

D5028UK

METAL GATE RF SILICON FET

MECHANICAL DATA

DR

PIN 1	SOURCE (COMMON)	PIN 2	DRAIN 1
PIN 3	DRAIN 2	PIN 4	GATE 2
PIN 5	GATE 1		

DIM	Millimetres	Tol.	Inches	Tol.
Α	19.05	0.50	0.75	0.020
В	10.77	0.13	0.424	0.005
С	45°	5°	45°	5°
D	9.78	0.13	0.385	0.005
E	5.71	0.13	0.225	0.005
F	27.94	0.13	1.100	0.005
G	1.52R	0.13	0.060R	0.005
Н	10.16	0.13	0.400	0.005
I	22.22	MAX	0.875	MAX
J	0.13	0.02	0.005	0.001
K	2.72	0.13	0.107	0.005
М	1.70	0.13	0.067	0.005
N	5.08	0.50	0.200	0.020
0	34.03	0.13	1.340	0.005
Р	1.61R	0.08	0.064R	0.003

GOLD METALLISED MULTI-PURPOSE SILICON DMOS RF FET 300W - 50V - 175MHz PUSH-PULL

FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW Crss
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 13 dB MINIMUM

APPLICATIONS

 VHF/UHF COMMUNICATIONS from 1 MHz to 200 MHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{P_D}$	Power Dissipation	438W
BV_DSS	Drain – Source Breakdown Voltage*	125V
BV_GSS	Gate – Source Breakdown Voltage*	±20V
I _{D(sat)}	Drain Current*	18A
T _{stg}	Storage Temperature	−65 to 150°C
Tj	Maximum Operating Junction Temperature	200°C

^{*} Per Side

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

D5028UK

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Test Co	Min.	Тур.	Max.	Unit		
	PER SIDE							
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0	I _D = 100mA	125			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 50V	V _{GS} = 0			6	mA	
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	V _{DS} = 0			1	μА	
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V	
9 _{fs}	Forward Transconductance*	V _{DS} = 10V	I _D = 3A	4.8			mhos	
V _{GS(th)m}	Gate Threshold Voltage atch Matching Between Sides	I _D = 10mA	$V_{DS} = V_{GS}$			0.1	V	
		TOTAL	DEVICE					
G _{PS}	Common Source Power Gain	P _O = 300W		13			dB	
η	Drain Efficiency	V _{DS} = 50V	I _{DQ} = 1.2A	60			%	
VSWR	Load Mismatch Tolerance	f = 175MHz		20:1			_	
PER SIDE								
C _{iss}	Input Capacitance	$V_{DS} = 50V V_{G}$	$_{SS} = -5V f = 1MHz$			360	pF	
C _{oss}	Output Capacitance	$V_{DS} = 50V V_{G}$	_{SS} = 0			150	pF	
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 50V V_{G}$	$_{SS} = 0$ $f = 1MHz$			9	pF	

^{*} Pulse Test: Pulse Duration = 300 μs , Duty Cycle $\leq 2\%$

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case} Thermal Resistance Junction – Case Max. 0.4°C / W

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

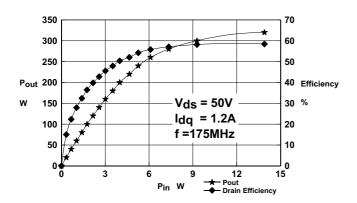


Figure 1 – Power Output and Efficiency vs. Power Input.

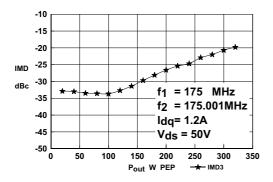


Figure 3 – IMD vs. Output Power.

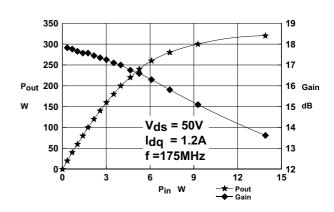


Figure 2 – Power Output & Gain vs. Power Input.

D5028UK OPTIMUM SOURCE AND LOAD IMPEDANCE @ 300W / 50V

Frequency	Z _S	Z _L		
MHz	Ω	Ω		
175	6.1 + j1	6.7 + j2.9		

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 3140
E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1

D5028UK

Typical S Parameters

Vds=50V Idq=0.6A

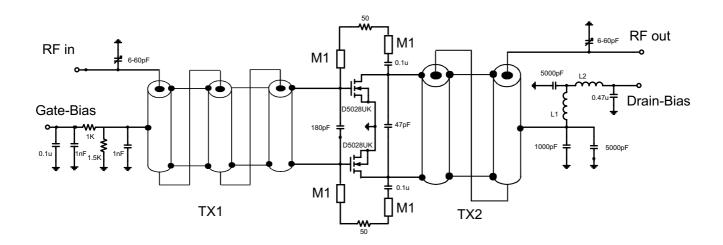
MHZ S MA R 50

!Freq	S11	S21		S12		S22
!Mhz	mag ang	mag	ang	mag	ang	mag ang
30	0.909 -146.2		01.4	0.015	14.9	0.497 -129.4
40	0.92 -153		92.2	0.015	7.4	0.515 -133.8
50	0.923 -157.9		85.8	0.015	2.6	0.545 -136
60	0.926 -160.9		79.3	0.015	-2.5	0.573 -138.4
70	0.936 -163.2		73.6	0.014	-6.5	0.613 -139.8
80	0.94 -165.1		67.8	0.013	-10.3	0.639 -141.6
90	0.941 -166.8		63.2	0.013	-13	0.669 -143.1
100	0.944 -167.9		58.8	0.011	-14.9	0.698 -144.2
110	0.946 -168.9		55.1	0.011	-15.2	0.726 -146.2
120	0.95 -169.1		51.4	0.01	-15.6	0.749 -147.5
130	0.955 -170.1		49.5	0.009	-14.2	0.773 -148.2
140	0.962 -171.1		47.3	0.009	-13.2	0.783 -149.7
150	0.961 -171.3		44.9	0.008	-11.9	0.806 -151.3
160	0.964 -173.2		41.5	0.007	-11.7	0.821 -152.3
170	0.963 -172.4	1.904	38	0.007	-10	0.839 -153.4
180	0.962 -173.1		34.6	0.006	-5.7	0.846 -154.7
190	0.97 -173.7		33.2	0.006	0.2	0.857 -156
200	0.974 -173.7	1.396	33	0.005	7.7	0.872 -156.2
210	0.974 -174.6		32.4	0.005	15.6	0.884 -157.3
220 230	0.974 -174.6 0.974 -175.2	1.2 1.118	30.9 29	0.005 0.005	22.4	0.889 -158.5 0.902 -159.4
240	0.98 -175.2		29 27.3	0.005	29 36.1	0.902 -159.4
250	0.96 -175.2		27.3 25.7	0.005	42.9	0.906 -159.9
260	0.978 -176		25. <i>1</i> 25.2	0.005	49.7	0.918 -161.2
270	0.983 -176.2		23.4	0.003	55.1	0.925 -161.3
280	0.984 -175.9		21.7	0.006	59.8	0.928 -162.5
290	0.984 -176.7		19.1	0.007	61.9	0.933 -162.6
300	0.983 -177		18.6	0.007	64.6	0.938 -163.5
310	0.986 -177		18.5	0.008	67.8	0.941 -163.6
320	0.985 -177.4		19.7	0.008	71.5	0.947 -164.5
330	0.985 -177.5		19.4	0.009	73.8	0.948 -164.3
340	0.987 -177.9		17.1	0.01	73.5	0.949 -164.9
350	0.988 -178.2		14.2	0.01	72.2	0.954 -165.6
360	0.986 -178.2	0.51	11.7	0.01	72	0.954 -165.6
370	0.988 -178.7	0.468	11.3	0.01	73.1	0.956 -166.2
380	0.987 -178.6		12.1	0.01	76.3	0.957 -166.6
390	0.99 -178.8		13.1	0.011	78.9	0.96 -166.9
400	0.99 -179.3	0.399	17.8	0.012	83.7	0.963 -167
410	0.988 -178.9		16.5	0.013	84.4	0.963 -167
420	0.988 -179.8		12.3	0.014	81.5	0.964 -168
430	0.988 -179.9	0.385	8.8	0.014	78.9	0.966 -167.8
440	0.986 -179.5	0.355	7.9	0.014	79.8	0.971 -168
450	0.992 179.9	0.333	8.6	0.015	81	0.973 -167.8
460	0.99 -179.8	0.317	9.6	0.015	82.6	0.969 -168.7
470	0.991 179.9		10.5	0.016	83.7	0.972 -168.6
480	0.99 179.2		10.8	0.017	83.8	0.972 -169.3
490	0.99 179.1		10.4	0.018	83.2	0.977 -168.7
500	0.988 178.9	0.286	9.2	0.018	82.1	0.973 -169.2

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk


Website: http://www.semelab.co.uk

Document Number 3140

Issue 1

- TX1 9:1 transformer. 3 turns of 062-25 semi-rigid coax around 75-26 powdered iron core
- TX2 4:1 transformer. 2 turns of 090-25 semi-rigid coax around 100-8 powdered iron core
- L1 10 turns 16 awg enamelled wire, 5mm internal diameter
- L2 0.5 turns 16 awg enamelled wire on A1 x 1 2-hole core
- M1 microstrip line, 20mm long, 1mm wide on 0.062in thick G10 substrate

D5028UK 175MHz TEST FIXTURE

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk