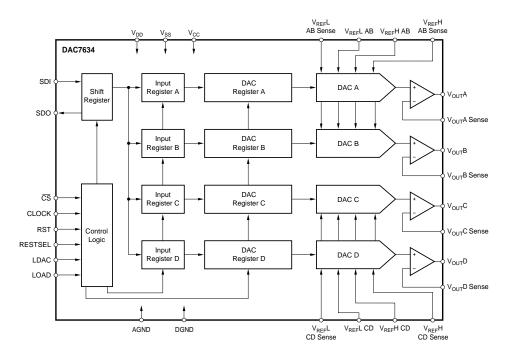


For most current data sheet and other product information, visit www.burr-brown.com

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER

FEATURES

- LOW POWER: 10mW
- UNIPOLAR OR BIPOLAR OPERATION
- SETTLING TIME: 10µs to 0.003%
- 15-BIT LINEARITY AND MONOTONICITY: -40°C to +85°C
- PROGRAMMABLE RESET TO MID-SCALE OR ZERO-SCALE
- DOUBLE-BUFFERED DATA INPUTS


APPLICATIONS

- PROCESS CONTROL
- CLOSED-LOOP SERVO-CONTROL
- MOTOR CONTROL
- DATA ACQUISITION SYSTEMS
- DAC-PER-PIN PROGRAMMERS

DESCRIPTION

The DAC7634 is a 16-bit, quad voltage output, digital-to-analog converter with guaranteed 15-bit monotonic performance over the specified temperature range. It accepts 24-bit serial input data, has double-buffered DAC input logic (allowing simultaneous update of all DACs), and provides a serial data output for daisy chaining multiple DACs. Programmable asynchronous reset clears all registers to a mid-scale code of $8000_{\rm H}$ or to a zero-scale of $0000_{\rm H}$. The DAC7634 can operate from a single +5V supply or from +5V and -5V supplies.

Low power and small size per DAC make the DAC7634 ideal for automatic test equipment, DAC-per-pin programmers, data acquisition systems, and closed-loop servo-control. The DAC7634 is available in a 48-lead SSOP package and offers guaranteed specifications over the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111

Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

© 1999 Burr-Brown Corporation PDS-1563B Printed in U.S.A. January, 2000

SPECIFICATIONS

 $At T_A = T_{MIN} to T_{MAX}, V_{DD} = V_{CC} = +5V, V_{SS} = -5V, V_{REF} H = +2.5V, and V_{REF} L = -2.5V, unless otherwise noted. \\$

			DAC7634E			DAC7634EI	3	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ACCURACY Linearity Error Linearity Match Differential Linearity Error Monotonicity, T _{MIN} to T _{MAX} Bipolar Zero Error Bipolar Zero Error Drift Full-Scale Error Full-Scale Error Drift Bipolar Zero Matching Full Scale Matching Power Supply Rejection Ratio (PSRR)	Channel-to-Channel Matching Channel-to-Channel Matching At Full Scale	14	±3 ±4 ±2 ±1 5 ±1 5 ±1 ±1 10	±4 ±3 ±2 10 ±2 10 ±2 ±2 ±2 100	15	±2 ±2 ±1 * * * ±1 ±1 *	±3 ±2 * * * * ±2 ±2 * ±2 ±2 *	LSB LSB Bits mV ppm/°C mV ppm/°C mV ppm/°C mV
ANALOG OUTPUT Voltage Output Output Current Maximum Load Capacitance Short-Circuit Current Short-Circuit Duration	V_{REF} = -2.5V, R_{L} = 10k Ω , V_{SS} = -5V No Oscillation GND or V_{CC} or V_{SS}	V _{REF} L −1.25	500 -10, +30 Indefinite	V _{REF} H +1.25	*	* * *	*	V mA pF mA
REFERENCE INPUT Ref High Input Voltage Range Ref Low Input Voltage Range Ref High Input Current Ref Low Input Current		V _{REF} L + 1.25 -2.5	500 -500	+2.5 V _{REF} H – 1.25	*	*	*	V V μΑ μΑ
DYNAMIC PERFORMANCE Settling Time Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage DAC Glitch	To ±0.003%, 5V Output Step See Figure 5. f = 10kHz 7FFF _H to 8000 _H or 8000 _H to 7FFF _H		8 0.5 2 60 40	10		* * * *	*	μs LSB nV-s nV/√Hz nV-s
DIGITAL INPUT V _{IH} V _{IL} I _{IH} I _{IL}		0.7 • V _{DD}		0.3 • V _{DD} ±10 ±10	*		* * *	V V μΑ μΑ
DIGITAL OUTPUT VOH VOL	$I_{OH} = -0.8 \text{mA}$ $I_{OL} = 1.6 \text{mA}$	3.6	4.5 0.3	0.4	*	*	*	V V
POWER SUPPLY VDD VCC VSS ICC IDD ISS Power		+4.75 +4.75 -5.25	+5.0 +5.0 -5.0 1.5 50 -1.5	+5.25 +5.25 -4.75 2	* *	* * * * * * *	* * * *	V V V mA μA mA
TEMPERATURE RANGE Specified Performance		-40		+85	*		*	°C

^{*} Specifications same as DAC7634E.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS

 $At T_{A} = T_{MIN} to T_{MAX}, V_{DD} = V_{CC} = +5V, V_{SS} = 0V, V_{REF}H = +2.5V, and V_{REF}L = 0V, unless otherwise noted.$

			DAC7634E			DAC7634EI	В	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ACCURACY Linearity Error ⁽¹⁾ Linearity Match Differential Linearity Error Monotonicity, T _{MIN} to T _{MAX} Zero Scale Error Zero Scale Error Drift Full-Scale Error Drift Zero Scale Error Drift Zero Scale Matching Full-Scale Matching Power Supply Rejection Ratio (PSRR)	Channel-to-Channel Matching Channel-to-Channel Matching At Full Scale	14	±3 ±4 ±2 ±1 5 ±1 5 ±1 ±1 10	±4 ±3 ±2 10 ±2 10 ±2 ±2 ±2 100	15	±2 ±2 ±1 * * * ±1 ±1 *	±3 ±2 * * * ±2 * * * ±2 ±2 ±2	LSB LSB Bits mV ppm/°C mV ppm/°C mV ppm/°C
ANALOG OUTPUT Voltage Output Output Current Maximum Load Capacitance Short-Circuit Current Short-Circuit Duration	$V_{REF}L = 0V$, $V_{SS} = 0V$, $R_L = 10k\Omega$ No Oscillation GND or V_{CC}	0 -1.25	500 ±30 Indefinite	V _{REF} H +1.25	*	* * *	*	V mA pF mA
REFERENCE INPUT Ref High Input Voltage Range Ref Low Input Voltage Range Ref High Input Current Ref Low Input Current		V _{REF} L + 1.25 0	250 -250	+2.5 V _{REF} H – 1.25	*	* *	*	V V μΑ μΑ
DYNAMIC PERFORMANCE Settling Time Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage, f = 10kHz DAC Glitch	To ±0.003%, 2.5V Output Step See Figure 6. 7FFF _H to 8000 _H or 8000 _H to 7FFF _H		8 0.5 2 60 40	10		* * * *	*	μs LSB nV-s nV/√Hz nV-s
DIGITAL INPUT V _{IH} V _{IL} I _{IH} I _{IL}		0.7 • V _{DD}		0.3 • V _{DD} ±10 ±10	*		* * *	V V μΑ μΑ
DIGITAL OUTPUT VOH VOL	I _{OH} = -0.8mA I _{OL} = 1.6mA	3.6	4.5 0.3	0.4	*	* *	*	V V
POWER SUPPLY V _{DD} V _{CC} V _{SS} I _{CC} I _{DD} Power		+4.75 +4.75 0	+5.0 +5.0 0 1.5 50 7.5	+5.25 +5.25 0 2	* * *	* * * * *	* * * *	V V V mA μA mW
TEMPERATURE RANGE Specified Performance		-40		+85	*		*	°C

NOTE: (1) If $V_{SS} = 0V$ specification applies at Code 0040_H and above due to possible negative zero-scale error.

^{*} Specifications same as DAC7634E.

ABSOLUTE MAXIMUM RATINGS(1)

V _{CC} and V _{DD} to V _{SS}	0.3V to 11V
V _{CC} and V _{DD} to GND	0.3V to 5.5V
V _{REF} L to V _{SS}	$-0.3V$ to $(V_{CC} - V_{SS})$
V _{CC} to V _{REF} H	$-0.3V$ to $(V_{CC} - V_{SS})$
V _{REF} H to V _{REF} L	$-0.3V$ to $(V_{CC} - V_{SS})$
Digital Input Voltage to GND	$-0.3V$ to $V_{DD} + 0.3V$
Digital Output Voltage to GND	$-0.3V$ to $V_{DD} + 0.3V$
Maximum Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +125°C
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

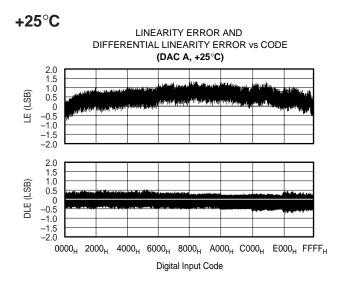
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

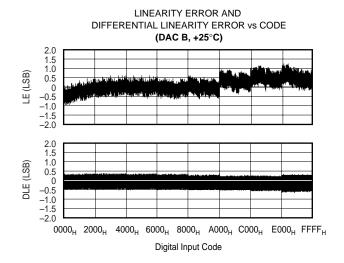
PACKAGE/ORDERING INFORMATION

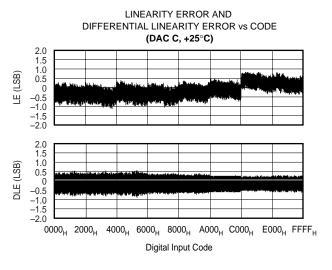
PRODUCT	LINEARITY ERROR (LSB)	DIFFERENTIAL NONLINEARITY (LSB)	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFICATION TEMPERATURE RANGE	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA
DAC7634E	±4 "	±3 "	48-Lead SSOP	333	-40°C to +85°C	DAC7634E DAC7634E/1K	Rails Tape and Reel
DAC7634EB	±3 "	<u>+2</u>	48-Lead SSOP	333	-40°C to +85°C	DAC7634EB DAC7634EB/1K	Rails Tape and Reel

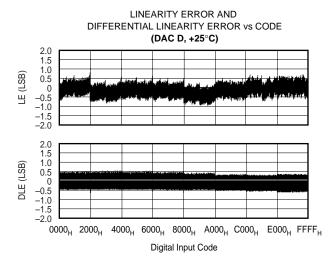
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces of "DAC7634E/1K" will get a single 1000-piece Tape and Reel.

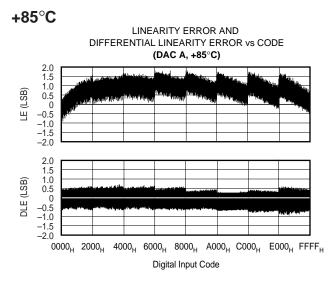
PIN DESCRIPTIONS

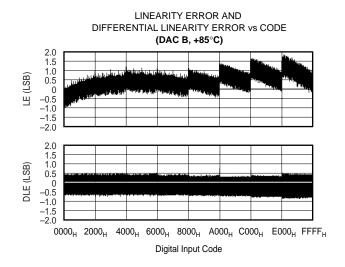

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	NC	No Connection	24	V_{DD}	Digital +5V Power Supply
2	NC	No Connection	25	V _{cc}	Analog +5V Power Supply
3	SDI	Serial Data Input	26	V _{CC}	Analog +5V Power Supply
4	DGND	Digital Ground	27	AGND	Analog Ground
5	CLK	Data Clock Input	28	AGND	Analog Ground
6	DGND	Digital Ground	29	V_{SS}	Analog –5V Power Supply or 0V Single Supply
7	LDAC	DAC Register Load Control, Rising Edge	30	V _{SS}	Analog –5V Power Supply or 0V Single Supply
		Triggered	31	V _{OUT} D	DAC D Output Voltage
8	DGND	Digital Ground	32	V _{OUT} D Sense	DAC D's Output Amplifier Inverting Input. Used to
9	LOAD	DAC Input Register Load Control, Active Low			close feedback loop at load.
10	DGND	Digital Ground	33	V _{REF} L CD Sense	DAC C and D Reference Low Sense Input
11	cs	Chip Select, Active Low	34	V _{REF} L CD	DAC C and D Reference Low Input
12	DGND	Digital Ground	35	V _{REF} H CD	DAC C and D Reference High Input
13	SDO	Serial Data Output	36	V _{REF} H CD Sense	DAC C and D Reference High Sense Input
14	DGND	Digital Ground	37	V _{OUT} C	DAC C Output Voltage
15	RSTSEL	Reset Select. Determines the action of RST. If HIGH, a RST common will set the DAC registers	38	V _{OUT} C Sense	DAC C's Output Amplifier Inverting Input. Used to close the feedback loop at the load.
		to mid-scale (8000H). If LOW, a RST command	39	V _{OUT} B	DAC B Output Voltage
16	DGND	will set the DAC registers to zero (0000H). Digital Ground	40	V _{OUT} B Sense	DAC B's Output Amplifier Inverting Input. Used to close the feedback loop at the load.
17	RST	Reset, Rising Edge Triggered. Depending on the	41	V _{REE} H AB Sense	DAC A and B Reference High Sense Input
		state of RSTSEL, the DAC registers are set to either mid-scale or zero.	42	V _{REE} H AB	DAC A and B Reference High Input
40	DGND		43	V _{OUT} L AB	DAC A and B Reference Low Input
18	NC	Digital Ground No Connection	44	V _{REF} L AB Sense	DAC A and B Reference Low Sense Input
19			45	V _{SS}	Analog –5V Power Supply or 0V Single Supply
20	NC	No Connection	46	AGND	Analog Ground
21	DGND	Digital Ground	47	V _{OUT} A	DAC A Output Voltage
22	DGND	Digital Ground	48	V _{OUT} A Sense	DAC A's Output Amplifier Inverting Input. Used to
23	V_{DD}	Digital +5V Power Supply		100171 001100	close the feedback loop at the load.

