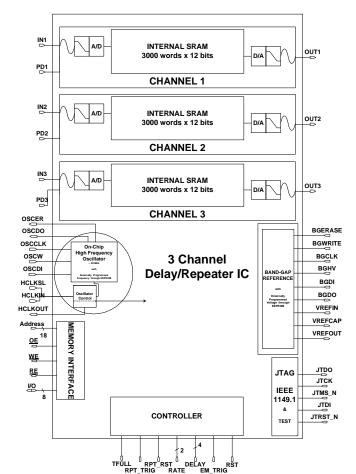


FEATURES

- Programmable Time Delay of Analog Signals
- Capture and Loop Playback after Trigger
- Up To 3 Analog Channels
- Playback Data At Reduced Rates
- 175 ms Maximum Delay With External Memory
- Single 5 Volt Supply
- 100 Lead Thin Quad Flat Pack
- Available In Die Form

APPLICATIONS

- Munitions Testing
- Industrial Instrumentation
- Store And Forward Data Acquisition
- System Health Monitoring


GENERAL DESCRIPTION

The 3 Channel Delay/Repeater (D/R) IC provides three channels of delayed or delayed and repeated analog signals with a bandwidth range of 0 to 60 KHz. The D/R provides up to 20 ms of time delay in 5 ms increments on-chip. A maximum delay of 175 ms can be supported using an external commercial-off-the-shelf (COTS) SRAM.

A block diagram of the 3 Channel D/R IC is shown in Figure 1. It uses a mixed signal implementation where three independent analog-to-digital (A/D) converters with 12-bit accuracy are used to sample the input signal waveform. The 60 KHz signal bandwidth is approximately 40 percent of the sample rate. This meets the Nyquist criteria and allows for anti-alias filter rolloff.

The digitized outputs of the A/D converters (12 bits at 150 KSPS) are bussed and written to the internal memory (3 channels x 12 bits x 150 KSPS x 0.02 sec = 108 Kbits) or external memory interface (256K x 8 bits SRAM).

After the data is read from memory, it is fed into three independent digital-to-analog (D/A) converters for signal reconstruction. Output filters remove spurs generated by the D/A converters.

3 Channel D/R Integrated Circuit

Figure 1: Functional Block Diagram

PROGRAMMING

The 3 Channel Delay/Repeater IC uses discrete signals that may be set using dip switches and/or jumpers to program the input control signals. The following Tables illustrate the D/R's programming functions.

Truth Tables					
TRIG	RST	Function		Rate	Playback Rate
0	0	Power-up FIFO function		00	x1.0
1	0	Repeat function		01	x1.0
0	1	Return to FIFO function		10	x0.5
1	1	No Action		11	x0.1

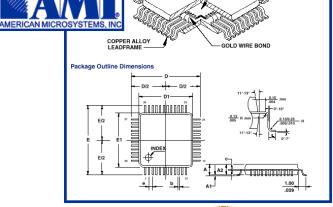
Internal Memory		
Delay	Time Delay (ms)	
0001	5	
0010	10	
0011	15	
0100	20	

External Memory			
Delay	Time Delay (ms)		
1001	25		
1010	50		
1011	75		
1100	100		
1101	125		
1110	150		
1111	175		

©2000 Systems & Processes Engineering Corporation – SoC Products 101 West Sixth Street, Suite 200, Austin, Texas 78701-2932 Tel: 512/479-7732 Fax: 512/494-0756

e-mail: socproducts.info@spec.com URL: http://www.spec.com REV A1-8

SPECIFICATIONS


Parameter		Symbol	Min	Тур	Max	Units
Power Requirem	ents					
Digital		V_{DDD}	4.5	5.0	5.5	V
Supply Voltage	Analog	V_{DDA}	4.5	5.0	5.5	V
0	Operating	I _{DD}		50		mA
Supply Current	Low-Power	I _{PD}		TBD		μΑ
Power	Operating			250		mW
Consumption	Low-Power			TBD		μW
Dynamic Specific	cations					
Operating Ambien	t Temperature	T _A	-40	25	85	°C
External Voltage F	Reference	V _{EXT}	1.5	2.25	2.5	V
Internal Voltage R	eference	V _{REF}	2.13	2.25	2.37	V
Resolution					12	Bits
Clock Frequency		Fc		19.2	20	MHz
Conversion Rate		Fs		150	156	KSPS
Input Frequency F	Response		DC		60K	Hz
Signal to Noise		S/N	68			dB
Total Harmonic Distortion		THD		0.4	1	%
Interchannel Crosstalk					1.25	mVrms
Interchannel Gain Mismatch					±0.5	dB
Absolute Gain Error				± 1	± 2	%
Gain Drift				100	200	ppm/°C
Analog Inputs						
Full Scale Input Voltage		IN1-IN3		1.8*V _{REF}	4.2	V
Input Capacitance		C _{INA}			15	pF
Input Resistance		R _{INA}	1M			Ω
Analog Outputs						
Full Scale Output Voltage		OUT1-OUT3		1.8*V _{REF}	4.2	٧
Output Resistance		R _{OA}		600	1K	Ω
External Load Capacitance		C _{LA}			100	pF
External Load Res	sistance	R _{LA}	10K			Ω
Clock						
Duty Ratio		CLK	45	50	55	%
Clock High Voltage		V _{CLKH}	0.7*V _{DDD}		V _{DDD}	٧
Clock Low Voltage		V _{CLKL}	0		0.3*V _{DDD}	٧
Digital Inputs						
Input High Voltage		V _{INHD}	2.4		V_{DDD}	V
Input Low Voltage		V _{INLD}	0		0.8	V
Input Current		I _{IND}			± 1	μΑ
Input Capacitance		C _{IND}			10	pF
Digital Outputs						
Output High Voltage		V _{OHD}	4.0		V_{DDD}	V
Output Low Voltage		V _{OLD}	0		0.4	V

	100		
	14x14		
Symbol	MIN.	MAX.	
Α	-	1.60	
A1	0.05	0.15	
A2*	1.35	1.45	
D	16.00 BSC		
D/2	8.00 BSC		
D1	14.00 BSC		
E	16.00 BSC		
E/2	8.00 BSC		
E1	14.00 BSC		
L	0.45	0.75	
е	0.50 BSC		
b	0.17	0.27	
С	0.00	0.20	

PACKAGING

The Thin Quad Flatpack (TQFP) plastic package family is a reduced thickness plastic surface mount package. The 100 lead TQFP packages are constructed using the latest wire bonding and molding technology to provide surface mount packages with a body thickness of 1.0 or 1.4mm. This package finds many applications where size and weight are a critical factor.

The 3 Channel D/R IC will be available in die form.

©2000 Systems & Processes Engineering Corporation – SoC Products 101 West Sixth Street, Suite 200, Austin, Texas 78701-2932 Tel: 512/479-7732 Fax: 512/494-0756

e-mail: socproducts.info@spec.com URL: http://www.spec.com REV A1-8 -2-

Package Description

LOW STRESS —

MOLDING COMPOUND