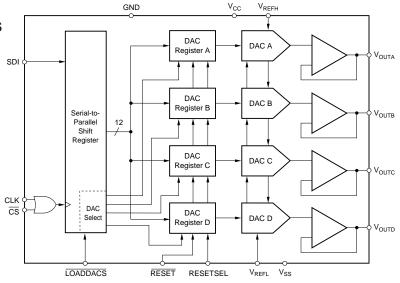


Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER

FEATURES

- LOW POWER: 250mW (max)
- UNIPOLAR OR BIPOLAR OPERATION
- SETTLING TIME: 10µs to 0.012%
- 12-BIT LINEARITY AND MONOTONICITY: -40°C to +85°C
- USER SELECTABLE RESET TO MID-SCALE OR ZERO-SCALE
- SECOND-SOURCE for DAC8420
- SMALL SO-16 PACKAGE


APPLICATIONS

- ATE PIN ELECTRONICS
- PROCESS CONTROL
- CLOSED-LOOP SERVO-CONTROL
- MOTOR CONTROL
- DATA ACQUISITION SYSTEMS

DESCRIPTION

The DAC7714 is a quad, serial input, 12-bit, voltage output Digital-to-Analog Converter (DAC) with guaranteed 12-bit monotonic performance over the -40° C to $+85^{\circ}$ C temperature range. An asynchronous reset clears all registers to either mid-scale (800_{H}) or zero-scale (900_{H}), selectable via the RESETSEL pin. The device can be powered from a single +15V supply or from dual +15V and -15V supplies.

Low power and small size makes the DAC7714 ideal for process control, data acquisition systems, and closed-loop servo-control. The device is available in a SO-16 package, and is guaranteed over the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111

Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

http://www.burr-brown.com/
INSTRUMENTS

http://www.ti.com/

SPECIFICATIONS (Dual Supply)

At $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = +15V$, $V_{SS} = -15V$, $V_{REFH} = +10V$, $V_{REFL} = -10V$, unless otherwise noted.

		DAC7714U		ı	DAC7714U	В		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ACCURACY								
Linearity Error				±2			±1	LSB ⁽¹⁾
Linearity Matching(2)				±2			±1	LSB
Differential Linearity Error				±1			±1	LSB
Monotonicity	T _{MIN} to T _{MAX}	12			*			Bits
Zero-Scale Error	Code = 000 _H			±2			*	LSB
Zero-Scale Drift			1			*		ppm/°C
Zero-Scale Matching ⁽²⁾				±2			±1	LSB
Full-Scale Error	Code = FFF _H			±2			*	LSB
Full-Scale Matching ⁽²⁾				±2			±1	LSB
Power Supply Sensitivity	At Full Scale		10			*		ppm/V
ANALOG OUTPUT								
Voltage Output ⁽³⁾		V_{REFL}		V _{REFH}	*		*	V
Output Current		-5		+5	*		*	mA
Load Capacitance	No Oscillation		500			*		pF
Short-Circuit Current			±20			*		mA
Short-Circuit Duration	To V _{SS} , V _{CC} , or GND		Indefinite			*		
REFERENCE INPUT								
V _{REFH} Input Range		V _{REFL} +1.25		+10	*		*	V
V _{REFL} Input Range		-10		V _{REFH} - 1.25	*		*	V
Ref High Input Current		-0.5		3.0	*		*	mA
Ref Low Input Current		-3.5		0	*		*	mA
DYNAMIC PERFORMANCE								
Settling Time	To ±0.012%, 20V Output Step		8	10		*	*	μs
Channel-to-Channel Crosstalk	Full-Scale Step	I	0.25			*		LSB
Digital Feedthrough		I	2				*	nV-s_
Output Noise Voltage	f = 10kHz		65			*		nV/√Hz
DIGITAL INPUT								
Logic Levels								
V _{IH}	I _{IH} ≤ ±10μA	3.325			*			V
V _{IL}	$I_{IL} \le \pm 10 \mu A$			1.575			*	V
Data Format		S	traight Bina	ry		*		
POWER SUPPLY REQUIREMENTS								
V _{CC}		+14.25		+15.75	*		*	V
V _{SS}		-15.75		-14.25	*		*	V
I _{CC}			6	8.5		*	*	mA
I _{SS}		-8	-6		*	*		mA
Power Dissipation			180	250		*	*	mW
TEMPERATURE RANGE								
Specified Performance		-40		+85	*		*	°C

NOTES: (1) LSB means Least Significant Bit; if V_{REFH} equals +10V and V_{REFL} equals -10V, then one LSB equals 4.88mV. (2) All DAC outputs will match within the specified error band. (3) Ideal output voltage does not take into account zero or full-scale error.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (Single Supply)

At $T_A = -40^{\circ}\text{C}$ to +85°C, $V_{CC} = +15\text{V}$, $V_{SS} = \text{GND}$, $V_{REFH} = +10\text{V}$, $V_{REFL} = 0\text{V}$, unless otherwise noted.

		DAC7714U			DAC7714U	В		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ACCURACY								
Linearity Error ⁽¹⁾				±2			±1	LSB(2)
Linearity Matching(3)				±2			±1	LSB
Differential Linearity Error				±1			±1	LSB
Monotonicity	T _{MIN} to T _{MAX}	12			*			Bits
Zero-Scale Error	Code = 004 _H			±4			*	LSB
Zero-Scale Drift			2			*		ppm/°C
Zero-Scale Matching(3)				±4			±2	LSB
Full-Scale Error	Code = FFF _H			±4			*	LSB
Full-Scale Matching(3)				±4			±2	LSB
Power Supply Sensitivity	At Full Scale		20			*		ppm/V
ANALOG OUTPUT								
Voltage Output ⁽⁴⁾		V_{REFL}		V _{REFH}	*		*	V
Output Current		- 5		+5	*			mA
Load Capacitance	No Oscillation		500			*		pF
Short-Circuit Current			±20			*		mA
Short-Circuit Duration	To V _{CC} or GND		Indefinite			*		
REFERENCE INPUT								
V _{REFH} Input Range		V _{REFL} +1.25		+10	*		*	V
V _{REFL} Input Range		0		V _{REFH} - 1.25	*		*	V
Ref High Input Current		-0.3		1.5	*		*	mA
Ref Low Input Current		-2.0		0	*		*	mA
DYNAMIC PERFORMANCE								
Settling Time ⁽⁵⁾	To ±0.012%, 10V Output Step		8	10		*	*	μs
Channel-to-Channel Crosstalk			0.25			*		LSB
Digital Feedthrough			2				*	nV-s_
Output Noise Voltage	f = 10kHz		65			*		nV/√Hz
DIGITAL INPUT/OUTPUT								
Logic Levels								
V _{IH}	I _{IH} ≤ ±10μA	3.325			*			V
V _{IL}	I _{IL} ≤ ±10μA	_		1.575			*	V
Data Format		S	traight Binai	ry .		*		
POWER SUPPLY REQUIREMENTS								
V _{CC}		14.25		15.75	*		*	V
I _{cc}			3.0			*	*	mA
Power Dissipation			45			*		mW
TEMPERATURE RANGE								_
Specified Performance		-40		+85	*		*	°C

NOTES: (1) If $V_{SS} = 0V$, specification applies at code 004_H and above. (2) LSB means Least Significant Bit; if V_{REFH} equals +10V and V_{REFL} equals 0V, then one LSB equals 2.44mV. (3) All DAC outputs will match within the specified error band. (4) Ideal output voltage does not take into account zero or full-scale error. (5) Full-scale positive 10V step and negative step from code FFF_H to 020_H .

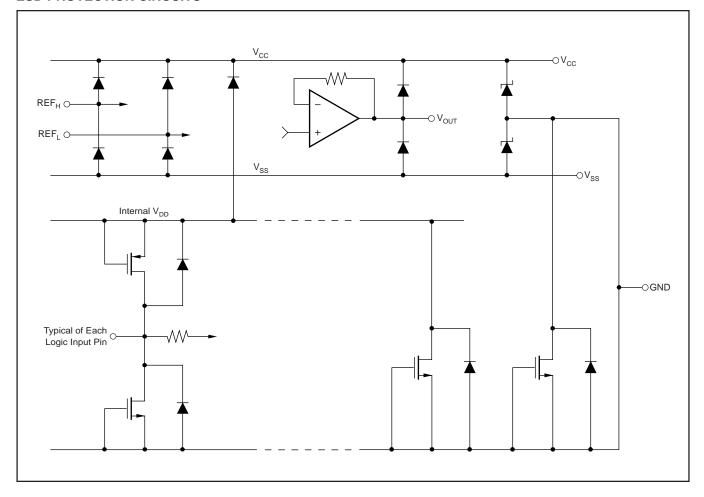
ABSOLUTE MAXIMUM RATINGS(1)

V _{CC} to V _{SS}	0.3V to +32V
V _{CC} to GND	0.3V to +16V
V _{SS} to GND	+0.3V to -16V
V _{REF} H to GND	9V to +11V
$V_{REF}L$ to GND ($V_{SS} = -15V$)	11V to +9V
V _{REF} L to GND (V _{SS} = 0V)	0.3V to +9V
V _{REFH} to V _{REFL}	1V to +22V
Digital Input Voltage to GND	0.3V to 5.8V
Digital Output Voltage to GND	0.3V to 5.8V
Maximum Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

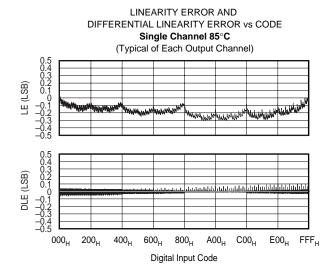
PACKAGE/ORDERING INFORMATION

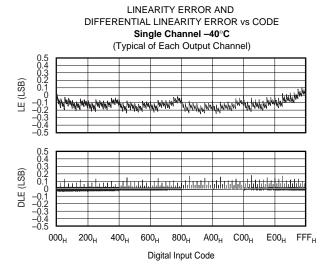

PRODUCT	MAXIMUM LINEARITY ERROR (LSB)	MAXIMUM DIFFERENTIAL LINEARITY (LSB)	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFICATION TEMPERATURE RANGE	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA
DAC7714U DAC7714UB	±2 " ±1	±1 " ±1 "	SO-16 SO-16	211 " 211	-40°C to +85°C -40°C to +85°C	DAC7714U DAC7714U/1K DAC7714UB DAC7714UB/1K	Rails Tape and Reel Rails Tape and Reel

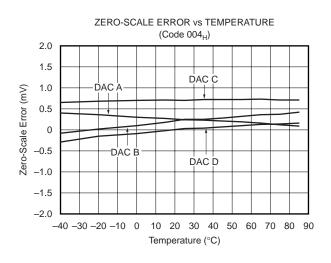
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces of "DAC7714UB/1K" will get a single 1000-piece Tape and Reel.

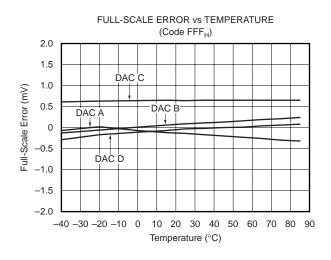
ESD PROTECTION CIRCUITS

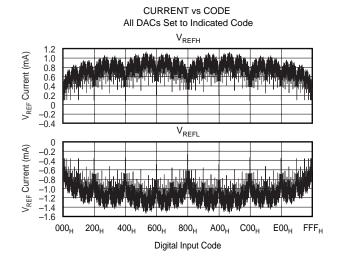
PIN CONFIGURATION—U Package

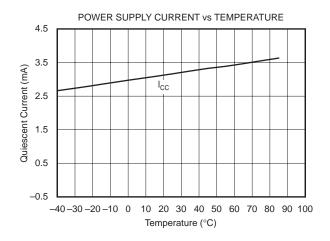

PIN DESCRIPTIONS—U Package

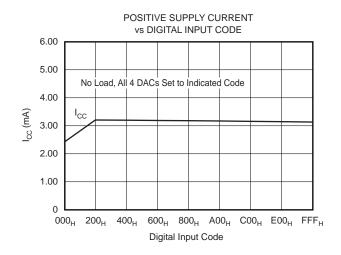

PIN	LABEL	DESCRIPTION	
1	V _{CC}	Positive Analog Supply Voltage, +15V nominal.	
2	V _{OUTD}	DAC D Voltage Output	
3	V _{OUTC}	DAC C Voltage Output	
4	V _{REFL}	Reference Input Voltage Low. Sets minimum output voltage for all DACs.	
5	V _{REFH}	Reference Input Voltage High. Sets maximum output voltage for all DACs.	
6	V _{OUTB}	DAC B Voltage Output	
7	V _{OUTA}	DAC A Voltage Output	
8	V _{SS}	Negative Analog Supply Voltage, 0V or –15V nominal.	
9	GND	Ground	
10	SDI	Serial Data Input	
11	CLK	Serial Data Clock	
12	CS	Chip Select Input	
13	NIC	Not Internally Connected	
14	LOADDACS	The selected DAC register becomes transparent when LOADDACS is LOW. It is in the latched state when LOADDACS is HIGH.	
15	RESET	Asynchronous Reset Input. Sets all DAC registers to either zero-scale (000_{H}) or midscale (800_{H}) when LOW. RESETSEL determines which code is active.	
16	RESETSEL	When LOW, a LOW on $\overline{\text{RESET}}$ will cause all DAC registers to be set to code 000_{H} . When RESETSEL is HIGH, a LOW on $\overline{\text{RESET}}$ will set the registers to code 800_{H} .	

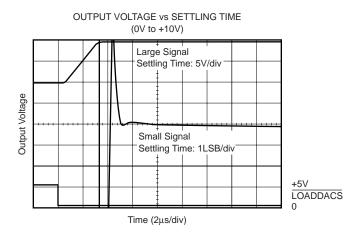

TYPICAL PERFORMANCE CURVES: $V_{SS} = 0V$

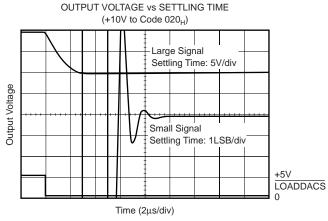

At $T_A = +25^{\circ}C$, $V_{CC} = +15V$, $V_{SS} = 0V$, $V_{REFH} = +10V$, $V_{REFL} = 0V$, representative unit, unless otherwise specified.

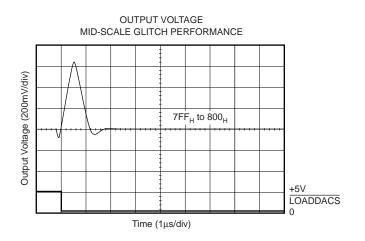


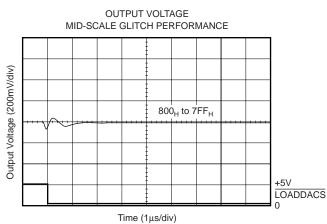


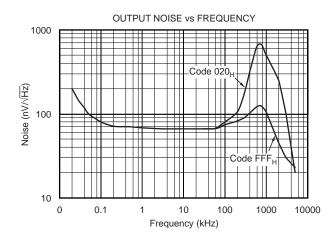


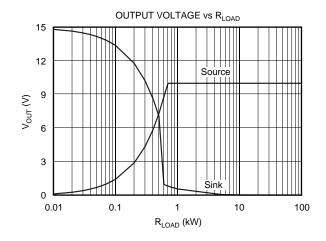


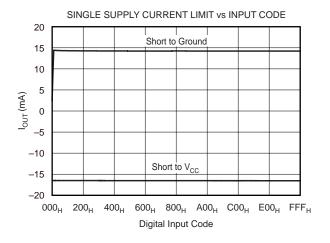

TYPICAL PERFORMANCE CURVES: V_{SS} = 0V (Cont.)

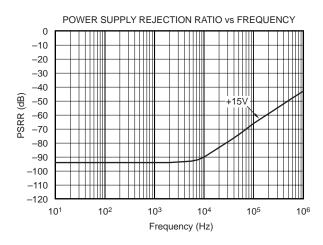

At $T_A = +25^{\circ}C$, $V_{CC} = +15V$, $V_{SS} = 0V$, $V_{REFH} = +10V$, $V_{REFL} = 0V$, representative unit, unless otherwise specified.



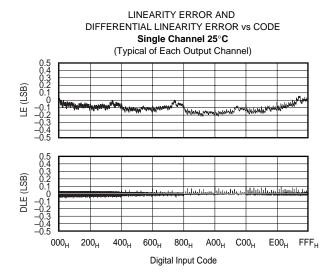


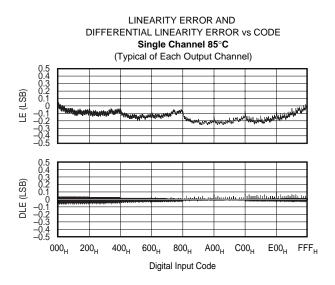


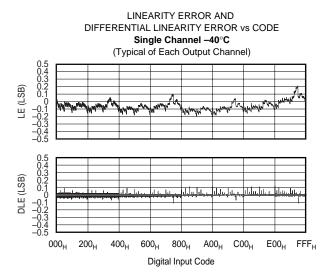


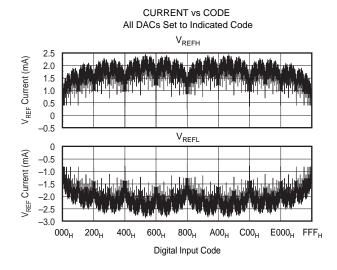

TYPICAL PERFORMANCE CURVES: V_{SS} = **0V** (Cont.)

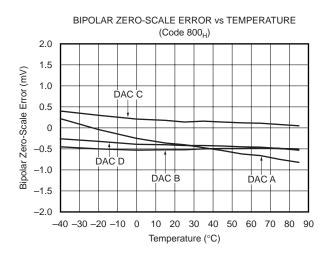
At $T_A = +25$ °C, $V_{CC} = +15$ V, $V_{SS} = 0$ V, $V_{REFH} = +10$ V, $V_{REFL} = 0$ V, representative unit, unless otherwise specified.

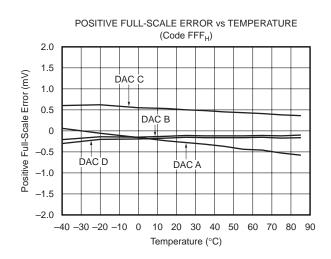


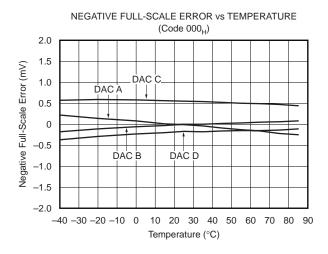


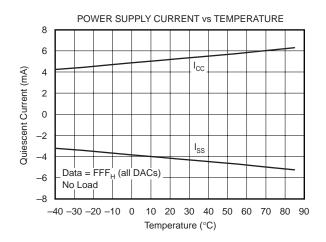


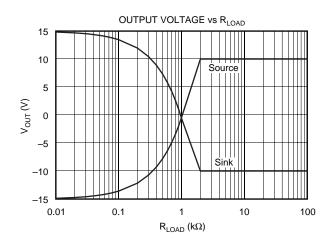

TYPICAL PERFORMANCE CURVES: $V_{SS} = -15V$

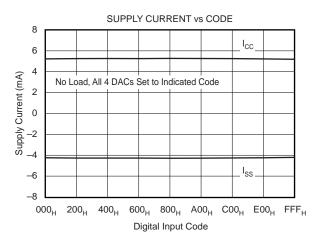

At $T_A = +25$ °C, $V_{CC} = +15$ V, $V_{SS} = -15$ V, $V_{REFH} = +10$ V, $V_{REFL} = -10$ V, representative unit, unless otherwise specified.

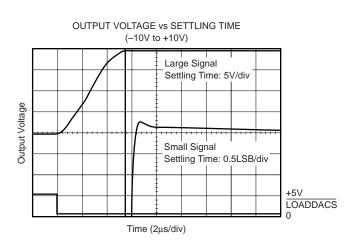


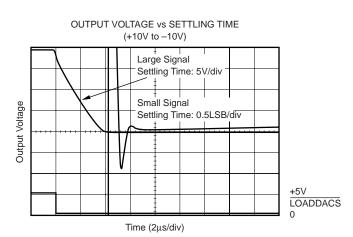


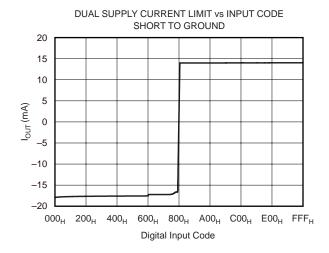


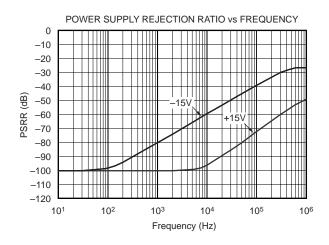


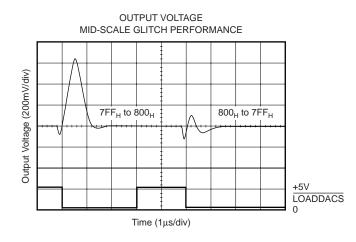

TYPICAL PERFORMANCE CURVES: $V_{SS} = -15V$ (Cont.)


