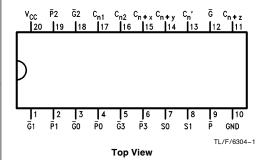


DM74AS282 Look-Ahead Carry Generator with Selectable Carry Inputs

General Description

This circuit is a high-speed, look-ahead carry generator capable of anticipating a carry across four binary adders or groups of adders. It is cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry, and propagate-carry functions are provided.

When used in conjunction with the 'AS881 arithmetic logic unit, this generator provides high-speed carry look-ahead capability for any word length. Each 'AS282 generates the look-ahead (anticipated carry) across a group of four ALUs and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n bits. The method of cascading circuits to perform multi-level look-ahead is illustrated under Typical Applications.


The carry functions (inputs, outputs, generate and propagate) of the look-ahead generator are implemented in compatible forms for direct connection to the 'AS881 ALU. The carry inputs are selectable in either active high or active low.

Features

- Selectable input version of 'AS182 allows double precision carry
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Switching specification at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- PNP inputs reduce input loading

Connection Diagram

Dual-In-Line Package

Order Number DM74AS282N See NS Package Number N20A*

Logic Equations

$$\begin{split} &C_{n+x} = G0 \, + \, P0 \, C_n \\ &C_{n+y} = G1 \, + \, P1 \, G0 \, + \, P1 \, P0 \, C_n \\ &C_{n+z} = G2 \, + \, P2 \, G1 \, + \, P2 \, P1 \, G0 \, + \, P2 \, P1 \, P0 \, C_n \\ &\overline{G} = G\overline{3} \, + \, P3 \, G2 \, + \, P3 \, P2 \, G1 \, + \, P3 \, P2 \, P1 \, \overline{G0} \\ &\overline{P} = \overline{P3} \, P2 \, P1 \, \overline{P0} \end{split}$$

Pin Designations

_	
Designations	Function
$\overline{G}0, \overline{G}1, \overline{G}2, \overline{G}3$	Carry Generate Inputs
₱0, ₱1, ₱2, ₱3	Carry Propagate Inputs
C _{nA} , C _{nB}	Carry Inputs
C _n '	Selected Carry
$C_{n+x}, C_{n+y}, C_{n+z}$	Carry Outputs
G	Carry Generate Outputs
P	Carry Propagate Outputs
S0, S1	Carry Select Inputs
V _{CC}	Supply Voltage
GND	Ground

*Contact your local NSC representative about surface mount (M) package availability.

Absolute Maximum Ratings

Typical θ_{JA}

 N Package
 67.0°C/W

 M Package
 97.0°C/W

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-2	mA
l _{OL}	Low Level Output Current			20	mA
T _A	Operating Free-Air Temperature	0		70	°C

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise specified)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units	
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ m}.$	A			-1.2	٧	
V _{OH}	High Level Output Voltage	$V_{CC} = 4.5V$ to 5.5V, I_{OH}	= -2 mA	V _{CC} – 2			٧	
V _{OL}	Low Level Output Voltage	$V_{CC} = 4.5V, I_{OL} = 20 \text{ m}$	A		0.3	0.5	٧	
II	Input Current	$V_{CC} = 5.5V, V_I = 7V$	C _{n1} , C _{n2}			200		
	at Maximum Input Voltage		P3			200		
	input voltage		P2			300	μΑ	
			P0, P1, G3, S0, S1			400		
		<u>G0</u> , <u>G2</u>			700			
			G1			800		
I _{IH} High Level		C _{n1} , C _{n2}			40			
	Input Current		P3			40		
			P2			60	μΑ	
			P0, P1, G3, S0, S1			80		
			<u>G0</u> , <u>G2</u>			140		
			G1			160		
I _{IL}	Low Level	$V_{CC} = 5.5V, V_I = 0.4V$	C _{n1} , C _{n2}			-1		
	Input Current		P3			-1		
			P2			-1.5	mA	
			P0, P1, G3, S0, S1			-2] IIIA	
			<u>G0</u> , <u>G2</u>			-3.5		
			G1			-4		

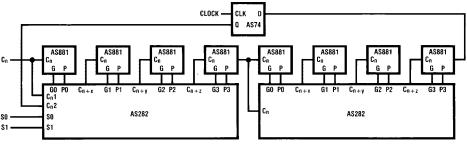
Electrical Characteristics (Continued)

over recommended operating free-air temperature range (unless otherwise specified)

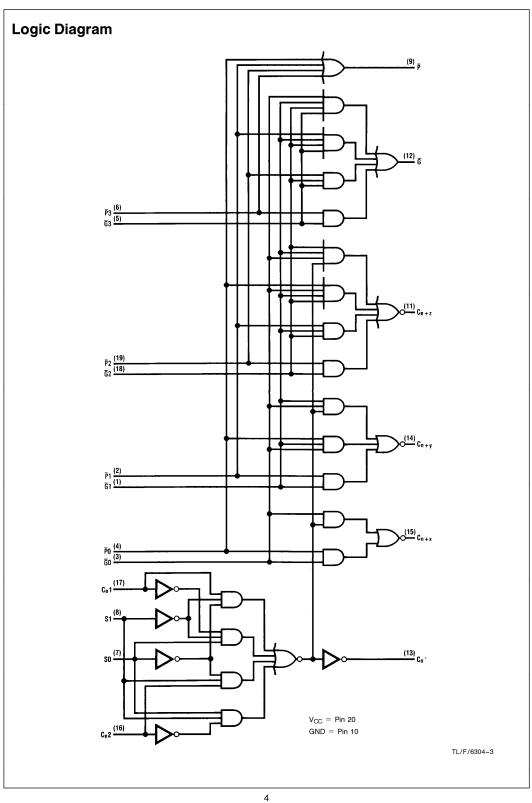
Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
I _O (Note 2)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$	-30		-112	mA
Іссн	Supply Current with Outputs High	$V_{CC} = 5.5V$		22	35	mA
ICCL	Supply Current with Outputs Low	$V_{CC} = 5.5V$		26	49	mA

Note 1: All typical values are at $V_{CC}=5V,\,T_A=25^{\circ}C.$

Note 2: The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit current I_{OS}.


Switching Characteristics over recommended supply and temperature range (Note 3)

Symbol	Parameter	From (Input)	To (Output)	Conditions	Min	Max	25°C 5.0V Max	Units
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	P or G	C _{n + x} , C _{n + y} ,	$C_L = 50 \text{ pF},$ $R_L = 500\Omega$	3	11	10	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output		or C _{n + z}	V _{CC} = 4.5V to 5.5V	2	7	6.5	ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	P or G	G		2	11	10	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output				2	8	7	ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	P	P		2	8	7	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output				2	6	5.5	ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	C _{n1} C _{n2} ,	C _{n + x,} C _{n + y,}		3	14	13	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	S1, S0	or C _{n+z}		3	12	11	ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	C _{n1} , C _{n2} , S1, S0	C _n '		3	12	11	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output				3	11	10	ns


Note 3: See Section 5 for test waveforms and output load.

Typical Application

32-Bit Look-Ahead Carry with Double Precision Carry

TL/F/6304-2

Function Tables

Function Table for $\overline{\mathbf{G}}$ Output

	Inputs							
G ₃	G2	G1	G0	P ₃	P2	₽1	Ġ	
L	Х	Х	Х	Х	Х	Х	L	
Х	L	Х	Х	L	Х	Х	L	
Х	Х	L	Х	L	L	Х	L	
Х	Х	Х	L	L	L	L	L	
	Н							

Function Table for \overline{P} Output

	Output			
₽3	P2	₽1	₽0	P
L	L L L L			
А	Н			

Function Table for $\mathbf{C}_{\mathbf{n}'}$ Output

Inp	outs	Output
S1	S0	C _n ′
L	L	C _{nA}
L	Н	Ū _{nA}
Н	L	C _{nB}
Н	Н	\overline{C}_{nB}

 $H=\mbox{High Level}, \mbox{$L=$ Low Level}, \mbox{$X=$ Irrelevant}$ Any inputs not shown in a given table are irrelevant with respect to that output.

Function Table for $C_{n+\chi}$ Output

	Output					
G ₀	P0	Cn'	C _{n+x}			
L	Х	Х	Н			
Х	X L H					
All Ot	L					

Function Table C_{n+y} Output

	Output				
G1	G0	₽1	₽0	C _{n′}	Output C _{n+y}
L	Х	Χ	Х	Х	Н
Х	L	L	Х	Х	Н
Х	Н				
	L				

Function Table for $C_{n\,+\,z}$ Output

	Output						
G2	G1	G0	P2	₽1	P0	C _{n′}	C _{n+z}
L	Х	Х	Х	Х	Х	Х	Н
Х	L	Х	L	Х	Х	Х	Н
Х	Х	L	L	L	Х	Х	Н
Х	Х	Х	L	L	L	Н	Н
All Other Combinations							L

Physical Dimensions inches (millimeters) Lit. # 102675 1.013-1.040 (25.73 - 26.42) 0.092×0.030 (2.337 × 0.762) MAX DP 0.032 ±0.005 19 18 17 16 15 14 13 12 11 20 19 (0.813±0.127) RAD 0.260 ±0.005 PIN NO. 1 IDENT PIN NO. 1 IDENT (6.604 ±0.127) 0.280 OPTION 1 (7,112) MIN 1 2 3 4 5 6 7 8 9 10 0.090 OPTION 2 0.300 - 0.320(2.286)(7.620-8.128) 0.060 NOM 0.040 OPTION 2 4° (4X) 0.130 0.005 (1.524) TYP (1.016) TYP 0.065 (3.302 0.127) (1.651) 0.145-0.200 (3.683 - 5.080)95% 5 0.009-0.015 (0.229-0.381) 0.020 0.100±0.010 0.125-0.140 (0.508) 0.060 ± 0.005 0.018 ± 0.003 (2.540 ± 0.254) (3.175-3.556) 0.325 +0.040 -0.015 (1.524 ± 0.127) (0.457 ± 0.076) (8.255 +1.016) N20A (REV G) Molded Dual-In-Line Package (N)

Order Number DM54AS282N NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408