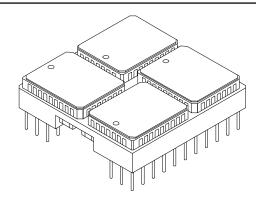
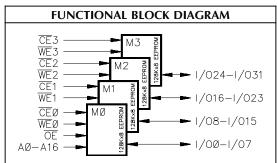
4 Megabit CMOS EEPROM

DPE128X32V

DENSE-PAC

DESCRIPTION:


The DPE128X32V is a high-performance Electrically Erasable and Programmable Read Only Memory (EEPROM) module and may be organized as 128K X 32, 256K X 16 or 512K X 8.


The module is built with four low-power CMOS 128K X 8 EEPROMs. The four chip enables are used for individual BWDW* selection. The DPE128X32V is ideally suited for those computer systems having 16-bit or 32-bit architectures.

The DPE128X32V contains a 128-BWDW page register to allow writing of up to 128 BWDWs simultaneously. During a write cycle, the address and 1 to 128 BWDWs of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the module will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA Polling of the most significant data bit in each byte. Once the end of a write cycle has been detected, a new access for a read or write can begin.

FEATURES:

- Fast Access Times: 120, 150, 200, 250ns
- · Organizations Available:
 - 128K X 32, 256K X 16 or 512K X 8
- Automatic Page Write Operation Internal Address and Data Latches Internal Control Timer
- Fast Write Cycle Times
 - Page Write Cycle Time: 10ms maximum 1 to 128 BWDW* Page Write Operation
- DATA Polling for END of Write Detection
- High Reliability CMOS Technology Endurance: 10⁴ Cycles Data Retention: 10 years
- Single +5V Power Supply, ±10% Tolerance
- CMOS and TTL Compatible Inputs and Outputs
- Available with All Semiconductor Components used to Construct the Module Compliant to MIL-STD-883; Class B
- 66-Pin PGA (Grid Array) Package
- Same Package as other Versapac Versions (SRAMs, EPROMs, and Mixed)
- * Byte, Word or Double Word (BWDW).

PIN NAMES				
A0 - A16	Address Inputs			
I/O0 - I/O31	Data In/Out			
<u>CE</u> 0 - <u>CE</u> 3	Chip Enables			
WE0 - WE3	Write Enables			
ŌĒ	Output Enable			
V _{DD}	Power (+5V)			
V _{SS}	Ground			
N.C.	No Connect			

PIN-OUT DIAGRAM			
3 I/O1Ø 4 A13 5 A14 6 A15 7 A16 8 N.C. 9 I/OØ	12 WE1 23 1/015 13 CE1 24 1/014 14 VSS 25 1/013 15 1/011 26 1/012 16 A10 27 OE 17 A11 28 N.C. 18 A12 29 WE0 19 VDD 30 1/07 20 CE0 31 1/06 21 N.C. 32 1/05 22 1/03 33 1/04	11 ⊕ ⊕	45

DPE128X32V

Dense-Pac Microsystems, Inc.

X = Don't Care

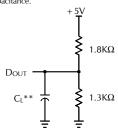
RECOMMENDED OPERATING RANGE ¹						
Symbol	Characteris	Min.	Тур.	Max.	Unit	
V _{DD}	Supply Voltage		4.5	5.0	5.5	V
V _{IH}	Input HIGH Voltage		2.0			V
VIL	Input LOW Voltage				0.8	V
		С	0	+25	+70	
T _A	Operating Temperature	1	-40	+25	+85	°C
	remperature	M/B	-55	+25	+125	

TRUTH TABLE					
Mode					
Standby	Н	X	X	HIGH-Z	
Read	L	L	Н	Dout	
Write	L	Н	L	D _{IN}	
Write Inhibit	X	L	X	HIGH-Z	
Write Inhibit	X	X	Н	HIGH-Z	

H = HIGH

ABSOLUTE MAXIMUM RATINGS ¹					
Symbol	Parameter	Value	Unit		
TstG	Storage Temperature	-65 to +150	°C		
T _{BIAS}	Temperature Under Bias	-65 to +135	°C		
V_{DD}	Supply Voltage ²	-0.6 to +6.25	°C		
V _{I/O}	Input/Output Voltage ²	-0.6 to +6.25	V		

CAPACITANCE 3: $T_A = 25^{\circ}C$, $F = 1.0MH$				
Symbol	Parameter	Max.	Unit	Condition
CCE	Chip Enable	30		
C _{ADR}	Address Input	70		
CWE	Write Enable	70	рF	$V_{IN} = 0V$
COE	Output Enable	70		
C _{I/O}	Data Input/Output	30		

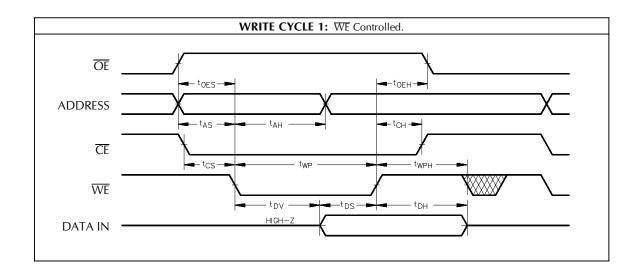

AC TEST CONDITI	ONS
Input Pulse Levels	0V to 3.0V
Input Pulse Rise and Fall Times	5ns*
Input and Output Timing Reference Levels	1.5V

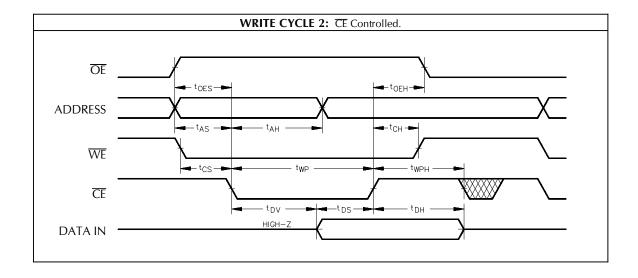
^{*} Transition between 0.8V and 2.2V.

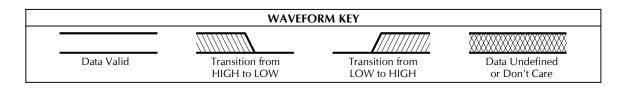
OUTPUT LOAD			
Load	C_L	Parameters Measured	
1	100pF	except t _{DF}	
2	5pF	t _{DF}	

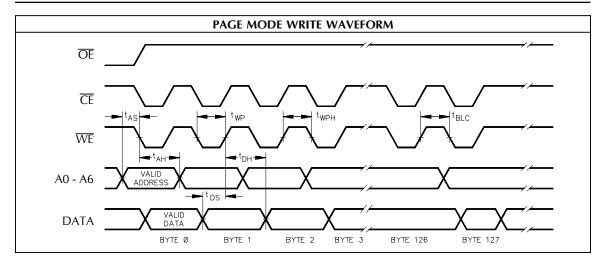
Figure 1. Output Load ** Including Probe and Jig Capacitance.

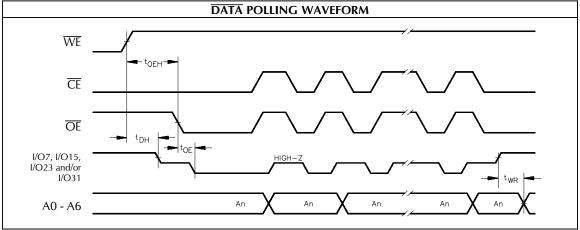
L = LOW


	DC OPERATING CHARACTERISTICS: Over operating ranges								
Symbol	Characteristics	Test Conditions	X32		X16		X8		Unit
Symbol	Characteristics	rest Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
I _{IN}	Input Leakage Current	$V_{IN} = V_{DD} Max.$	-40	+40	-40	+40	-40	+40	μΑ
lout	Output Leakage Current	$V_{OUT} = V_{DD} Max.$	-10	+10	-20	+20	-40	+40	μΑ
Icc	Operating Supply Current	$\overline{CE} = \overline{OE} = V_{IL},$ all I/O = 0mA, f = 5MHz		320		170		90	mA
I _{SB1}	V _{DD} Standby Current (TTL)	CE = V _{IH}		12		12		12	mA
I _{SB2}	V _{DD} Standby Current (CMOS)	$\overline{CE} = V_{DD} - 0.3 Vdc$		1.2		1.2		1.2	mA
VIL	Input Voltage Low			0.8		0.8		0.8	V
VIH	Input Voltacge High		2.0		2.0		2.0		V
V_{OL}	Output Voltage Low	$I_{OUT} = 2.1 \text{mA}$		0.45		0.45		0.45	V
Vон	Output Voltage High	$I_{OUT} = -400\mu A$	2.4		2.4		2.4		V


	AC OPERATING CONDITIONS AND CHARACTERISTICS - READ CYCLE: Over operating ranges										
No.	Symbol	Parameter 1	120ns		150ns		200ns		250ns		Unit
NO.	No. Symbol		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	UIII
1	trc	Read Cycle Time	120		150		200		250		ns
2	tCE	Chip Enable to Output Valid		120		150		200		250	ns
3	tacc	Address Access Time		120		150		200		250	ns
4	toe	Output Enable Access Time		50		55		55		55	ns
5	t _{DF}	Chip Enable or Output Enable to Output Float ³		50		55		55		55	ns
6	tон	Output Hold from Chip Enable, Output Enable, or Address, Whichever Occurs First	0		0		0		0		ns

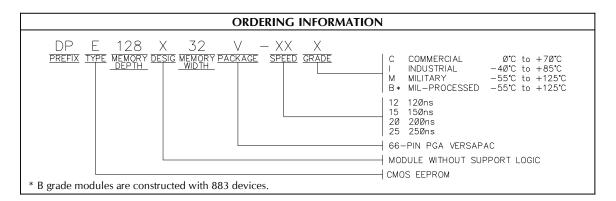

Α	AC OPERATING CONDITIONS AND CHARACTERISTICS - WRITE CYCLE: Over operating ranges 5, 6					
No.	Symbol	Parameter	Min.	Max.	Unit	
7	twc	Write Cycle Time		10	ms	
8	tas	Address Set-up Time *	0		ns	
9	t _{AH}	Address Hold Time	50		ns	
10	tcs	Chip Select Set-up Time	0		ns	
11	tcH	Chip Select Hold Time	0		ns	
12	twp	Write Pulse Width (WE or CE)	100		ns	
13	t _{DS}	Data Set-up Time	50		ns	
14	t _{DH}	Data Hold Time	0		ns	
15	toes	Output Enable Set-up Time	0		ns	
16	toeh	Output Enable Hold Time	0		ns	
17	twph	Write Pulse Width High	50		ns	
18	t _{BLC}	Byte Load Cycle Time		150	μs	
19	twr	Write Recovery Time	0		ns	


^{*} Valid for both Read and Write Cycles.


READ CYCLE			
ADDRESS			
CE			
ŌĒ			
DATA I/O			

DEVICE OPERATION

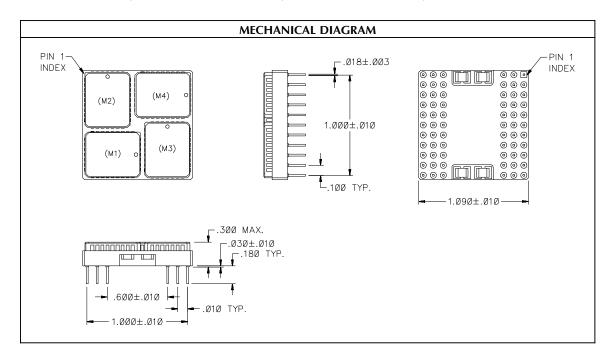
READ: The DPE12832V is accessed like a Static RAM. When $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the <u>outputs. The</u> outputs are put in the high impedance state whenever $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is high. This dual line control gives designers flexibility in preventing bus contention.


WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} . Once a **BWDW Write has been started it will automatically time itself to completion. PAGE WRITE: The page write operation of the DPE12832V allows 1 to 128 BWDWs of data to be loaded into the device and then simultaneously written during the internal programming period. After the first data BWDW has been loaded into the device, successive BWDWs may be loaded in the same manner. Each new BWDW to written must have its high to low transition on \overline{WE} (or \overline{CE}) within 150 μ s of the low to high transition is not detected within 150 μ s of the last low to high transition, the load period will end

and the internal programming period will start. A7 to A16 specify the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A6 are used to specify which BWDW within the page are to be written. The BWDWs may loaded in any order and may be changed within the same load period. Only BWDWs which are specified for writing will be written; unnecessary cycling of other BWDWs within the page does not occur.

DATA POLLING: Write cycles typically are completed in less time than the maximum write cycle time of 10ms. To determine when the write is completed, a method called DATA Polling is utilized. If a read is performed on the address of the last BWDW written to the DPE12832V while a write cycle is in progress, the one's compliment of data most significant bit (I/O7, I/O15, I/O23 and I/O31) will appear on the output. When the write is completed, a read from the last address written will return valid data. A DATA Polling may begin at any time during the Write Cycle.

30A014-25 REV. D


^{**} Byte, Word, or Double Word.

NOTES:

6

- 1. All voltages are with respect to V_{SS}.
- 2. Stresses greater than those under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
- 3. This parameter is guaranteed and not 100% tested.
- 4. Address hold time is with respect to the falling edge of the control signal WE or CE.
- 5. WE and CE are noise protected. Less than a 15ns write pulse will not activate a write cycle.

Dense-Pac Microsystems, Inc.
7321 Lincoln Way ◆ Garden Grove, California 92841-1428

(714) 898-0007 ◆ (800) 642-4477 (Outside CA) ◆ FAX: (714) 897-1772 ◆ http://www.dense-pac.com

30A014-25 REV. D