At $T_A = +25$ °C, $V_{CC} = +15$ V, $V_{SS} = -15$ V, $V_{REFH} = +10$ V, $V_{REFL} = -10$ V, representative unit, unless otherwise specified.

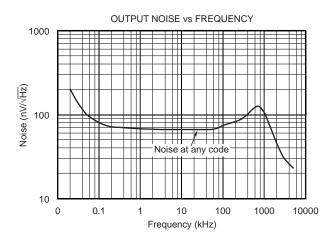








TYPICAL PERFORMANCE CURVES: $V_{SS} = -15V$ (Cont.)


At $T_A = +25$ °C, $V_{CC} = +15$ V, $V_{SS} = -15$ V, $V_{REFH} = +10$ V, $V_{REFL} = -10$ V, representative unit, unless otherwise specified.

11

DAC7714

THEORY OF OPERATION

The DAC7714 is a quad, serial input, 12-bit, voltage output DAC. The architecture is a classic R-2R ladder configuration followed by an operational amplifier that serves as a buffer. Each DAC has its own R-2R ladder network and output op amp, but all share the reference voltage inputs, as shown in Figure 1. The minimum voltage output ("zeroscale") and maximum voltage output ("full-scale") are set by external voltage references (V_{REFL} and V_{REFH}, respectively). The digital input is a 16-bit serial word that contains the 12-bit DAC code and a 2-bit address code that selects one of the four DACs (the two remaining bits are unused). The converter can be powered from a single +15V supply or a dual ±15V supply. Each device offers a reset function which immediately sets all DAC output voltages and internal registers to either zero-scale (code 000_H) or mid-scale (code 800_H). The reset code is selected by the state of the RESETSEL pin (LOW = 000_H , HIGH = 800_H). Figures 2 and 3 show the basic operation of the DAC7714.

ANALOG OUTPUTS

When $V_{SS} = -15V$ (dual supply operation), the output amplifier can swing to within 4V of the supply rails, over the -40°C to $+85^{\circ}\text{C}$ temperature range. With $V_{SS} = 0V$ (single-supply operation), the output can swing to ground. Note that the settling time of the output op amp will be longer with voltages very near ground. Care must also be taken when measuring the zero-scale error when $V_{SS} = 0V$. If the output amplifier has a negative offset, the output voltage may not change for the first few digital input codes $(000_H, 001_H, 002_H, \text{ etc.})$ since the output voltage cannot swing below ground.

At the negative offset limit of -4LSB (-9.76mV), for the single-supply case, the first specified output starts at code $004_{\rm H}$.

REFERENCE INPUTS

The reference inputs, V_{REFL} and V_{REFH} , can be any voltage between V_{SS} + 4V and V_{CC} – 4V provided that V_{REFH} is at least 1.25V greater than V_{REFL} . The minimum output of each D/A is equal to V_{REFL} – 1LSB plus a small offset voltage (essentially, the offset of the output op amp). The maximum output is equal to V_{REFH} plus a similar offset voltage. Note that V_{SS} (the negative power supply) must either be connected to ground or must be in the range of –14.75V to –15.75V. The voltage on V_{SS} sets several bias points within the converter. If V_{SS} is not in one of these two configurations, the bias values may be in error and proper operation of the device is not guaranteed.

The current into the reference inputs depends on the DAC output voltages and can vary from a few microamps to approximately 3mA. The reference input appears as a varying load to the reference. If the reference can sink or source the required current, a reference buffer is not required. See "Reference Current vs Code" in the Typical Performance Curves.

The analog supplies must come up before the reference power supplies, if they are separate. If the power supplies for the references come up first, then the V_{CC} and V_{SS} supplies will be powered from the reference via the ESD protection diodes (see page 4).

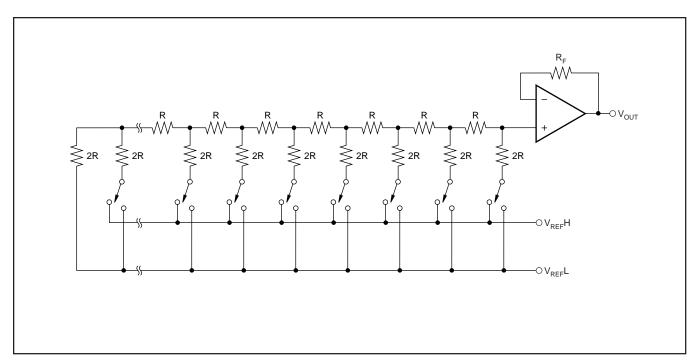


FIGURE 1. DAC7714 Architecture.

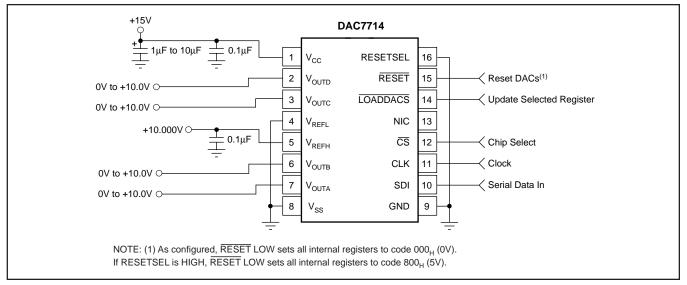


FIGURE 2. Basic Single-Supply Operation of the DAC7714.

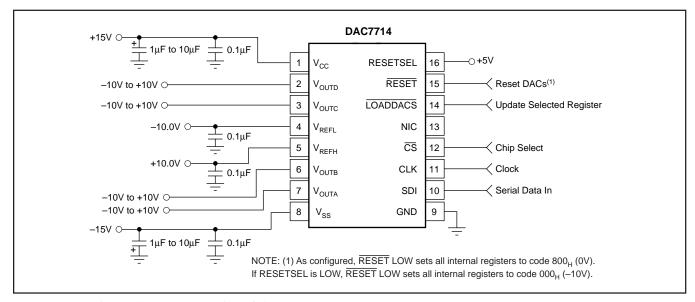


FIGURE 3. Basic Dual-Supply Operation of the DAC7714.

DIGITAL INTERFACE

Figure 4 and Table I provide the basic timing for the DAC7714. The interface consists of a serial clock (CLK), serial data (SDI), and a load DAC signal (LOADDACS). In addition, a chip select (CS) input is available to enable serial communication when there are multiple serial devices. An asynchronous reset input (RESET) is provided to simplify start-up conditions, periodic resets, or emergency resets to a known state.

The DAC code and address are provided via a 16-bit serial interface (see Figure 4). The first two bits select the DAC register that will be updated when LOADDACS goes LOW (see Table II). The next two bits are not used. The last 12 bits is the DAC code which is provided, most significant bit first.

Note that \overline{CS} and CLK are combined with an OR gate and the output controls the serial-to-parallel shift register internal to the DAC7714 (see the block diagram on the front of this data sheet). These two inputs are completely interchangeable. In addition, care must be taken with the state of CLK when \overline{CS} rises at the end of a serial transfer. If CLK is LOW when \overline{CS} rises, the OR gate will provide a rising edge to the shift register, shifting the internal data one additional bit. The result will be incorrect data and possible selection of the wrong DAC.

If both \overline{CS} and CLK are used, then \overline{CS} should rise only when CLK is HIGH. If not, then either \overline{CS} or CLK can be used to operate the shift register. See Table III for more information.

