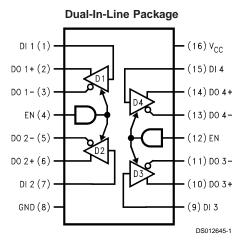


DS34LV87T Enhanced CMOS Quad Differential Line Driver

General Description


The DS34LV87T is a high speed quad differential CMOS driver that meets the requirements of both TIA/EIA-422-B and ITU-T V.11. The CMOS DS34LV87T features low static I $_{\rm CC}$ of 100 μA max which makes it ideal for battery powered and power conscious applications. The TRI-STATE® enable, EN, allows the device to be disabled when the device is not in use to minimize power. The dual enable scheme allows for flexibility in turning devices on or off.

Protection diodes protect all the driver inputs against electrostatic discharge. The driver and enable inputs (DI and EN) are compatible with LVTTL and LVCMOS devices. Differential outputs have the same $V_{OD}~(\ge 2V)$ guarantee as the 5V version. The outputs have enhanced ESD Protection providing greater than 7 kV tolerance.

Features

- Meets TIA/EIA-422-B (RS-422) and ITU-T V.11 recommendation
- Interoperable with existing 5V RS-422 networks
- Guaranteed V_{OD} of 2V min over operating conditions
- Balanced output crossover for low EMI (typical within 40 mV of 50% voltage level)
- Low power design (330 µW 3.3V static)
- ESD ≥ 7 kV on cable I/O pins (HBM)
- Industrial temperature range
- Guaranteed AC parameter:
 - Maximum driver skew: 2 ns
 - Maximum transition time: 10 ns
- Pin compatible with DS26C31
- Available in SOIC packaging

Connection Diagram

Top View Order Number DS34LV87TM See NS Package Number M16A

Truth Table

Enables	Input	Outputs			
EN	DI	DO+	DO-		
L	Х	Z	Z		
Н	Н	Н	L		
Н	L	L	Н		

- L = Low logic state
- X = Irrelevant
- H = High logic state
- Z = TRI-STATE

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5V to +7V Enable Input Voltage (EN) -0.5V to V_{CC} + 0.5V Driver Input Voltage (D_{I}) -0.5V to V_{CC} + 0.5V Clamp Diode Current ± 20 mA DC Output Current, per pin ± 150 mA

Driver Output Voltage

(Power Off: DO+, DO-) -0.5V to +7V

Maximum Package Power Dissipation +25°C

M Package 1226 mW

Derate M Package 9.8 mW/°C above +25°C

Storage Temperature Range -65°C to +150°C

Lead Temperature Range (Soldering, 4 sec.) +260 $^{\circ}$ C ESD Ratings (HBM, 1.5k, 100 pF) Driver Outputs ≥ 7 kV Other Pins ≥ 2.5 kV

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air				
Temperature Range (T _A)				
DS34LV87T	-40	25	+85	°C
Input Rise and Fall Time			500	ns

Electrical Characteristics (Notes 2, 3)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
V _{OD1}	Output Differential Voltage	R _L = ∞, (No Load)	DO+,		3.3	4.0	V
V _{OD2}	Output Differential Voltage	$R_L = 100\Omega$ Figure 1	DO-	2	2.6		V
ΔV_{OD2}	Change in Magnitude of			-400	7	400	mV
	Output Differential Voltage						
V _{OD3}	Output Differential Voltage	$R_L = 3900\Omega \text{ (V.11)},$ Figure 1 (Note 7)			3.2	3.5	V
V _{oc}	Common Mode Voltage	$R_L = 100\Omega$ Figure 1			1.5	2	V
ΔV_{OC}	Change in Magnitude of			-400	6	400	mV
	Common Mode Voltage						
I _{oz}	TRI-STATE Leakage	V _{OUT} = V _{CC} or GND			±0.5	±20	μA
	Current	Drivers Disabled					
I _{sc}	Output Short Circuit Current	$V_{OUT} = 0V$ $V_{IN} = V_{CC}$ or GND (Note 4)		-40	-70	-150	mA
I _{OFF}	Output Leakage Current	$V_{CC} = 0V, V_{OUT} = 3V$			0.03	100	μA
		$V_{CC} = 0V, V_{OUT} = -0.25V$			-0.08	-100	μA
V _{IH}	High Level Input Voltage		DI,	2.0		V _{cc}	V
V _{IL}	Low Level Input Voltage		EN	GND		0.8	V
I _{IH}	High Level Input Current	V _{IN} = V _{CC}				10	μA
I _{IL}	Low Level Input Current	V _{IN} = GND		-10			μA
V _{CL}	Input Clamp Voltage	I _{IN} = -18 mA				-1.5	V
I _{cc}	Power Supply Current	No Load, V_{IN} (all) = V_{CC} or GND	V _{cc}			100	μA

www.national.com 2

Switching Characteristics (Notes 5, 6)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHLD}	Differential Propagation Delay	$R_{L} = 100\Omega, C_{L} = 50 \text{ pF}$	6	10.5	16	ns
	High to Low	(Figures 2, 3)				
t _{PLHD}	Differential Propagation Delay		6	11	16	ns
	Low to High					
t _{SKD}	Differential Skew			0.5	2.0	ns
	t _{PHLD} -t _{PLHD}					
t _{SK1}	Skew, Pin to Pin (same device)			1.0	2.0	ns
t _{SK2}	Skew, Part to Part (Note 8)			3.0	5.0	ns
t _{TLH}	Differential Transition Time			4.2	10	ns
	Low to High (20% to 80%)					
t _{THL}	Differential Transition Time			4.7	10	ns
	High to Low (80% to 20%)					
t _{PHZ}	Disable Time High to Z	(Figures 4, 5)		12	20	ns
t _{PLZ}	Disable Time Low to Z			9	20	ns
t _{PZH}	Enable Time Z to High			22	32	ns
t _{PZL}	Enable Time Z to Low			22	32	ns
f _{MAX}	Maximum Operating Frequency			32		MHz
	(Note 9)					

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except differential voltages V_{OD1}, V_{OD2}, V_{OD3}.

Note 3: All typical values are given for V_{CC} = 3.3V and T_A = +25°C.

Note 4: Only one output shorted at a time. The output (true or complement) is configured High.

Note 5: f = 1 MHz, t_r and $t_f \le 6 \text{ ns}$ (10% to 90%).

Note 6: See TIA/EIA-422-B specifications for exact test conditions.

Note 7: This specification limit is for compliance with TIA/EIA-422-B and ITU-T V.11.

Note 8: Devices are at the same V_{CC} and within 5°C within the operating temperature range.

Note 9: All channels switching, output duty cycle criteria is 40%/60% measured at 50%. This parameter is guaranteed by design and characterization.

Parameter Measurement Information

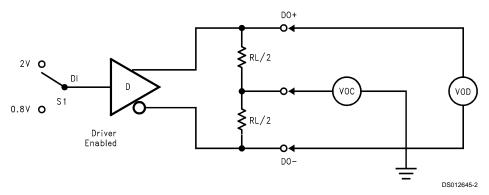


FIGURE 1. Differential Driver DC Test Circuit

Parameter Measurement Information (Continued)

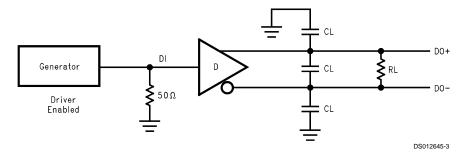


FIGURE 2. Differential Driver Propagation Delay and Transition Time Test Circuit

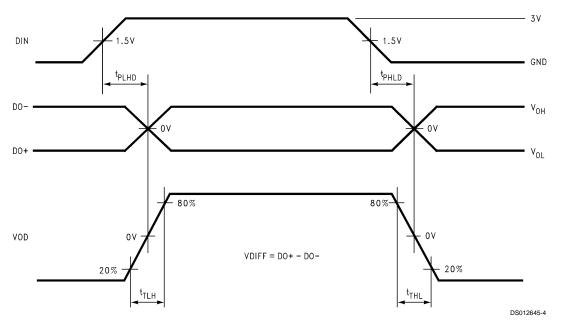


FIGURE 3. Differential Driver Propagation Delay and Transition Time Waveforms

Note 10: Generator waveform for all tests unless otherwise specified: f = 1 MHz, Duty Cycle = 50%, $Z_0 = 50\Omega$, $t_f \le 10$ ns, $t_f \le 10$ ns. Note 11: C_L includes probe and fixture capacitance.

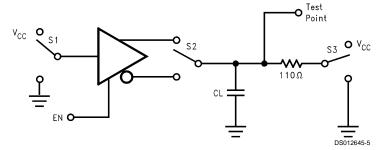


FIGURE 4. Driver Single-Ended TRI-STATE Test Circuit

www.national.com 4

Parameter Measurement Information (Continued)

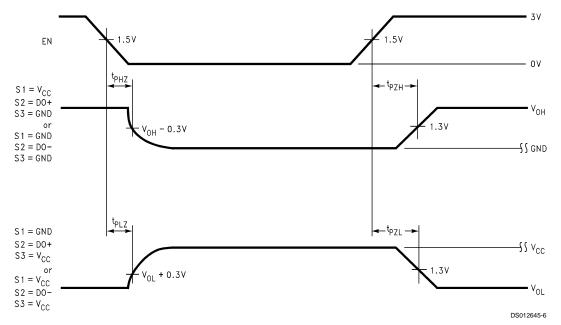
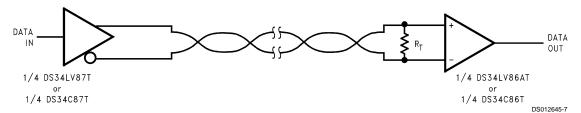


FIGURE 5. Driver Single-Ended TRI-STATE Waveforms


Typical Application Information

General application guidelines and hints for differential drivers and receivers may be found in the following application notes:

AN-214, AN-457, AN-805, AN-847, AN-903, AN-912, AN-916.

Power Decoupling Recommendations:

Bypass caps must be used on power pins. High frequency ceramic (surface mount is recommended) 0.1 μF in parallel with 0.01 μF at the power supply pin. A 10 μF or greater tantalum or electrolytic should be connected at the power entry point on the printed circuit board.

R_T is optional although highly recommended to reduce reflection

FIGURE 6. Typical Driver Connection

5 www.national.com

Typical Application Information (Continued)

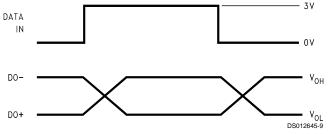
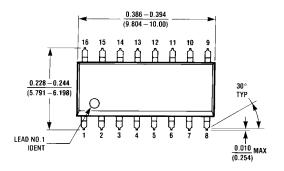
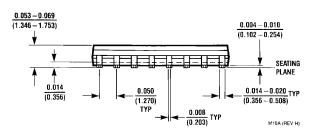




FIGURE 7. Typical Driver Output Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Molded Small Outline Package (M) Order Number DS34LV87TM **NS Package Number M16A**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018

Email: support@nsc.com www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: ap.support@nsc.com

National Semiconductor Tel: 81-3-5639-7560 Fax: 81-3-5639-7507