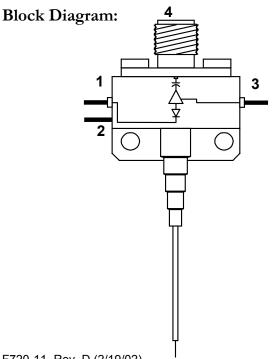
Data Sheet February 2002

## DSC-R402: Low-Noise High-Gain 12.3 Gb/s Optical Receiver

### **Description:**


A low noise, low group delay 20 dB gain photoreceiver with over 10 GHz bandwidth for NRZ data with 10.8 or 12.3 Gb/s FEC. Wide spectral response enables use for 850 nm as well as 1310 nm, S, C and L telecommunications wavelength bands. Compact pigtailed microwave package consisting of an InGaAs/InP photodiode and a transimpedance amplifier with low electrical return loss for improved link performance.

#### Features:

- High Responsivity of 0.8 A/W @ 1310 & 1550 nm
- Responsivity of 0.25 A/W @ 850 nm
- Low-Noise, High-Gain
- Low Group Delays
- Low PDL
- Single-mode or multi-mode fiber pigtails
- Available DC or AC coupled
- Hermetically Sealed and Built to GR-468 Standards

### **Applications:**

- Digital Optical Receiver for OC-192/SDH-64 telecom and 10 Gbits/s Ethernet datacom
- Analog RF for microwave C, S and X band applications





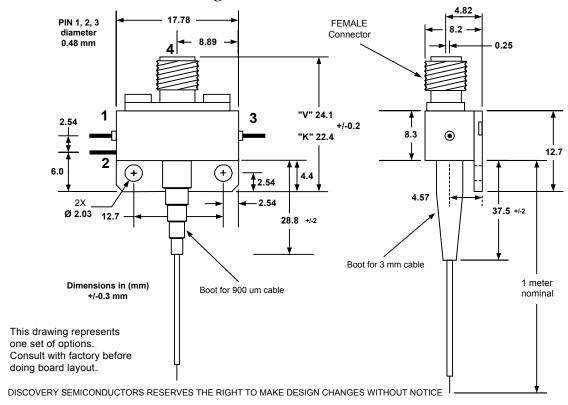
#### **Pin Connections:**

| 1. | Bias Voltage Photodiode V <sub>bd</sub> = +10 V  |  |  |
|----|--------------------------------------------------|--|--|
| 2. | Case Ground *                                    |  |  |
| 3. | Bias Voltage Amplifier V <sub>dd</sub> = +8 V    |  |  |
| 4. | RF Signal Out (std: AC coupled, opt: DC coupled) |  |  |

Observe Polarities ALWAYS connect ground FIRST, either at case or by RF connection, and ALWAYS disconnect ground LAST.

# **Electrical / Optical Specifications:**

| Pa                                                                        | arameter                                    | Min | Typical       | Max  | Units    |
|---------------------------------------------------------------------------|---------------------------------------------|-----|---------------|------|----------|
| Responsivity                                                              | @ 1550 nm                                   | 0.7 | 0.8           | -    | A/W      |
|                                                                           | @ 1310 nm                                   | 0.7 | 0.8           | -    | A/W      |
|                                                                           | @ 850 nm                                    | 0.2 | 0.25          |      | A/W      |
| Power Gain of                                                             | Amp.                                        | 15  | 20            |      | dB       |
| Transimpedan                                                              | ce                                          | 400 | 500           | 650  | Ω        |
| Gain Flatness @ 1550 nm (1)                                               |                                             | -   | ± 0.75        | ı    | dB       |
| Logic Sense                                                               |                                             | -   | Non-inverting | ı    | -        |
| Group Delay (2,4)                                                         |                                             | -   | ± 10          | ± 15 | ps       |
| Bandwidth @ 1550 nm                                                       |                                             | 9.5 | 10            | -    | GHz      |
| Low Frequency Cutoff (AC coupled)                                         |                                             | -   | 30            | -    | KHz      |
| Noise                                                                     |                                             | -   | -             | 16   | pA / √Hz |
| Noise Figure                                                              |                                             |     | 3             |      | dB       |
| Power Dissipa                                                             | tion                                        | 710 | 800           | 925  | mW       |
| Electrical Retu                                                           | rn Loss                                     | -10 | -15           | ı    | dB       |
| Optical Return                                                            | Loss @ 1550 nm                              | -30 | -35           | -    | dB       |
| Wavelength Ro                                                             | esponse                                     | 800 | -             | 1650 | nm       |
| V <sub>bd</sub> Bias Diode                                                |                                             | 7   | 10            | 12   | V+       |
| V <sub>dd</sub> Bias Amp.                                                 |                                             | 7.5 | 8             | 8.4  | V+       |
| Optical Overloa                                                           | ad (BER < 10 <sup>-9</sup> ) <sup>(4)</sup> | -   | 3             | -    | dBm      |
| Sensitivity 10 <sup>-10</sup> BER; 2 <sup>23</sup> -1 PRBS <sup>(4)</sup> |                                             | -18 | -19           | -    | dBm      |
| Optical PDL @ 1550 nm <sup>(5)</sup>                                      |                                             |     | 0.06          | 0.12 | dB       |


## **Absolute Maximum Ratings:**

| Operating Temperature Range (6)          | 0 to 70   | °C  |
|------------------------------------------|-----------|-----|
| Storage Temperature Range                | -40 to 85 | °C  |
| Max PIN Bias V <sub>bd</sub>             | +16       | V   |
| Max Amp Bias V <sub>dd</sub>             | +8.5      | V   |
| Optical Input Power Damage Threshold (3) | +9        | dBm |
| Lead Soldering Temperature (10 s)        | 250       | °C  |

<sup>(1)</sup> Flatness – relative to mean from DC to 70% of the 3 dB bandwidth
(2) Group Delay – over range of 500 MHz to –3 dB bandwidth
(3) DC coupled option goes to 0 Hz.
(4) Assumes NRZ format with 50% duty cycle and 1550 nm source
(5) Optical PDL measured with the Agilent measurement system

<sup>(6)</sup> Heat sink is required

### **Dimensioned Outline Drawing:**

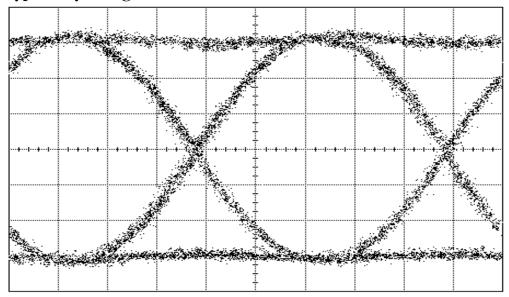


### **Optical Input:**

| Connector         | Polish    | Fiber              | Buffer              | Length     |
|-------------------|-----------|--------------------|---------------------|------------|
| FC                | UPC / APC | SMF28              | 3 mm (std) or       | 1 meter or |
| SC                | UFC/AFC   | SIVIF 20           | 900 um tight buffer | Option     |
| others by request |           | 50 mm Graded Index | 3 mm                | 1 meter    |

#### **Electrical Output:**

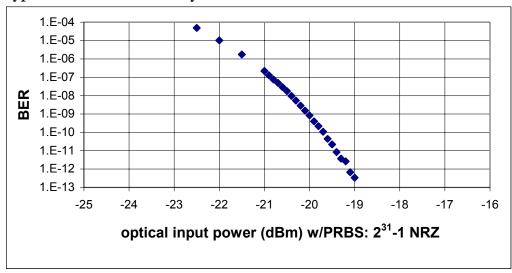
| Model      | Coupling | Standard                             | Option                              |
|------------|----------|--------------------------------------|-------------------------------------|
| DSC-R402   | AC       | "K" <sup>†</sup> type female coaxial | "KM" <sup>†</sup> type male coaxial |
| DSC-R402DC | DC       | "K" <sup>†</sup> type female coaxial | "KM" <sup>†</sup> type male coaxial |


<sup>\*</sup> K type RF connector is a trademark of Anritsu Company with barrel diameter of 2.92 mm RF (compatible with 3.5 mm SMA).

### Ordering information:

Parts should be ordered as DSC-R402(DC)-YT-ZZ/UUU-W where the code characters:

- Y is '3' for standard optical return loss, '5' for >45dB (extra cost), '6' for 50mm multimode fiber, proximity focused (extra cost), '7' for 62.5 mm multi-mode fiber (extra cost)
- T is '3' for 3mm (standard) and is '9' for 0.9mm diameter buffer,
- ZZ specifies the fiber optic connector (FC, SC, LC),
- UUU specifies the ferrule finish diameter (APC, UPC).
- W specifies the K connector, which is the only output connector available.


## Typical Eye Diagram:



Input: 0 dBm p-p @ 10 GB/s, 1550 nm & 50% duty cycle

Scale: 16.7 ps/div & 140 mV/div

## Typical 10 Gb/s Sensitivity Curve:



For additional information, please contact us via:

INTERNET: www.chipsat.com E-MAIL: sales@chipsat.com

ADDRESS: Discovery Semiconductors, Inc.,

119 Silvia Street, Ewing, NJ 08628, USA, Tel: (609) 434-1311, Fax: (609) 434-1317

Specifications are subject to change without notice.