

DM74LS563 **Octal D-Type Latch with TRI-STATE® Outputs**

-v_{cc}

— ōo

— Ō1

- 02

- ō3

- 05

- ō6

•LE 11

20

19

18

17

16 **-** 04

15

14

13 **-** 07

12

General Description

The 'LS563 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (OE) inputs.

This device is functionally indentical to the 'LS573, but has inverted outputs.

Dual-In-Line Package

Features

■ Inputs and Outputs on opposite sides of packages allowing easy interface with microprocessors

■ Useful as input or output port for microprocessors

- Input clamp diodes limit high speed termination effects
- Fully TTL and CMOS compatible

ŌĒ

D0 -2

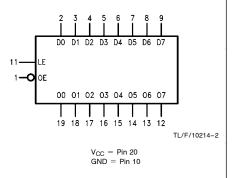
D1·

D2

D3

D4

D5


D6

D7

GND 10

3

Order Number DM74LS563WM or DM74LS563N See NS Package Number M20B or N20A

Pin Names	Description
D0-D7	Data Inputs
LE	Latch Enable Input (Active HIGH)
ŌĒ	TRI-STATE Output Enable Input (Active LOW)
00-07	TRI-STATE Latch Outputs

TL/F/10214-1

Function Table

Output Enable	Latch Enable	D	Output O
L	н	Н	L
L	Н	L	Н
L	L	Х	\overline{Q}_{O}
Н	Х	Х	Z

L = Low State, H = High State, X = Don't Care,

Z = High Impedance State.

 \overline{Q}_{O} = Previous Condition of \overline{O} .

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1995 National Semiconductor Corporation TL/F/10214

RRD-B30M105/Printed in U. S. A.

DM74LS563 Octal D-Type Latch with TRI-STATE Outputs

June 1992

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS563			Units
Symbol	Farameter	Min	Nom	Max	
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			v
VIL	Low Level Input Voltage			0.8	v
I _{OH}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW Dn to LE	0 0			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW Dn to LE	10 10			ns
t _w (H) t _w (L)	LE Pulse Width HIGH or LOW	15 15			ns

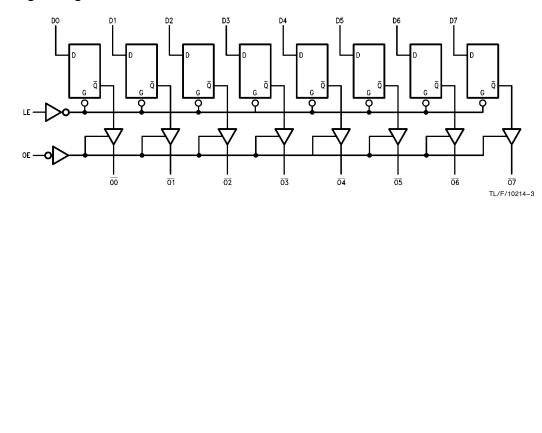
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

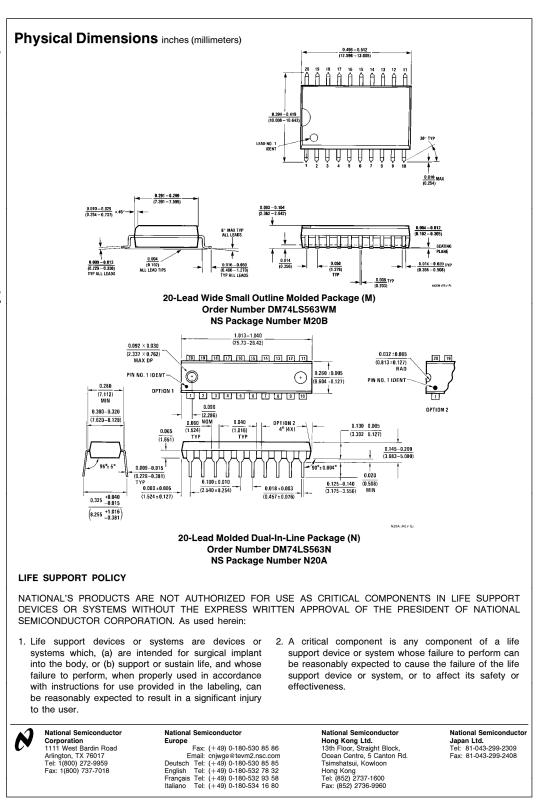
Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, I}_{OH} = \text{Max,} \\ V_{IL} &= \text{Max, V}_{IH} = \text{Min} \end{split}$	2.4	3.3		V
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, I}_{OL} = \text{Max,} \\ V_{IL} &= \text{Max, V}_{IH} = \text{Min} \end{split}$		0.35	0.5	V
		$I_{OL} = 12 \text{ mA}, V_{CC} = Min$		0.25	0.4	ν ν μΑ μΑ μΑ
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
I _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$V_{CC} = Max, V_O = 2.4V$ $V_{IH} = Min, V_{IL} = Max$			20	μΑ
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$\label{eq:VCC} \begin{split} V_{CC} &= Max, V_O = 0.4V \\ V_{IH} &= Min, V_{IL} = Max \end{split}$			-20	μΑ
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	-30		-130	mA
ICC	Supply Current	V _{CC} = Max (Note 3)			40	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.


Symbol	Parameter	R _L = C _L =	– Units	
		Min	Max	
t _{PLH} t _{PHL}	Propagation Delay Dn to On		23 25	ns
t _{PLH} t _{PHL}	Propagation Delay LE to On		35 35	ns
t _{PZH} t _{PZL}	Output Enable Time		28 36	ns
t _{PZL} t _{PHZ} t _{PLZ}	Output Disable Time		36 20 25	


Functional Description

The 'LS563 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D in-

puts a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications