]
Application Note 600
H DALLAS JiKl /1 X1 2V DS89C420 Hardware Enhancements

~ SEMICONDUCTOR Increase Serial Port Flexibility

and Performance
| www.maxim-ic.com |

OVERVIEW

The DS89C420 marks Dallas’ first product offering in its Ultra High-Speed Microcontroller family. In
contrast to the original 8051 architecture that required a minimum of 12 clocks per instruction cycle, the
Ultra High-Speed Microcontroller features an advanced 8051 core architecture capable of executing
instructions in as little as one clock cycle. To complement the high performance core, new hardware
features were integrated into the standard 8051 on-chip peripherals. Two of the new features, the clock
multiplier and selectable high-speed clock to the timers, can directly affect baud rate generation for the
serial ports. The purpose of this document is to explain the interaction between these two new features
and serial-port baud-rate generation.

SERIAL PORT MODES

The DS89C420 serial ports offer four basic modes of operation. Mode 0 allows half-duplex synchronous
communication of 8-bit data using a baud clock derived from the system clock. Mode 1 allows full-
duplex asynchronous communication of 8-bit data with a baud clock derived from Timer 1 or Timer 2.
Mode 3 differs from Mode 1 by supporting 9-bit data transmission and reception. Mode 2 similarly
provides 9-bit data communication, but instead derives its baud clock directly from the oscillator
frequency. To support Mode 1, 2, and 3 asynchronous communication, a start bit always precedes the
data and a stop bit always follows. Full details of each serial port mode can be found in the DS89C420
User’s Guide.

CLOCK MULTIPLIER

The DS89C420 incorporates an on-chip clock multiplier to give increased performance at a reduced
external crystal clock frequency. The multiplier can be configured to generate either a doubled (2X) or
quadrupled (4X) internal system clock, controlled by the 2X/4X special function register bit (PMR.3).
Please note that the resultant 2X or 4X multiplied system clock still cannot exceed the maximum
operating frequency specified in the data sheet. Full details pertaining to the multiplier can be found in
the DS89C420 User’s Guide.

Once the clock multiplier output has been selected (CD1:0 = 00b) as the internal system clock, certain
serial port baud clocks derived from the system clock (no longer equal to the external oscillator
frequency) will change. Figure 1 highlights the serial port clocks potentially affected when using the 2X
or 4X multiplied system clock. The Serial Mode 0 baud rate will always differ, Serial Mode 2 baud rate
will never differ, and the Serial Mode 1, 3 baud rates can differ, depending upon the timer used and/or
timer input clock selection. Table 1, as per Figure 1, denotes which serial port modes are affected by use
of the clock multiplier. Appendix A contains detailed equations for performing baud rate calculations
when using the 2X or 4X clock multiplier mode.

1 of 18 121301

http://pdfserv.maxim-ic.com/arpdf/Design/89c420_userguide.pdf

SERIAL PORT CLOCKS AFFECTED BY SELECTION OF THE CLOCK
MULTIPLIER OUTPUT (CD1:0 = 00b) Figure 1

CLOCK
MULTIPLIER
] 2X or 4X

INTERNAL

SYSTEM CLOCK

SERIAL PORT 0

/12

SERIAL PORT 1

_I\' FREQUENCY

EXTERNAL
OSCILLATOR or
CLOCK FREQUENCY

Lr

CD1:0 =
00b

TIMER 1
OVERFLOW

TIMER 2

/4

SM2_X

16

SMOD_X TCLK

> /16

OVERFLOW

12

RCLK

16

MODE 0
> CLOCK

MODE 1, 3

—» 1x CLOCK

MODE 1, 3
—>

Rx CLOCK

» MODE 2

CLOCK

SERIAL PORT BAUD CLOCKS DEPENDENT ON THE SYSTEM CLOCK

Table 1

BAUD CLOCK DEPENDENT ON THE

SERIAL PORT MODE BA;J (l))UCRI&%CK INTERNAL SYSTEM CLOCK
(CLOCK MULTIPLIER SELECTION)

Mode 0 System Clock / 4 YES

(synchronous — 8 bits) System Clock / 12

Mode 1 Timer 1 YES'

(asynchronous — 10 bits) Timer 2 NO?

Mode 2 Oscillator Clock /32

(asynchronous — 11 bits) Oscillator Clock / 64

Mode 3 Timer 1 YES'

(asynchronous — 11 bits) Timer 2 NO?

" Only when the divide by 4 or divide by 1 Timer 1 input clock is enabled (TIM = 1 or TIMH = 1). For
compatibility with the original 8051, the default Timer 1 input clock (TIMH, T1M = 00b) is fixed to the

oscillator clock divided by 12.
? Available for baud rate generation on Serial Port 0 only.

20f18

BENEFITS: FASTER BAUD RATES, REDUCED EMI

When using the clock multiplier, the application benefits can be great. An external crystal clock of one-
fourth the original frequency can be used to produce the same Serial Mode 0 and (Timer 1 generated)
Mode 1, 3 baud rates as before, but with much reduced EMI. Alternatively, the same external crystal,
when multiplied internally by 2X or 4X, can now generate baud clocks up to four times faster!

HIGH-SPEED INPUT CLOCK TO TIMERS

In order for the on-chip timers to be most useful to the application, each should be able to track time at a
rate equivalent to the minimum instruction cycle. For the original 8051 architecture, which executed
instructions in 12 oscillator clocks, the timers were clocked at an oscillator frequency divided by 12 rate.
When Dallas Semiconductor introduced its high-speed microcontroller with a reduced machine cycle of
four oscillator clocks, a selectable oscillator frequency divided by 4 input-clock control was provided for
each timer. When the clock multiplier function was added to the high-speed microcontroller family, the
selectable divide by 4 timer-input clock was modified to become a function of the system clock, not the
oscillator clock. Now, the DS89C420 Ultra High-Speed Microcontroller boasts single clock-cycle
instruction execution. Once again, each of the on-chip timers has been upgraded with the integration of a
selectable system clock divide by 1 input.

The TOMH, T1MH, and T2MH bits, contained in the CKMOD (96h) SFR, respectively enable the system
clock divide by 1 input to Timer 0, Timer 1, and Timer 2. Enabling the high-speed system-clock input to
the timer (TxMH = 1) will automatically override the system clock divided by 4 input (TxM = 1) setting.
The new system clock divide by 1 timer input, like the system clock divide by 4 input, factors into baud
rate generation when using Timer 1. Figure 2 highlights the serial port clocks potentially affected by
selection of the high-speed clock input to Timer 1.

30f18

SERIAL PORT CLOCKS AFFECTED BY SELECTION OF HIGH-SPEED
TIMER 1 INPUT (T1MH = 1) Figure 2

12
SYSTEM
CLOCK 1

T1M

T1MH=1

0SC
CLOCK

TO THE
SERIAL PORT

) gt >

(8-bit auto-reload mode)

4 0of 18

; SERIAL PORT 1
CLOCK INTERNAL ¢ SERIALPORTO
MULTIPLIER SYSTEM CLOCK
2X or 4X FREQUENCY
n2 » MODE 0
14
L CLOCK
CD1,CDO
EXTERNAL SM2.X
OSCILLATOR or TIMER 1 MODE 1. 3
CLOCK FREQUENCY 1 /16 ; ,
OVERFLOW :/'——-} Tx CLOCK
SMOD_X TCLK
MODE 1, 3
TIMER 2 —p ’
OVERFLOW » /16 ;'_ » Rx CLOCK
RCLK
/2 L /16 MODE 2
CLOCK
. SMOD_X
TIMER 1
INPUT CLOCK

BENEFITS: FASTER BAUD RATES, INCREASED BAUD RATE RESOLUTION
Relative to serial port operation, the divide by 1 input-clock feature translates into two user benefits. First,
provided with the same system clock frequency, baud rates four times faster can now be generated for
Serial Modes 1 and 3 when using Timer 1. Secondly, clocking Timer 1 faster allows higher baud rate
resolution, potentially reducing error associated with baud rates already used by the application, or
bringing new baud rates within an acceptable error range for application use.

For example, suppose a user currently has a Dallas high-speed microcontroller application running at a
20MHz system clock frequency. The application uses one of the serial ports for RS232 communication
with a PC, and requires that the baud rate mismatch between the two be <3%. If using Timer 1 (in the
8-bit auto-reload mode) for baud rate generation, Table 2 below gives a sampling of the “good” baud
rates for the Dallas high-speed microcontroller versus those for the new DS89C420. The unacceptable
baud rates (those with mismatch >3%) have been shaded in gray. Table 3 makes the same “good” baud
rate comparison for a system clock frequency of 25MHz. As one can plainly see, enabling the high-speed
Timer 1 input clock gives much finer baud rate resolution. Appendix A contains detailed equations for
performing baud rate calculations when utilizing the system clock input to Timer 1 (TIMH = 1).

HIGH-SPEED MICROCONTROLLER vs ULTRA HIGH-SPEED
MICROCONTROLLER TIMER 1 BAUD RATE GENERATION CAPABILITY
(SYSCLK = 20MHz) Table 2

HIGH-SPEED ULTRA HIGH-SPEED
PC UART MICROCONTROLLER MICROCONTROLLER
(8250 / 16450) (Timer 1 w/T1M = 1 used for baud | (Timer 1 w/T1IMH = 1 used for baud
rate generation, SMOD x = 1) rate generation, SMOD x = 1)
Reload | Baud Rate | Baud Rate (TH1) % Error Baud Rate (THI1) Error
1 115200 104166 (FD) -9.6 113636 (F5) -1.4
2 57600 62500 (FB) 8.5 56818 (EA) -1.4
3 38400 39062 (F8) 1.7 37879 (DF) -1.4
4 28800 28409 (F5) -1.4 29070 (DS5) 0.9
5 23040 22321 (F2) -3.1 23148 (CA) 0.5
6 19200 19531 (F0) 1.7 19231 (BF) 0.2
7 16457 16447 (ED) -0.1 16447 (B4) -0.1
8 14400 14204 (EA) -1.4 14368 (A9) -0.2
9 12800 13020 (E8) 1.7 12755 (9E) -0.4
10 11520 11574 (ES) 0.5 11574 (94) 0.5
11 10472 10417 (E2) -0.5 10417 (88) -0.5
12 9600 9469 (DF) -1.4 9615 (7E) 0.2

50f18

HIGH-SPEED MICROCONTROLLER vs ULTRA HIGH-SPEED
MICROCONTROLLER TIMER 1 BAUD RATE GENERATION CAPABILITY
(SYSCLK = 25MHz) Table 3

HIGH-SPEED ULTRA HIGH-SPEED
PC UART MICROCONTROLLER MICROCONTROLLER
(8250 / 16450) (Timer 1 w/T1M = 1 used for baud | (Timer 1 w/T1MH = 1 used for baud
rate generation, SMOD x =1) rate generation, SMOD x =1)
Reload | Baud Rate | Baud Rate (TH1) % Error Baud Rate (THI1) Error
1 115200 130208 (FD) 13.0 111607 (F2) -3.1
2 57600 55803 (F9) -3.1 57870 (ES) 0.4
3 38400 39062 (F6) 1.7 38110 (D7) -0.8
4 28800 27901 (F2) -3.1 28935 (CA) 0.5
5 23040 22978 (EF) -0.3 22978 (BC) -0.3
6 19200 19531 (EC) 1.7 19290 (AF) 0.5
7 16457 16276 (E8) -1.1 16447 (A1) -0.1
8 14400 14467 (ES) 0.5 14335 (93) -0.5
9 12800 12600 (E1) -1.6 12807 (86) 0.1
10 11520 11489 (DE) -0.3 11489 (78) -0.3
11 10472 10557 (DB) 0.8 10487 (6B) 0.1
12 9600 9527 (D7) -0.8 9586 (5D) -0.1

60f 18

APPLICATION EXAMPLE #1:

SPI MODE (1,1) INTERFACE USING SYNCHRONOUS SERIAL MODE 0

While one can interface the DS89C420 to an SPI™ device by “bit-banging” port pins, using synchronous
Serial Mode 0 reduces software overhead and allows faster communication speed. The synchronous serial
mode of operation provides a shift clock on the TXD pin and writes/reads serial data on the RXD pin at
each rising edge of the shift clock (TXD). Since TXD idles in the high state, the synchronous serial mode
aligns closely with the CPOL = 1, CPHA = 1 SPI Mode. Since the synchronous serial mode does not
require a 3-sample majority-voting scheme for each bit (like the asynchronous serial modes), it is capable
of achieving baud rates faster than any other serial mode. The figure below illustrates an interface
between the DS89C420 microcontroller and an SPI mode (1,1) compatible EEPROM device.

EXAMPLE SERIAL PORT INTERFACE TO AN SPI-COMPATIBLE
PERIPHERAL Figure 3

Utility Code Routines
Electronic Data Sheets
Shadow Memory (recovery from power
fail during In-Application Programming)
Data Arrays or Tables

Acquired Data Storage

" DS89C420 |

EEPROM

pP3.2 ——P CS\
pP3.1 ——pi SCK

Sl
P30 — e o

Serial Port 0 is first placed into Mode 0 and configured to produce a system clock divide by 4 baud clock.
Depending upon the timing restrictions of the attached SPI peripheral, a reduced system clock or system
clock divide by 12 baud clock may need to be selected. Externally, the TXD pin (P3.1) provides the serial
clock and connects to the SCK input of the EEPROM. The RXD pin (P3.0) handles all SPI data
transactions via its connection to both the SI input and SO output of the EEPROM. The ability to use a
shared SI/SO configuration will depend upon the I/O timing of the attached SPI peripheral. A third
microcontroller port pin, not linked to the on-chip serial port hardware, serves as the SPI peripheral chip
select input. In this example, port pin P3.2 will be connected to the EEPROM CS\ input and will be
manually asserted and de-asserted by the software. Since the serial port communicates LSB first and the

SPI peripheral expects to communicate MSB first, a lookup table is used for byte translation in most
cases.

Two routines, XRAM store and XRAM recall, have been created and do exactly as their names would
imply. The XRAM store routine writes the current contents of the internal 1kB SRAM to a specified 1kB
range of EEPROM, while XRAM recall reads the specified 1kB range of EEPROM into the DS89C420
on-chip SRAM. This code is intended only as an example and could easily be adapted to access different
address ranges of the DS8§9C420 or EEPROM memory, in smaller or larger blocks.

7 of 18

CODE LISTING: SPI INTERFACE USING SYNCHRONOUS SERIAL PORT

; DS89C420 SPI I/F example code

; 420 pin SPI I/F pin

; P3.2 CS\

; P3.1/TXD SCK

; P3.0/RXD SI, SO

$include (420.def) ; SFR equates
ee cs bit p3.2 ;EEPROM CS\
; SPI EEPROM opcodes — (CAT25C64 used)

; (bits in each byte are reversed since serial communication
; 1s lsb-first whereas SPI communication is msb-first).

ee _wren equ 01100000b ;=06h
ee rdsr equ 10100000b ;=05h
ee read equ 11000000b ;=03h
ee write equ 01000000b ;=02h

eepg equ 64d ;64byte page writes (CAT25C64)
xdb equ 1024d ;1KB xdata block

; Serial Port 0: Mode 0, baud clock=sysclk/4
; (Note: Tested @ sysclk = 25 MHz; SPI baud clock = 6.25 MHz.
;A reduced system clock frequency or sysclk/12 baud clock
; may be required depending on SPI device timing)
mov scon, #20h ; mode 0, sysclk/4 clk
; mov scon, #00h ; mode 0, sysclk/12 clk

orl pmr, #01lh ; Enable 1KB XRAM
;==> COPY CODE (0-03FFh) INTO XRAM DATA (0-03FFh)
mov dps, #30h ; dptr auto-inc/tog <ON>
mov dptr, #0000h ; code dptr
mov dptr, #0000h ; xram dptr
copy:
clr a
movc a, @a+dptr ; read from code
movx @dptr, a ; write to data
mov a, dph
cjne a, #04h, copy ; dptr=0400h yet?
mov dps, #00h ; dptr auto-inc/tog <OFF>
;==> STORE XRAM TO EEPROM BLOCK 0 (0000h - O03FFh)
clr a ; a=00h (=EEPROM block 0)
call XRAM store ; store to EEPROM

;==> FILL XRAM WITH FFh DATA
8 of 18

call fx ; fill XRAM with FFh data
;==> RECALL EEPROM BLOCK 0 (0000h - 03FFh) TO XRAM

clr a ; a=00h (=EEPROM block 0)
call XRAM recall ; recall from EEPROM
sjmp S

; XRAM store (a)
; acc: selects 1KB EEPROM block to store XRAM

; 00 -> 0000h-03FFh
; 01 -> 0400h-07FFh
; 07 -> 1COOh-1FFFh

; r5: local counter = pages left to write

XRAM store:

mov dps, #01h ; dptrl= source (XRAM)
mov dptr, #0000h ; dptrl= 0000h
mov r5, #(xdb/eepg) ; 1024/64 = 16
rl a ; rotate block index left
rl a ; twice to get msb addr
mov dph, a ; dptr = dest (EEPROM)
mov dpl, #00h
write:
call wren ; WREN
wel wait:
call rdsr ; RDSR
jnb acc.l, wel wait ; poll for WEL bit =1
clr ee cs ; CS\ =0
mov sbuf, #ee write ; WRITE
jnb ti, $; command sent
clr ti
mov a, dph ; get dest msb addr
call bitrev ; use LUT to transpose byte
mov sbuf, a ; <MSB>
jnb ti, $; <MSB> sent
clr ti
mov a, dpl ; get dest 1lsb addr
call bitrev ; use LUT to transpose byte
mov sbuf, a ; <LSB>
jnb ti, $; <LSB> sent
clr ti
orl dps, #30h ; dptr auto-inc/tog <ON>
write 64:
movx a, Qdptr ; dptrl XRAM read
call bitrev ; use LUT to transpose byte
mov sbuf, a ; <DATA>
inc dptr ; inc dest dptr
mov a, dpl ; check dest dptr for page
anl a, #(eepg-1) ; write multiple (64d)
jnb ti, $; <DATA> sent
clr ti
jnz write 64 ; 64bytes written?
setb ee cs ; CS\=1
rdypoll:
call rdsr ; RDSR
Jjb acc.0, rdypoll ; poll for RDY bit = 0
djnz r5, write ; all pages written?
anl dps, #0cfh ; dptr auto-inc/tog <OFEF>
ret

90f18

; XRAM recall (a)

; acc: selects 1KB EEPROM block to copy into XRAM
; 00 -> 0000h-03FFh

; 01 -> 0400h-07FFh

; 07 -> 1COOh-1FFFh

; r5: local counter of 256byte pages left to read

XRAM recall:

mov dps, #01h ; dptrl = dest (XRAM)
mov dptr, #0000h ; dptrl = 0000h
mov r5, #(xdb/256) ; 1024/256 = 4
rl a ; rotate block index left
rl a ; twice to get msb addr
clr ee cs ; CS\ =0
mov sbuf, #ee read ; READ
jnb ti, $; command sent
clr ti
call bitrev ; use LUT to transpose byte
mov sbuf, a ; <MSB>
jnb ti, $; msb sent
clr ti
mov sbuf, #00h ; <LSB>
jnb ti, $; 1lsb sent
clr ti
setb ri ; don't receive yet
setb ren ; enable receive
orl dps, #10h ; dptr auto-inc <ON>
read:
clr ri ; <DATA>
jnb ri, $; got data
mov a, sbuf
call bitrev ; use LUT to transpose byte
movx @dptr, a ; dptrl XRAM write
mov a, dpll ; check dest dptr for 256
jnz read ; byte boundary
djnz r5, read ; all pages read?
clr ren ; disable receive
clr ri
setb ee cs ; CsS\ =1
anl dps, #0efh ; dptr auto-inc <OFF>
ret
; EEPROM commands: WREN, RDSR
wren
clr ee cs ; CS\ =0
mov sbuf, #ee wren ; WREN
jnb ti, $; command sent
clr ti
setb ee cs ; Cs\ =1
ret
rdsr:
clr ee cs ; CS\ =0
mov sbuf, #ee rdsr ; RDSR
jnb ti, $; command sent
clr ti
setb ren enable receive
jnb ri, $ got data
clr ren disable receive

10 of 18

clr ri

setb ee cs ; Cs\ =1
mov a, sbuf
call bitrev ; use LUT to transpose byte
ret

; fill XRAM with FFh data

fx
mov dps, #10h ; dptr auto-inc <ON>
mov dptr, #0000h

fx1:
mov a, #0ffh
movx @dptr, a
mov a, dph
cjne a, #04h, fx1
mov dps, #00h ; dptr auto-inc <OFF>
ret

; bit reversal LUT

bitrev:
jnz do_lookup ; no lookup if a=00h
ret ; since 00h transposed = 00h

do_lookup:
movc a, @a+pc
ret
db 080h, 040h, 0C0Oh, 020h, 0AOh, 060h, OEOQ
db 010h,090h,050h, 0D0Oh, 030h, 0BOh,070h, OF0Oh
db 008h,088h,048h,0C8h,028h,0A8h,068h,0E8h
db 018h,098h,058h,0D8h,038h,0B8h,078h, 0F8h
db 004h, 084h,044h,0C4h,024h,0A4h,064h, 0E4h
db 014h,094h,054h,0D4h,034h,0B4h,074h, 0F4h
db 00Ch, 08Ch, 04Ch, 0CCh, 02Ch, OACh, 06Ch, OECh
db 01Ch,09Ch, 05Ch, 0DCh, 03Ch, OBCh, 07Ch, OFCh
db 002h, 082h,042h,0C2h,022h,0A2h,062h, 0E2h
db 012h,092h,052h,0D2h,032h,0B2h,072h, 0F2h
db 00Ah, 08Ah, 04Ah, 0CAh, 02Ah, 0AAh, 06Ah, OEANh
db 01Ah, 09Ah, 05Ah, 0DAh, 03Ah, OBAh, 07Ah, OFAh
db 006h,086h,046h,0C6h,026h, 0A6h,066h, 0E6Hh
db 016h,096h,056h,0D6h,036h, 0B6h, 076h, 0F6h
db 00Eh, 08Eh, 04Eh, OCEh, 02Eh, OAEh, 06Eh, OEEh
db 01Eh, 09Eh, 05Eh, ODEh, 03Eh, OBEh, 07Eh, OFEh
db 001h,081h,041h,0C1lh,021h,0A1lh,061h,0Elh
db 011h,091h,051h,0D1h,031h,0B1h,071h,0F1h
db 009%h, 089%h,049h,0C9%h,029h,0A9%h, 069, 0ESh
db 019h,09%h,05%,0D9%h,03%h,0B9h,079n, 0FSh
db 005h, 085h, 045h, 0C5h,025h, 0A5h, 065h, 0OESh
db 015h,095h,055h, 0D5h, 035h, 0B5h, 075h, OF5h
db 00Dh, 08Dh, 04Dh, 0CDh, 02Dh, OADh, 06Dh, OEDh
db 01Dh, 09Dh, 05Dh, 0DDh, 03Dh, OBDh, 07Dh, OFDh
db 003h,083h,043h,0C3h,023h,0A3h,063h,0E3h
db 013h,093h,053h,0D3h,033h,0B3h,073h, 0F3h
db 00Bh, 08Bh, 04Bh, 0CBh, 02Bh, OABh, 06Bh, OEBh
db 01Bh, 09Bh, 05Bh, 0DBh, 03Bh, 0BBh, 07Bh, OFBh
db 007h,087h,047h,0C7h,027h,0A7h,067h, 0E7h
db 017h,097h,057h,0D7h,037h,0B7h,077h, 0F7h
db 00Fh, 08Fh, 04Fh, OCFh, 02Fh, OAFh, 06Fh, OEFh
db 01Fh,09Fh, 05Fh, 0DFh, 03Fh, OBFh, 07Fh, OFFh

end

11 of 18

APPLICATION EXAMPLE #2:

RS-485 NETWORKING USING ASYNCHRONOUS SERIAL MODE 3

The asynchronous serial port modes transmit and receive data in a format that is compatible with the
universally accepted RS-232 protocol. The DS89C420, when running at its maximum system clock
frequency (33MHz) and using the system clock Timer input (TIMH = 1), can achieve asynchronous baud
rates in excess of 2Mbaud. (The DS89C420 User’s Guide contains a table showing the maximum baud
rates for each serial mode). Unfortunately, to comply with the physical requirements of the RS-232
standard, RS-232 transmitters must provide a minimum output voltage swing of £5V and yet not exceed a
30V/us slew rate. These restrictions generally confine RS-232 compliant communication to slower baud
rates, and short line lengths. The limitations associated with the RS-232 standard should not, however,
prevent the use of the asynchronous serial modes when higher transmission rates are required. First of all,
RS-232 “compatible” (not compliant) transceivers, capable of MegaBaud ™ operation, are currently
available from Maxim/Dallas. For details about MegaBaud RS-232-compatible transceivers, please visit
the Maxim/Dallas website (www.maxim-ic.com). Secondly, point-to-point connection between multiple
microcontrollers and/or other asynchronous serial devices allows creation of user-defined networks that
can communicate at faster baud rates. Additionally, there are physical layer protocols (e.g., RS-422 and
RS-485) that support high-speed asynchronous serial communication over greater distances.

Figure 4. Example RS-485 Networking Using Hardware Serial Port Interfaces

D889C420 T———— .,

Master MAX3088
,uC i RS-485 TX/RX

P1.2 <4——— RO B

| : RE\
pra —L_p FE

P1.3 _>« D/ A

D889C420 rTT———

Slave #1 MAX3088
C { RS-485 TX/RX

p1.2 4——— RO

| { RE\ B
P1.4 —:: OE "
P13 ——— Py

D889C420 " r————

Slave #2 MAX3088
e i RS-485 TX'RX

P1.2 4_' RO B

| { RE\
P1.4 —:: oE

P1.3 i p A

12 of 18

www.maxim-ic.com

The figure above diagrams an RS-485 network interface between (3) DS89C420 microcontrollers. The
asynchronous serial modes use the TXD pin for transmission and the RXD pin for reception. These pins
connect directly to the DI (data input) and RO (receive output) pins of the RS-485 transceiver. A third
microcontroller port pin, P1.4, is connected to both the DE (data enable) and RE\ (receive enable) and
will serve as the directional control for the half-duplex transceiver. The network uses a master/slave
architecture (1 master, 2 slaves), where each slave device has its own unique address and must first be
addressed by the master before transmitting on the bus. All devices are operated at a 22.1184MHz system
clock frequency and use Timer 1 to produce a 1.38M baud rate. The settings needed to generate this baud
rate can be found in Table 4 following the figure.

ASYNCHRONOUS MODE 1, 3 BAUD RATE vs SYSTEM CLOCK
(RLCK=0, TCLK=0, TIMH =1, SMOD_x = 1) Table 4

EXTERNAL TIMER 1 RELOAD VALUE

SYSTEM | CRYSTAL OR CLOCK

CLOCK CLOCK MULTIPLIER
(MHz) FREQUENCY MODE? FB FC FD FE FF

(MHz)

7.3728 7.3728 - 92,160 | 115,200 | 153,600 | 230,400 460,800
10.0000 10.0000 - 125,000 | 156,250 | 208,333 | 312,250 625,000
11.0592 11.0592 - 138,240 | 172,800 | 230,400 | 345,600 691,200
14.7456 7.3728 2X 184,320 | 230,400 | 307,200 | 460,800 921,600
16.0000 16.0000 - 200,000 | 250,000 | 333,333 | 500,000 | 1,000,000
18.4320 18.4320 - 230,400 | 288,000 | 384,000 | 576,000 | 1,152,000
20.0000 10.0000 2X 250,000 | 312,250 | 416,667 | 625,000 | 1,250,000
22.1184 11.0592 2X 276,480 | 345,600 | 460,800 | 691,200 | 1,382,400
25.0000 25.0000 - 312,500 | 390,625 | 520,833 | 781,250 | 1,562,500
29.4912 7.3728 4X 368,640 | 460,800 | 614,400 | 921,600 | 1,843,200
32.0000 16.0000 2X 400,000 | 500,000 | 666,667 | 1,000,000 | 2,000,000
33.0000 33.0000 - 412,500 | 515,625 | 687,500 | 1,031,250 | 2,062,500

"Baud rate used in Application Example #2.
? The clock multiplier is used for illustration and is not required to generate these system clock frequencies.

13 of 18

CODE EXAMPLE: MASTER CODE

The master device is initialized as the transmitter and drives the DE, RE\ pins of its transceiver to logic
high. After transmitting the slave address, the master places the transceiver into receive mode. Upon
reception of two data bytes from the slave, the master returns the transceiver to its transmit mode. The
master uses 13-bit Timer 0 to time-out if two data bytes are not received from the addressed slave within
a certain period of time. The master sends the slave address and received data bytes (or an indication that
no response was received) to Serial Port 0 before addressing the other slave.

; DS89C420 RS-485 I/F example
; Master Code

; 420 pin MAX3088 I/F pin
; P1.4 DE, RE\

; P1.3/TXD DI

; P1.2/RXD RO

; SFR equates
tx485 bit pl.4 ;MAX3088 DE, RE\

org 000bh slave didn't respond
clr tr0 stop TimerO
mov th0, #00h reset Timer0
mov t10, #00h
setb tx485 MAX3088 into transmit mode
pop acc ; get rid of address pushed
pop acc ; to stack on interrupt
pop acc ; get rid of address pushed
pop acc ; to stack on 'call getch'
pop acc ; get slave address
call putbyt ; print slave address
mov dptr, #no data ; 'no response' string
call puts ; print string
mov a, #low(del) ; return to delay routine
push acc
mov a, #high(del)
push acc
reti

; Timer 0 Configuration
; used for time-out when no response from addressed slave

mov tmod, #00h ; 13-bit timer

mov t10, #00h ; THO:TLO = 0000h

mov thO, #00h

setb et0 ; enable timer(0 interrupt

14 of 18

setb ea ; enable global interrupts

; Serial Port 0 Configuration
; used to display slave address and returned databytes

orl t2con, #30h ; use Timer2 for tx/rx baud rate
mov rcap2h, #0ffh ; RCAP2H:2L = FFFAh

mov rcap2l, #0fah ; 115200 @22.1184 xtal freqg

mov th2, #0ffh

mov tl2, #0fah

mov scon, #40h ; serial mode 1

setb t2con.2 ; Timer2 run

; Serial Port 1 Configuration
; used to tx/rx over RS-485 link

orl wdcon, #80h ; set baud rate doubler bit
orl ckmod, #10h ; /1 input clk to Timerl
orl tmod, #20h ; Timerl: 8-bit autoreload
mov thl, #0ffh ; fastest

mov tll, #0ffh ;

setb trl ;timer run

mov sconl, #0c8h ;mode 3, TB8=1

mov a, #01h ; slave uC address
push acc ; save slave address
tx: pop acc ; get previous slave address
xrl a, #01h ; alternate 00h, 0lh
push acc ; save it twice
push acc ;
call putchl ; send slave addr
setb tr0 ; start Timer 0 for time-out
clr tx485 ; MAX3088 into receive mode
call getchl ; get slave data byte
mov r5, a ; store first data byte
call getchl ; get slave data byte
mov r6, a ; store second data byte
clr tr0 ; got both bytes
mov th0, #00h ; reset TimerO
mov £t10, #00h
setb tx485 ; MAX3088 into transmit mode

pop acc ; get slave addr
call putbyt ; print slave addr
mov a, #' ' ; <space>
call putch
mov a, rb ; get first data byte
call putbyt ; print data byte
mov a, r6 ; get second data byte
call putbyt ; print data byte
mov a, #0dh ; <CR/LF>
call putch
mov a, #0ah
call putch

del: mov r0, #080h ; delay before next addr sent
mov rl, #00h

15 of 18

delay: mov r2, #00h
delayl: djnz r2, $
djnz rl, delayl
djnz r0, delay
sjmp tx
no data: db ' no response',0dh, 0Oah, 0

$include (put code.src)
$include (putcodel.src)
end

CODE EXAMPLE (CONTINUED): SLAVE #1, #2 CODE

The slave devices are initially configured as receivers, driving the DE, RE\ pins for their respective
transceivers to logic low. The multiprocessor communication mode is used by both slave microcontrollers
so that address transmissions over the network can be distinguished from data transmissions. When
addressed, the slave device becomes a transmitter and responds to the master by sending two data bytes.
Once these bytes have been sent, the slave returns the transceiver to receive mode and begins monitoring
the network for its address.

; DS89C420 RS-485 I/F example
; Slave #1, #2 code

; 420 pin MAX3088 I/F pin
; P1.4 DE, RE\
; P1.3/TXD DI
; P1.2/RXD RO
Sinclude (420.def) ; SFR equates
tx485 bit pl.4 ;MAX3088 DE, RE\
; Main Program
org 0000h
clr tx485 ; MAX3088 in receive mode
mov rl, #00h ; counter for slave data
; Serial Port 1 Configuration

; used to tx/rx over RS-485 link

orl wdcon, #80h ; set baud rate doubler bit
orl ckmod, #10h ; /1 input clk to Timerl
orl tmod, #20h ; Timerl: 8-bit autoreload
mov thl, #0ffh ; fastest
mov tll, #0ffh ;
setb trl ; Timerl run
mov sconl, #0eOh ; mode 3, multi-uC, TB8=0
mov saddrl, #00h ; slave#l address

; mov saddrl, #01lh ; slave#2 address
mov sadenl, #0ffh ; no mask - exact match

rx:
call getchl waits until address match
mov r0, #20h delay to ensure master
djnz r0, S gets into RX mode
setb tx485 MAX3088 into transmit mode
mov a, rl get data for transmit

16 of 18

call
inc
; dec
mov
call
inc
; dec
clr
sjmp

putchl
rl
rl
a, rl
putchl
rl
rl
tx485
rx

S$include (putcodel.src)

end

00 1213
01 EEED

00 1415
01 ECEB

00 no response

01 EAE9
00 1819
01 E8BE7
00 1A1lB
01 E6ES
00 1C1D
01 E4E3
00 1E1F
01 E2E1
00 2021

01l no response

00 2223

01l no response

00 2425
01 DCDB
00 2627
01 DAD9

send 1lst byte

update slave#l data
update slave#2 data

get data for transmit
send 2nd byte

update slave#l data
update slave#2 data
MAX3088 into receive mode
back looking for address

EXAMPLE MASTER OUTPUT TO SERIAL PORT 0

(*** opened Slave #1 TXD-DI connection)

(*** opened Slave #2 TXD-DI connection)

(*** Slave #2 TXD-DI connection still open)

17 of 18

APPENDIX A: BAUD RATE EQUATIONS

CLOCK MULTIPLIER SETTING | BAUD CLOCK FREQUENCY AS
A FUNCTION OF THE
SERIAL BAUD CLOCK 1X: CDI1:0 = 10b EXTERNAL OSCILLATOR
MODE SOURCE 2X: CDI1:0 = 00b FREQUENCY (0SC)
2X/4X =0
4X: CD1:0 =00b SMOD_x = Doubling Bit
2X/A4X =1 THI1 = Timer 1 Reload
System Clock / 12 1X OSC/12
(SM2_x = 0) 2X OSC/6
0 = 4X OSC/3
System Clock / 4 1X 0SC/4
(SM2 x= 1) 2X OSC/2
= 4X OSC
Timer 1 2M9Px x 0SC)
(TIMH, TIM = 00b) 1X, 2X, or 4X [384 x (256 - TH1)]
X @MOPx x 0SC)
[128 x (256 - TH1)]
Timer 1 X 28MOPx x OSC
(TIMH, TIM = 01b) [64 x (256 - TH1)]
SMOD_x
4X Q2 x OSC)
[32 x (256 - TH1)]
lor3 SOD
1X 2 -~ x OSC
[32 x (256 - TH1)]
Timer 1 X 28MOPx x OSC
(TIMH, TIM = 1Xb) [16 x (256 - TH1)]
SMOD_x
4X Q2 x OSC)
[8 x (256 - THI1)]
Timer 2 OSC
(TCLK or RCLK =1) 1X, 2X, or 4X 32 x (65536 - RCAP2H:2L)
. (SMOD_x)
2 Oscillator Clock / 64 1X, 2X, or 4X 2 62 0SC

SPI is a trademark of Motorola, Inc.
MegaBaud is a trademark of Maxim Integrated Products.

18 of 18