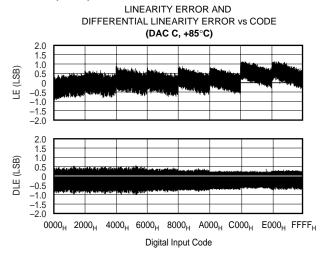

PIN CONFIGURATION

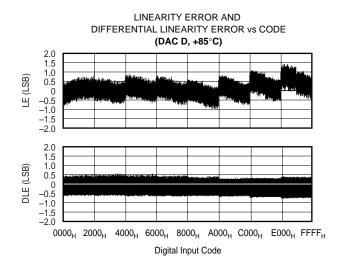

op View						SSC
	NC	1		48	V A Songo	
	NC NC			\vdash	V _{OUT} A Sense	
		2		47	V _{OUT} A	
	SDI	3		46	AGND	
	DGND	4		45	V _{SS}	
	CLK	5		44	V _{REF} L AB Sense	
	DGND	6		43	V _{REF} L AB	
	LDAC	7		42	V _{REF} H AB	
	DGND	8		41	V _{REF} H AB Sense	
	LOAD	9		40	V _{OUT} B Sense	
	DGND	10		39	V _{OUT} B	
	CS	11		38	V _{OUT} C Sense	
	DGND	12	DAC7634	37	V _{OUT} C	
	SDO	13	DAC1034	36	V _{REF} H CD Sense	
	DGND	14		35	V _{REF} H CD	
	RSTSEL	15		34	V _{REF} L CD	
	DGND	16		33	V _{REF} L CD Sense	
	RST	17		32	V _{OUT} D Sense	
	DGND	18		31	V _{OUT} D	
	NC	19		30	V _{SS}	
	NC	20		29	V _{SS}	
	DGND	21		28	AGND	
	DGND	22		27	AGND	
	V_{DD}	23		26	V _{cc}	
	V _{DD}	24		25	V _{cc}	
	• 00	<u>-</u>		ل_ت	- 00	

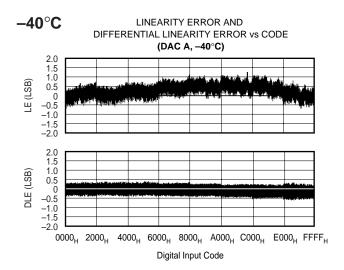

TYPICAL PERFORMANCE CURVES: $V_{SS} = 0V$

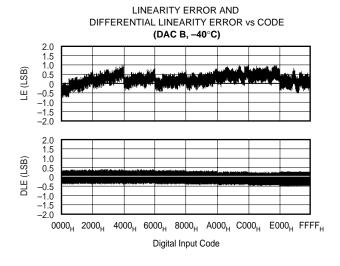

At $T_A = +25^{\circ}C$, $V_{DD} = V_{CC} = +5V$, $V_{SS} = 0V$, $V_{REFH} = +2.5V$, $V_{REFL} = 0V$, representative unit, unless otherwise specified.

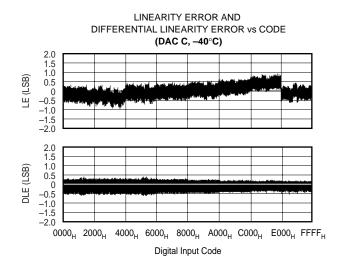


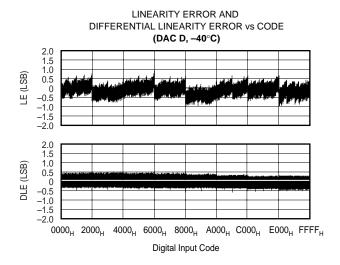


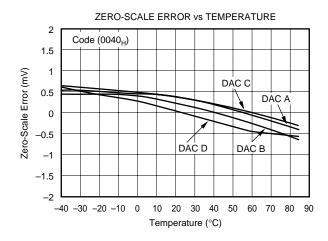


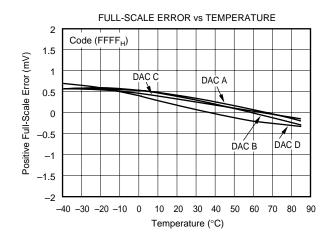

TYPICAL PERFORMANCE CURVES: V_{SS} = 0V (Cont.)

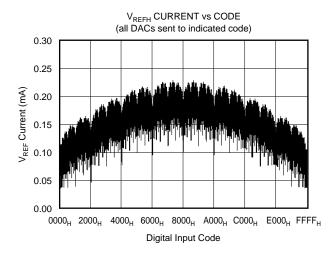

At $T_A = +25^{\circ}C$, $V_{DD} = V_{CC} = +5V$, $V_{SS} = 0V$, $V_{REFH} = +2.5V$, $V_{REFL} = 0V$, representative unit, unless otherwise specified.

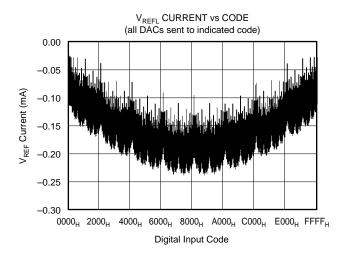

+85°C (cont.)

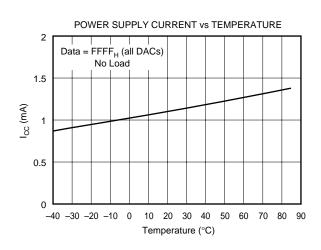


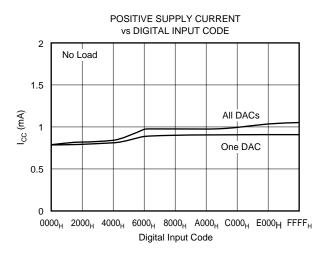


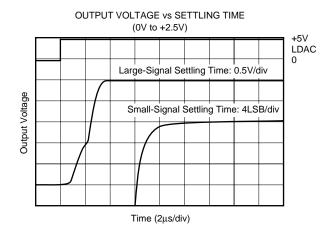


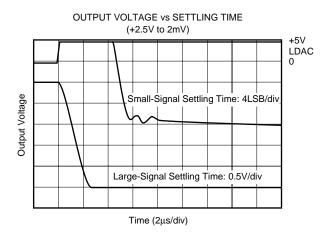


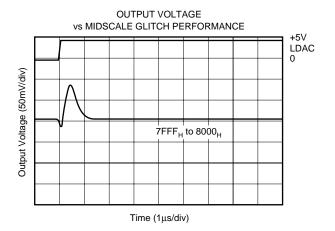

TYPICAL PERFORMANCE CURVES: V_{SS} = 0V (Cont.)

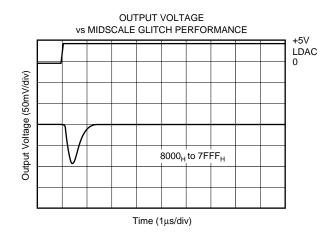

 $At T_{A} = +25^{\circ}C, \ V_{DD} = V_{CC} = +5V, \ V_{SS} = 0V, \ V_{REFH} = +2.5V, \ V_{REFL} = 0V, \ representative \ unit, \ unless \ otherwise \ specified.$



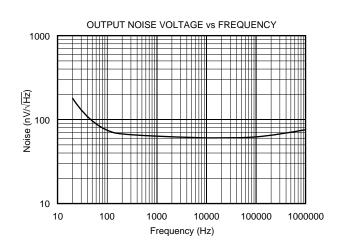


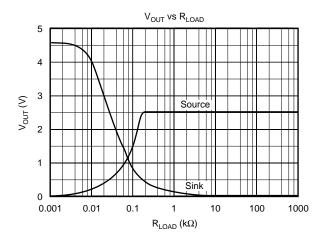


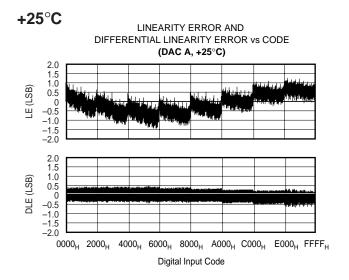


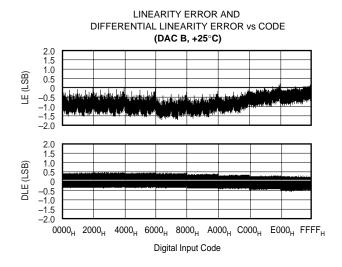

TYPICAL PERFORMANCE CURVES: V_{SS} = 0V (Cont.)

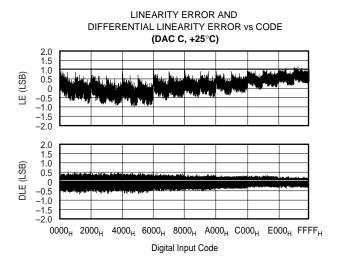
At $T_A = +25^{\circ}C$, $V_{DD} = V_{CC} = +5V$, $V_{SS} = 0V$, $V_{REFH} = +2.5V$, $V_{REFL} = 0V$, representative unit, unless otherwise specified.

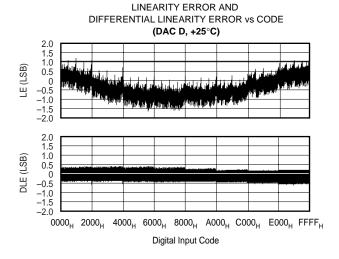




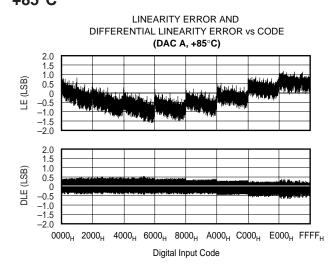

TYPICAL PERFORMANCE CURVES: $V_{SS} = 0V$ (Cont.)

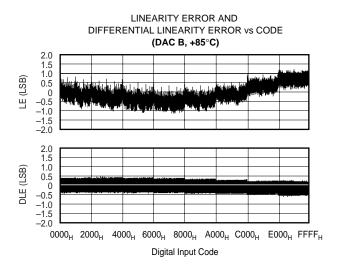

 $At T_{A} = +25^{\circ}C, \ V_{DD} = V_{CC} = +5V, \ V_{SS} = 0V, \ V_{REFH} = +2.5V, \ V_{REFL} = 0V, \ representative \ unit, \ unless \ otherwise \ specified.$



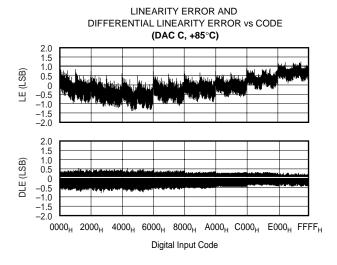

TYPICAL PERFORMANCE CURVES: $V_{SS} = -5V$

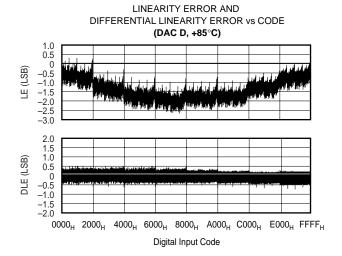
At $T_A = +25^{\circ}C$, $V_{DD} = V_{CC} = +5V$, $V_{SS} = -5V$, $V_{REFH} = +2.5V$, $V_{REFL} = -2.5V$, representative unit, unless otherwise specified.



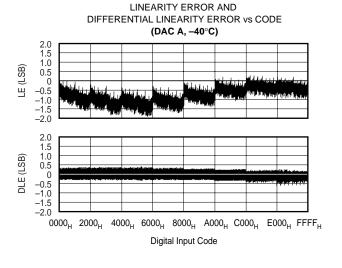


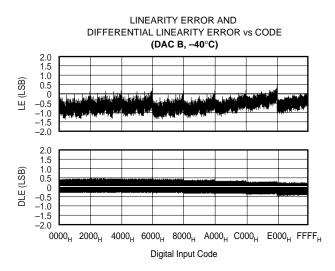
+85°C

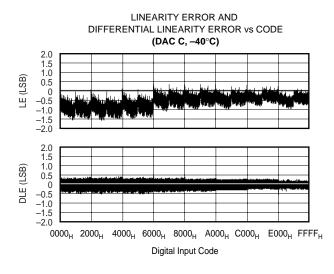


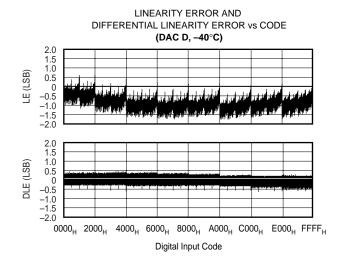


TYPICAL PERFORMANCE CURVES: $V_{SS} = -5V$ (Cont.)

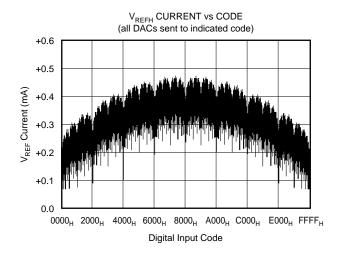

At $T_A = +25^{\circ}C$, $V_{DD} = V_{CC} = +5V$, $V_{SS} = -5V$, $V_{REFH} = +2.5V$, $V_{REFL} = -2.5V$, representative unit, unless otherwise specified.

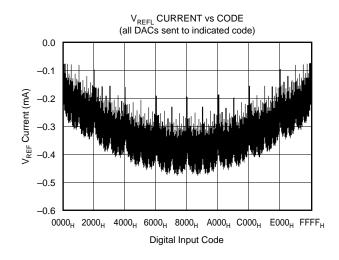

+85°C (cont.)

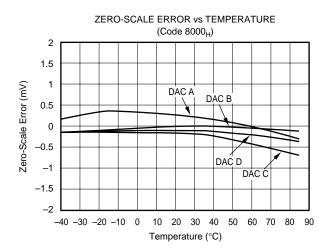


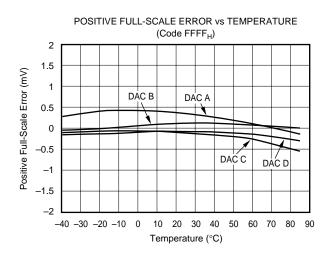


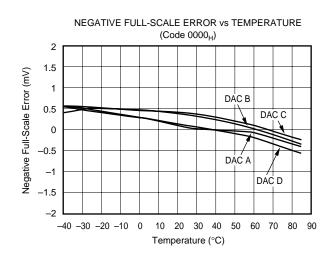
-40°C

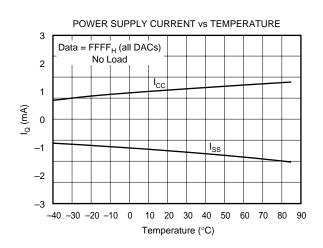


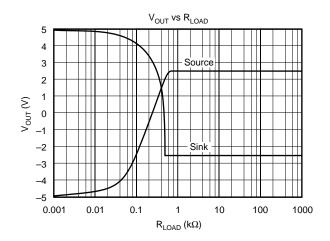


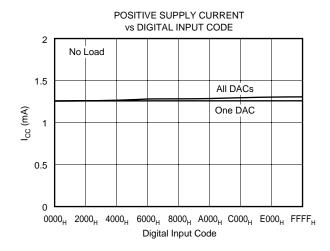


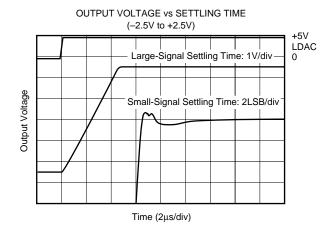

TYPICAL PERFORMANCE CURVES: $V_{SS} = -5V$ (Cont.)

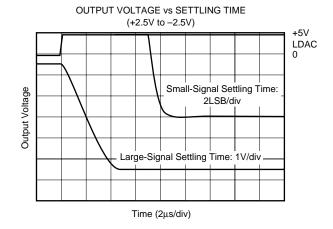

At $T_A = +25^{\circ}C$, $V_{DD} = V_{CC} = +5V$, $V_{SS} = -5V$, $V_{REFH} = +2.5V$, $V_{REFL} = -2.5V$, representative unit, unless otherwise specified.










TYPICAL PERFORMANCE CURVES: $V_{SS} = -5V$ (Cont.)

At $T_A = +25^{\circ}C$, $V_{DD} = V_{CC} = +5V$, $V_{SS} = -5V$, $V_{REFH} = +2.5V$, $V_{REFL} = -2.5V$, representative unit, unless otherwise specified.

THEORY OF OPERATION

The DAC7634 is a quad voltage output, 16-bit Digital-to-Analog Converter (DAC). The architecture is an R-2R ladder configuration with the three MSB's segmented, followed by an operational amplifier that serves as a buffer. Each DAC has its own R-2R ladder network, segmented MSBs, and output op amp, as shown in Figure 1. The minimum voltage output (zero-scale) and maximum voltage output (full-scale) are set by the external voltage references ($V_{REF}L$ and $V_{REF}H$, respectively).

The digital input is a 24-bit serial word that contains a 2-bit address code for selecting one of four DACs, a quick load bit, five unused bits, and the 16-bit DAC code (MSB first). The converters can be powered from either a single $+5\mathrm{V}$ supply or a dual $\pm5\mathrm{V}$ supply. The device offers a reset function which immediately sets all DAC output voltages and DAC registers to mid-scale code 8000_{H} or to zero-scale, code 0000_{H} . See Figures 2 and 3 for the basic operation of the DAC7634.

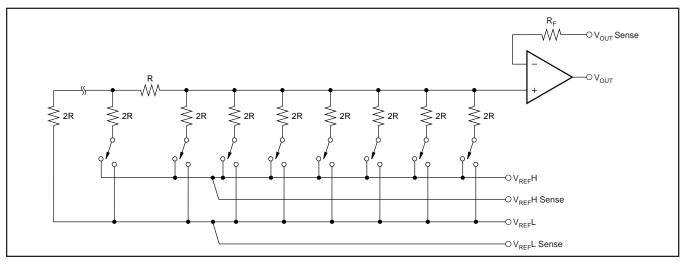


FIGURE 1. DAC7634 Architecture.

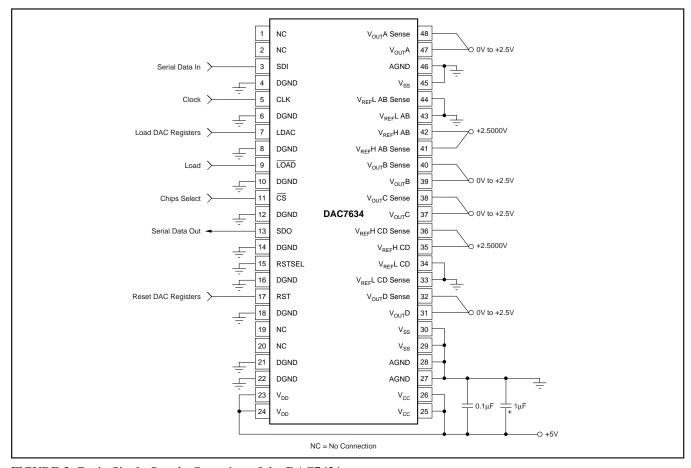


FIGURE 2. Basic Single-Supply Operation of the DAC7634.

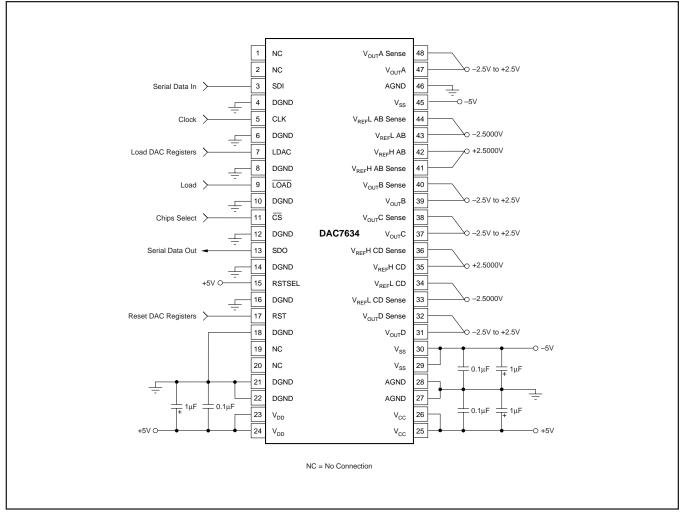


FIGURE 3. Basic Dual-Supply Operation of the DAC7634.

ANALOG OUTPUTS

When $V_{SS} = -5V$ (dual supply operation), the output amplifier can swing to within 2.25V of the supply rails, guaranteed over the -40°C to $+85^{\circ}\text{C}$ temperature range. When $V_{SS} = 0V$ (single-supply operation), and with R_{LOAD} also connected to ground, the output can swing to ground. Care must also be taken when measuring the zero-scale error when $V_{SS} = 0V$. Since the output voltage cannot swing below ground, the output voltage may not change for the first few digital input codes $(0000_H, 0001_H, 0002_H, \text{etc.})$ if the output amplifier has a negative offset. At the negative limit of -2mV, the first specified output starts at code 0040_H .

Due to the high accuracy of these D/A converters, system design problems such as grounding and contact resistance become very important. A 16-bit converter with a 2.5V full-scale range has a 1LSB value of 38 μ V. With a load current of 1mA, series wiring and connector resistance of only $40m\Omega\,(R_{W2})$ will cause a voltage drop of 40μ V, as shown in Figure 4. To understand what this means in terms of a system layout, the resistivity of a typical 1 ounce copperclad printed circuit board is $1/2\,m\Omega$ per square. For a 1mA load, a 10 milli-inch wide printed circuit conductor 600 milli-inches long will result in a voltage drop of 30μ V.

The DAC7634 offers a force and sense output configuration for the high open-loop gain output amplifier. This feature allows the loop around the output amplifier to be closed at the load (as shown in Figure 4), thus ensuring an accurate output voltage.

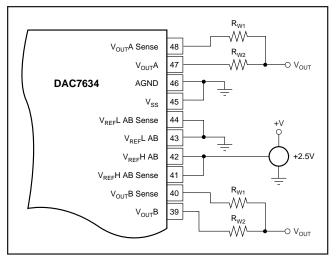


FIGURE 4. Analog Output Closed-Loop Configuration (1/2 DAC7634). $R_{\rm W}$ represents wiring resistances.

REFERENCE INPUTS

The reference inputs, $V_{REF}L$ and $V_{REF}H$, can be any voltage between $V_{SS}+2.5V$ and $V_{CC}-2.5V$, provided that $V_{REF}H$ is at least 1.25V greater than $V_{REF}L$. The minimum output of each DAC is equal to $V_{REF}L$ plus a small offset voltage (essentially, the offset of the output op amp). The maximum output is equal to $V_{REF}H$ plus a similar offset voltage. Note that V_{SS} (the negative power supply) must either be connected to ground or must be in the range of -4.75V to -5.25V. The voltage on V_{SS} sets several bias points within the converter. If V_{SS} is not in one of these two configurations, the bias values may be in error and proper operation of the device is not guaranteed.

The current into the $V_{REF}H$ input and out of $V_{REF}L$ depends on the DAC output voltages, and can vary from a few microamps to approximately 0.5mA. The reference input appears as a varying load to the reference. If the reference can sink or source the required current, a reference buffer is not required. The DAC7634 features a reference drive and sense connection such that the internal errors caused by the changing reference current and the circuit impedances can be minimized. Figures 5 through 13 show different reference configurations, and the effect on the linearity and differential linearity.

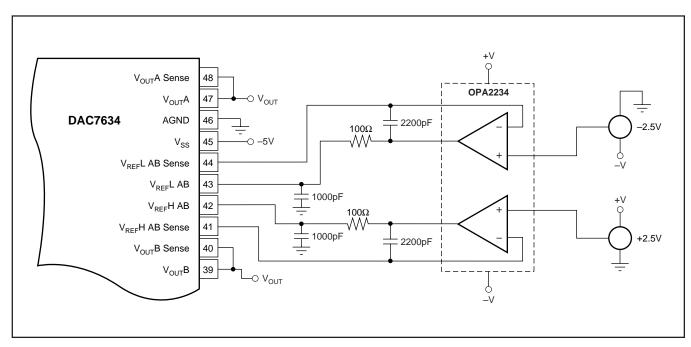


FIGURE 5. Dual Supply Configuration-Buffered References, used for Dual Supply Performance

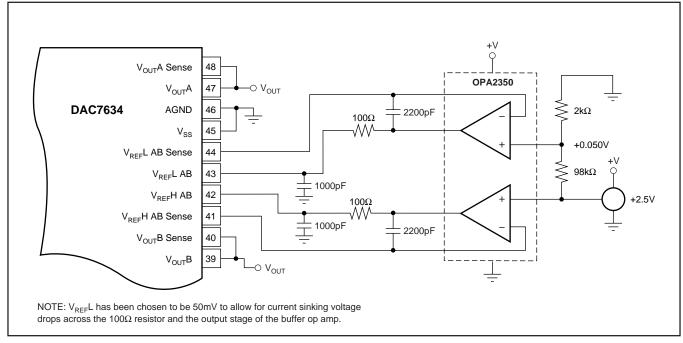


FIGURE 6. Single-Supply Buffered Reference with a Reference Low of 50mV (1/2 DAC7634).

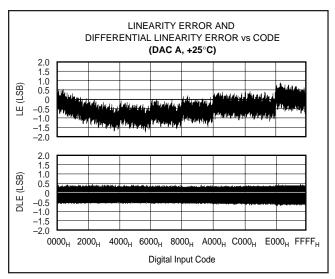


FIGURE 7. Integral Linearity and Differential Linearity Error Curves for Figure 6.

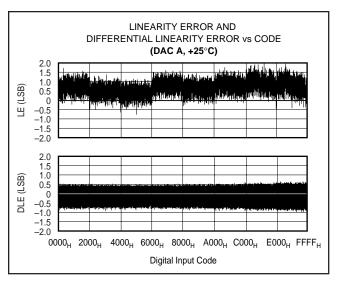


FIGURE 8. Integral Linearity and Differential Linearity Error Curves for Figure 9.

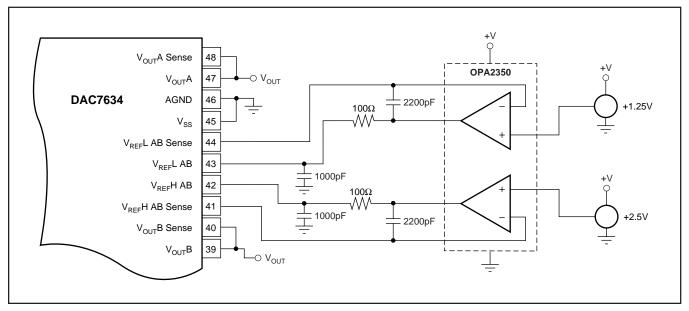


FIGURE 9. Single-Supply Buffered Reference with $V_{REF}L = +1.25V$ and $V_{REF}H = +2.5V$ (1/2 DAC7634).

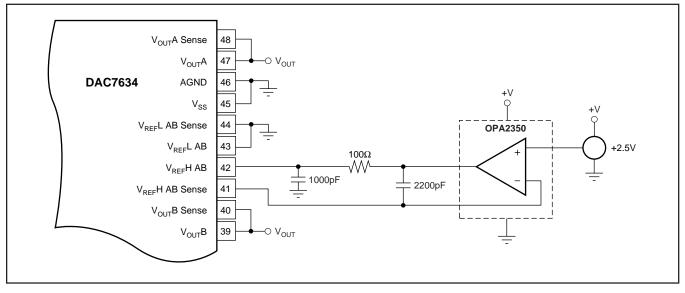


FIGURE 10. Single-Supply Buffered $V_{\text{REF}}H$ (1/2 DAC7634).

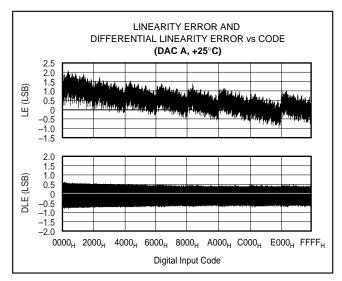


FIGURE 11. Linearity and Differential Linearity Error Curves for Figure 10.

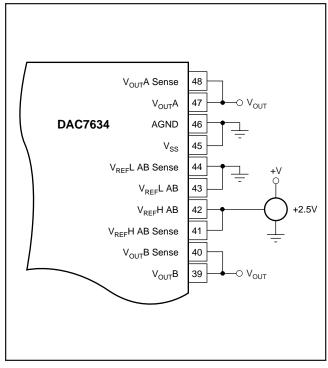


FIGURE 12. Low Cost Single-Supply Configuration.

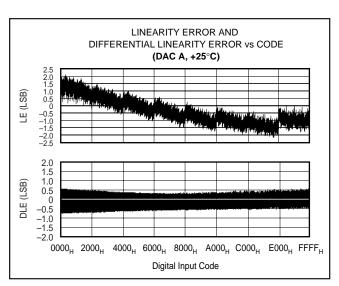


FIGURE 13. Linearity and Differential Linearity Error Curves for Figure 12.

DIGITAL INTERFACE

Table I shows the basic control logic for the DAC7634. The interface consists of a Signal Data Clock (CLK) input, Serial Data (SDI), DAC Input Register Load Control Signal (LOAD), and DAC Register Load Control Signal (LDAC). In addition, a Chip Select (CS) input is available to enable serial communication when there are multiple serial devices. An asynchronous Reset (RST) input, by the rising edge, is provided to simplify start-up conditions, periodic resets, or emergency resets to a known state, depending on the status of the reset select (RSTSEL) signal.

The DAC code, quick load control, and address are provided via a 24-bit serial interface (see Figure 15). The first two bits select the input register that will be updated when \overline{LOAD} goes LOW. The third bit is a "Quick Load" bit such that if HIGH, the code in the shift register is loaded into ALL DAC's input register when \overline{LOAD} signal goes LOW. If the "Quick Load" bit is LOW, the content of shift register is loaded only to the DAC input register that is addressed. The "Quick Load" bit is followed by five unused bits. The last sixteen bits (MSB first) are the DAC code.

SERIAL DATA INPUT

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	B5	B4	В3	B2	B1	В0
A1	A0	QUICK LOAD	Х	Х	Х	Х	Х	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

A1	Α0	<u>cs</u>	RST	RSTSEL	LDAC	LOAD	INPUT REGISTER	DAC REGISTER	MODE	DAC
L	L	L	Н	Х	Х	L	Write	Hold	Write Input	Α
L	Н	L	Н	X	Х	L	Write	Hold	Write Input	В
Н	L	L	Н	X	Х	L	Write	Hold	Write Input	С
Н	Н	L	Н	X	Х	L	Write	Hold	Write Input	D
X	Х	Н	Н	X	1	Н	Hold	Write	Update	All
X	Х	Н	Н	X	Н	Н	Hold	Hold	Hold	All
X	Х	X	1	L	Х	Х	Reset to Zero	Reset to Zero	Reset to Zero	All
X	Х	X	1	Н	Х	Х	Reset to Midscale	Reset to Midscale	Reset to Midscale	All

TABLE I. DAC7634 Logic Truth Table.

The internal DAC register is edge triggered and not level triggered. When the LDAC signal is transitioned from LOW to HIGH, the digital word currently in the DAC input register is latched. The first set of registers (the DAC input registers) are level triggered via the LOAD signal. This double-buffered architecture has been designed so that new data can be entered for each DAC without disturbing the analog outputs. When the new data has been entered into the device, all of the DAC outputs can be updated simultaneously by the rising edge of LDAC. Additionally, it allows the DAC input registers to be written to at any point, then the DAC output voltages can be synchronously changed via a trigger signal (LDAC).

Note that \overline{CS} and CLK are combined with an OR gate, which controls the serial-to-parallel shift register. These two inputs are completely interchangeable. In addition, care must be taken with the state of CLK when \overline{CS} rises at the end of a serial transfer. If CLK is LOW when \overline{CS} rises, the OR gate will provide a rising edge to the shift register, shifting the internal data one additional bit. The result will be incorrect data and possible selection of the wrong input register(s). If both \overline{CS} and CLK are used, \overline{CS} should rise only when CLK is HIGH. If not, then either \overline{CS} or CLK can be used to operate the shift register. See Table II for more information.

SERIAL-DATA OUTPUT

CS ⁽¹⁾	CLK ⁽¹⁾	LOAD	RST	SERIAL SHIFT REGISTER
H ⁽²⁾	X(3)	Н	Н	No Change
L ⁽⁴⁾	L	Н	Н	No Change
L	↑ (5)	Н	Н	Advanced One Bit
1	L	Н	Н	Advanced One Bit
H ⁽⁶⁾	Х	<u></u> ∟(7)	Н	No Change
H ⁽⁶⁾	X	Н	↑ (8)	No Change

NOTES: (1) \overline{CS} and CLK are interchangeable. (2) H = Logic HIGH. (3) X = Don't Care. (4) L = Logic LOW (5) = Positive Logic Transition. (6) A HIGH value is suggested in order to avoid a "false clock" from advancing the shift register and changing the shift register. (7) If data is clocked into the serial register while \overline{LOAD} is LOW, the selected DAC register will change as the shift register bits "flow" through A1 and A0. This will corrupt the data in each DAC register that has been erroneously selected. (8) Rising edge of RST causes no change in the contents of the serial shift register.

TABLE II. Serial Shift Register Truth Table.

The Serial-Data Output (SDO) is the internal shift register's output. For DAC7634, the SDO is a driven output and does not require an external pull-up. Any number of DAC7634's can be daisy chained by connecting the SDO pin of one device to the SDI pin of the following device in the chain, as shown in Figure 14.

DIGITAL TIMING

Figure 15 and Table III provide detailed timing for the digital interface of the DAC7634.

DIGITAL INPUT CODING

The DAC7634 input data is in Straight Binary format. The output voltage is given by Equation 1.

where N is the digital input code. This equation does not

$$V_{OUT} = V_{REF}L + \frac{\left(V_{REF}H - V_{REF}L\right) \cdot N}{65.536}$$
 (1)

include the effects of offset (zero-scale) or gain (full-scale) errors.

DIGITALLY-PROGRAMMABLE CURRENT SOURCE

The DAC7634 offers a unique set of features that allows a wide range of flexibility in designing applications circuits such as programmable current sources. The DAC7634 offers both a differential reference input, as well as an open-loop configuration around the output amplifier. The open-loop configuration around the output amplifier allows a transistor to be placed within the loop to implement a digitally-programmable, unidirectional current source. The availability of a differential reference allows programmability for both the full-scale and zero-scale currents. The output current is calculated as:

$$I_{OUT} = \left(\left(\frac{V_{REF}H - V_{REF}L}{R_{SENSE}} \right) \bullet \left(\frac{N}{65,536} \right) \right) + \left(V_{REF}L / R_{SENSE} \right)$$
 (2)

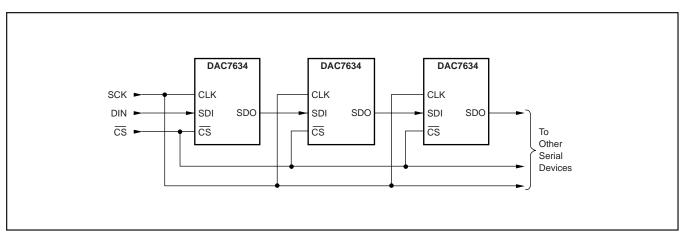


FIGURE 14. Daisy-Chaining DAC7634.

FIGURE 15. Digital Input and Output Timing.

SYMBOL	DESCRIPTION	MIN	UNITS
t _{DS}	Data Valid to CLK Rising	10	ns
t _{DH}	Data Held Valid after CLK Rises	20	ns
t _{CH}	CLK HIGH	25	ns
t _{CL}	CLK LOW	25	ns
t _{css}	CS LOW to CLK Rising	15	ns
t _{CSH}	CLK HIGH to CS Rising	0	ns
t _{LD1}	LOAD HIGH to CLK Rising	10	ns
t _{LD2}	CLK Rising to LOAD LOW	30	ns
t _{LDRW}	LOAD LOW Time	30	ns
t _{LDDL}	LDAC LOW Time	100	ns
t _{LDDH}	LDAC HIGH Time	150	ns
t _{RSSS}	RESETSEL Valid to RESET HIGH	0	ns
t _{RSSH}	RESET HIGH to RESETSEL Not Valid	100	ns
t _{RSTL}	RESET LOW Time	10	ns
t _{RSTH}	RESET HIGH Time	10	ns
t _S	Settling Time	10	μs

TABLE III. Timing Specifications ($T_A = -40$ °C to +85°C).

Figure 16 shows a DAC7634 in a 4mA to 20mA current output configuration. The output current can be determined by Equation 3:

$$I_{OUT} = \left(\left(\frac{2.5V - 0.5V}{125\Omega} \right) \cdot \left(\frac{N}{65,536} \right) \right) + \left(\frac{0.5V}{125\Omega} \right)$$

At full-scale, the output current is 16mA, plus the 4mA, for the zero current. At zero scale the output current is the offset current of 4mA $(0.5V/125\Omega)$.

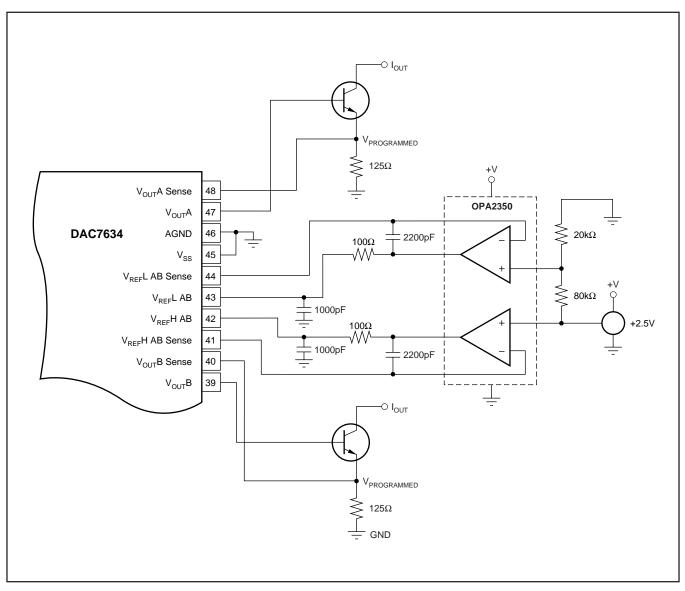


FIGURE 16. 4-to-20mA Digitally Controlled Current Source (1/2 DAC7634).

22

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated