DESIGN NOTES (continued)

Marking consists of manufacturer's name, logo (EC²), part number, terminal identification and date code of manufacture. All marking is applied by silk screen process using white epoxy paint in accordance with MIL-STD-130, to meet the permanency of identification required by MIL-STD-202, Method 215.

OPERATING SPECIFICATIONS

Supply Voltage: · · · · · · - 5.2V ±5% to operated on +5	
Supply Current: 56ma typical	v to vcc)
Logic 1 Input at 25°C.	
Voltage · · · · · · ·98V min.	
Current 265ua max.	
Logic 0 Input at 25°C.	
Voltage · · · · · · · - 1.63V max.	
Current	
Logic 1 Output at 25°C. · · · ·96V min.	
Logic 0 Output at 25°C 1.65V max.	
Operating temperature range:30 to +85°C.	
Storage temperature: • • • • - 55 to +125°C	

MECHANICAL DETAIL IS SHOWN BELOW

TEST CONDITIONS

- 1. All measurements are made at 25°C.
- 2. Vee supply voltage is maintained at -5.2V DC.
- All units are tested using a positive input pulse provided by a standard open emitter ECL 10,000 gate. The input and output utilize a 100 ohm pulldown resistor to – 2V; the output is also loaded with one ECL 10,000 gate.
- Input pulse width used is 10ns for all modules; repetition rate is in accordance with the data specified in the Part Number Table.

PART NUMBER TABLE

Part Number	Pulse Width (in ns)	Maximum Pulse Rate (in Mhz)
ECLPGM-5	5 ±1	98
ECLPGM-6	6 ± 1	80
ECLPGM-7	7 ±1	70
ECLPGM-8	8 ±1	60
ECLPGM-9	9 ±1	54
ECLPGM-10	10 ±1	49
ECLPGM-15	15 ±1	32
ECLPGM-20	20 ±1	24
ECLPGM-25	25 ±1	19
ECLPGM-30	30 ±1	15
ECLPGM-35	35 ± 1.5	13
ECLPGM-40	40 ±1.5	11
ECLPGM-45	45 ±1.5	10
ECLPGM-50	50 ±1.5	9
ECLPGM-60	60 ±1.5	8
ECLPGM-70	70 ±2	7
ECLPGM-75	75 ±2	6
ECLPGM-80	80 ±2	6
ECLPGM-90	90 ±3	5
ECLPGM-100	100 ±3	4

Special modules can be readily manufactured to improve accuracies and/or provide customer specified random pulse widths for specific applications.