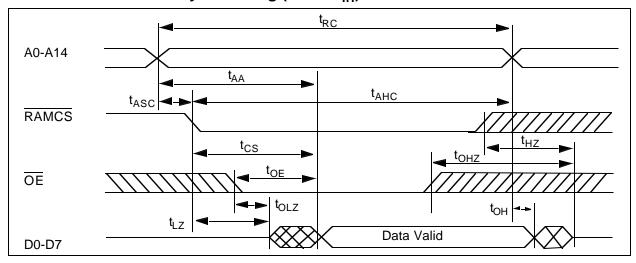
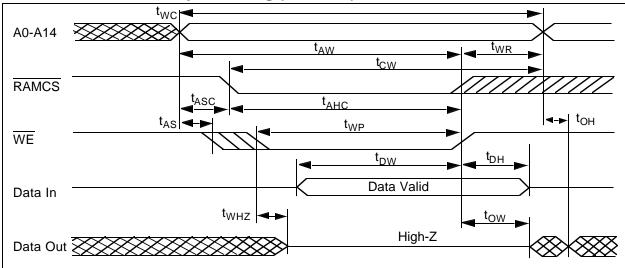
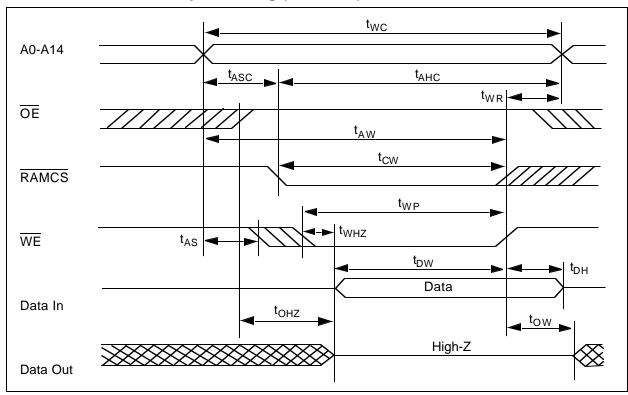


FIGURE 6: RAM Write Cycle Timing (OE fixed)

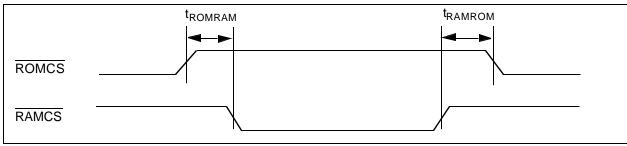

FIGURE 7: RAM Write Cycle Timing (OE clock)

TABLE 10: RAM/ROM Assertion Timing

Item	Symbol	Min	Тур	Max	Unit
Disable ROMCS to Enable RAMCS	t _{ROMRAM}	0			ns
Disable RAMCS to Enable ROMCS	t _{RAMROM}	0			ns

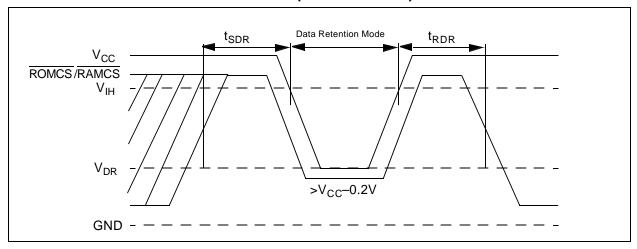

FIGURE 8: RAM/ROM Assertion Timing

TABLE 11: Data Retention Characteristics (Over full specified temperature range)

Parameter	Symbol	Minimum	Maximum	Unit
Data Retention Set-up Time	t _{SDR}	0		μs
Recovery Time	t _{RDR}	1		μs

FIGURE 9: Data Retention Waveform (CS Controlled)

TABLE 12: Ordering Information

Part Number*	Package	Temperature Range	Voltage Range	Speed (@ 2.7V+)
EM02R2XXN	32 pin STSOP	-20 to +80°C	1.5 to 3.6 V	100RAM/150ROM ns
EM02R2XXT	32 pin TSOP	-20 to +80°C	1.5 to 3.6 V	100RAM/150ROM ns

^{*} This part number must appear on your order. The code number is to be inserted in place of the XX.

TABLE 13: Revision History

Revision #	Date	Change Description
01	Nov. 1, 1997	Initial Formal Release
02	Feb 1, 1998	Miscellaneous Errata CorrectionChanged "V" version from 150 to 200
03	Mar 25, 1998	Changed "L" version to 2.4 voltsAdjusted maximum current per chrz.
04	May 11, 1998	Added Address Setup and Hold Requirements with respect to RAM Chip Select
05	Aug. 1, 1998	Eliminated L,V,U Specification in favor of a single Specification that includes 1.5 to 3.6 volts operation. Extended Temp to 80C Increased twp to 65ns at 2.7 volts.
06	July 8, 1999	Modified Table 2 (WE must be high to output ROM data)

© 1997-2001 Nanoamp Solutions, Inc. All rights reserved.

NanoAmp Solutions, Inc. ("NanoAmp") reserves the right to change or modify the information contained in this datasheet and the products described therein, without prior notice. NanoAmp does not convey any license under its patent rights nor the rights of others. Charts, drawings and schedules contained in this datasheet are provided for illustration purposes only and they vary depending upon specific applications.

NanoAmp makes no warranty or guarantee regarding suitability of these products for any particular purpose, nor does NanoAmp assume any liability arising out of the application or use of any product or circuit described herein. NanoAmp does not authorize use of its products as critical components in any application in which the failure of the NanoAmp product may be expected to result in significant injury or death, including life support systems and critical medical instruments.