DAC7714

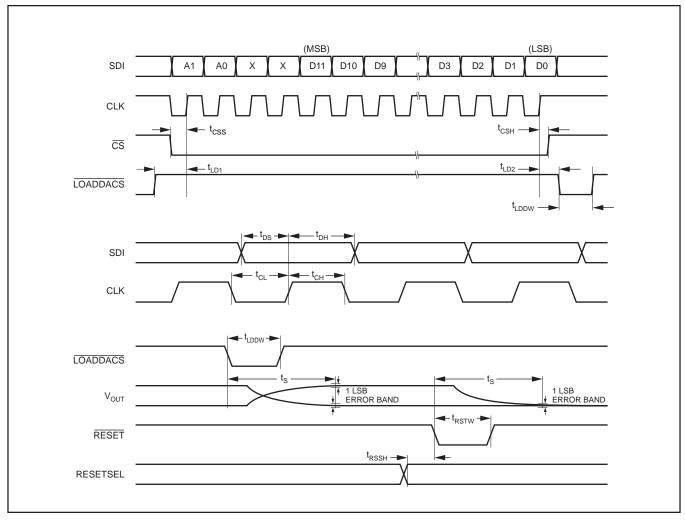


FIGURE 4. DAC7714 Timing.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{DS}	Data Valid to CLK Rising	25			ns
t _{DH}	Data Held Valid after CLK Rises	20			ns
t _{CH}	CLK HIGH	30			ns
t _{CL}	CLK LOW	50			ns
t _{CSS}	CS LOW to CLK Rising	55			ns
t _{CSH}	CLK HIGH to CS Rising	15			ns
t _{LD1}	LOADDACS HIGH to CLK Rising	40			ns
t _{LD2}	CLK Rising to LOADDACS LOW	15			ns
t _{LDDW}	LOADDACS LOW Time	45			ns
t _{RSSH}	RESETSEL Valid to RESET LOW	25			ns
t _{RSTW}	RESET LOW Time	70			ns
t _S	Settling Time	10			μs

TABLE I. Timing Specifications ($T_A = -40^{\circ}C$ to $+85^{\circ}C$).

A 1	A0	LOADDACS	RESET	SELECTED DAC REGISTER	STATE OF SELECTED DAC REGISTER
L(1)	L	L	H ⁽²⁾	Α	Transparent
L	Н	L	Н	В	Transparent
Н	L	L	Н	С	Transparent
Н	Н	L	Н	D	Transparent
X ⁽³⁾	Х	Н	Н	NONE	(All Latched)
Х	Х	Х	L	ALL	Reset ⁽⁴⁾

NOTES: (1) L = Logic LOW. (2) H = Logic HIGH. (3) X = Don't Care. (4) Resets to either 000H or $800_{\rm H}$, per the RESETSEL state (LOW = $000_{\rm H}$, HIGH = $800_{\rm H}$). When RESET rises, all registers that are in their latched state retain the reset value.

TABLE II. Control Logic Truth Table.

CS ⁽¹⁾	CLK ⁽¹⁾	LOADDACS	RESET	SERIAL SHIFT REGISTER
H ⁽²⁾	X ⁽³⁾	Н	Н	No Change
L(4)	L	Н	Н	No Change
L	↑ (5)	Н	Н	Advanced One Bit
1	L	Н	Н	Advanced One Bit
H ⁽⁶⁾	Х	<u>L</u> (7)	Н	No Change
H ⁽⁶⁾	Х	Н	L(8)	No Change

NOTES: (1) \overline{CS} and CLK are interchangeable. (2) H = Logic HIGH. (3) X = Don't Care. (4) L = Logic LOW (5) = Positive Logic Transition. (6) A HIGH value is suggested in order to avoid a "false clock" from advancing the shift register and changing the shift register. (7) If data is clocked into the serial register while $\overline{LOADDACS}$ is LOW, the selected DAC register will change as the shift register bits "flow" through A1 and A0. This will corrupt the data in each DAC register that has been erroneously selected. (8) \overline{RESET} LOW causes no change in the contents of the serial shift register.

TABLE III. Serial Shift Register Truth Table.

Digital Input Coding

The DAC7714 input data is in Straight Binary format. The output voltage is given by the following equation:

$$V_{\rm OUT} = V_{\rm REFL} + \frac{(V_{\rm REFH} - V_{\rm REFL}) \bullet N}{4096}$$

where N is the digital input code (in decimal). This equation does not include the effects of offset (zero-scale) or gain (full-scale) errors.

LAYOUT

A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power supplies. As the DAC7714 offers single-supply operation, it will often be used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it will be to achieve good performance from the converter.

Because the DAC7714 has a single ground pin, all return currents, including digital and analog return currents, must flow through the GND pin. Ideally, GND would be connected directly to an analog ground plane. This plane would be separate from the ground connection for the digital components until they were connected at the power entry point of the system.

The power applied to V_{CC} (as well as V_{SS} , if not grounded) should be well regulated and low noise. Switching power supplies and DC/DC converters will often have high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-frequency spikes as their internal logic switches states. This noise can easily couple into the DAC output voltage through various paths between the power connections and analog output.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated