


#### www.dalsemi.com

#### **FEATURES**

- TINI Chipset assembled on a standard 72 pin SIMM
- Hosts the TINI runtime environment in validated hardware design
- The extensive I/O capabilities of the DS80C390 microcontroller are exposed through Java<sup>TM</sup> APIs
  - Dual serial ports<sup>1</sup>
  - Dual 1-Wire net interfaces
  - Dual CAN (Controller Area Network) controllers
  - 2-wire synchronous serial bus
  - General-purpose digital I/O
  - Easy system expansion using a parallel bus interface
- Direct connection to the 10 or 10/100Base-T Ethernet network
- Real Time clock for time stamping
- Flash ROM for storage and execution of runtime environment
- 512K/1MByte nonvolatile SRAM provides fast, unlimited write operations and persistent data storage
- Level translator provides RS232 voltages
- Wide operating temperature range, -20°C to +70°C
- Requires only a single +5V power supply

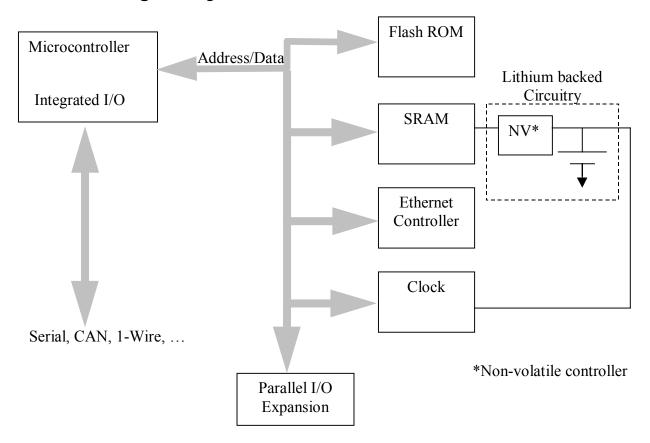
#### PIN ASSIGNMENT



72 pin SIMM

Preliminary Page 1 of 12 03/05/01

<sup>&</sup>lt;sup>1</sup> The runtime environment supports up to 4 serial ports using an external UART.

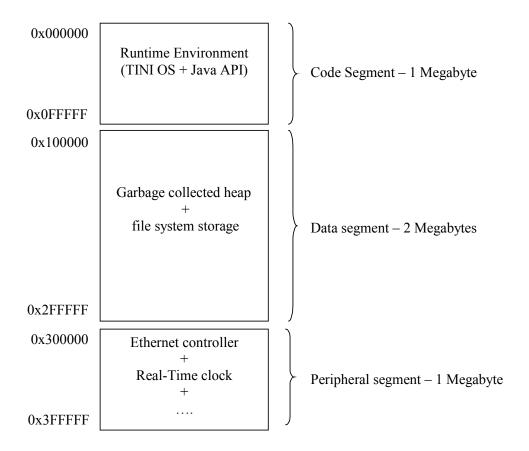

## **DSTINI1 Description**

The DSTINI1 module is designed for use in intelligent networked devices including IP sensors, industrial control, home automation, and remote metering. It provides a proven and commercially available reference implementation for the TINI chipset. The DSTINI1 serves the following purposes:

- **Reference implementation** The details of the verification module design are available at http://www.ibutton.com/TINI. Hardware developers are free to use information gleaned from the DSTINI1 when designing the chipset into their own TINI-based systems.
- **Development tool** The DSTINI1 provides easy access to much of the platform's I/O capability allowing designers to quickly interface custom external hardware and develop their applications.
- **System Component** For embedded network devices where the SIMM form factor is desirable, the DSTINI1 is available to meet high volume production requirements.

The TINI model 390 chipset is defined as the chips on the DSTINI1. All the chips are standard catalog items so that targeted designs can be built up from the core microcontroller, flash ROM and static RAM. The DSTINI1 provides a 10BASE-T Ethernet controller, Real Time clock and a RAM non-volatizer. The Ethernet controller and Real Time clock are interfaced to the microcontroller's parallel bus as shown in the following block diagram.

# **DSTINI1 Block Diagram** Figure 1




Peripheral devices, other than memory, can also be interfaced directly to the microcontroller's address and data buses (labeled Parallel I/O expansion in figure 1). The DSTINI1 maps the Ethernet controller in the memory range of [0x300000 –0x37FFFF] and it maps the Real Time clock at address 0x310000. Additional devices added to the system must avoid these address ranges.

#### MEMORY DESCRIPTION

Figure 2 illustrates the memory map of the DSTINI1. There are three memory segments, code, data and peripheral. Figure 2 illustrates the maximum segment sizes supported by the DSTINI1. So, for example, even though the DSTINI1 contains only 512 kilobytes of flash ROM, the starting address of the data segment remains 0x100000. The starting address of the segments is always constant, while the ending addresses may vary according to memory size. The TINI platform's minimum memory requirement for both the code and data segments is 512 kilobytes. The code and data segments are occupied exclusively by memory chips and the peripheral segment is occupied by other types of hardware components such as the Ethernet controller and real time clock.

# **MEMORY MAP** Figure 2



The DSTINI1 consumes the following address ranges:

- 1. TINI OS and API [0x000000 0x07FFFF]
- 2. Heap and file system storage -[0x180000 0x280000]
- 3. Ethernet controller [0x300000 0x37FFFF]
- 4. Real Time clock 0x310000

System designers must avoid the Ethernet controller and Real Time clock when interfacing with other devices. The rest of this address range is available for adding other peripheral devices.

There is also a separate 4 megabyte peripheral area, known as peripheral chip enable (PCE) space, that can be used to interface large (up to four 1 megabyte) external memory chips or other hardware devices

directly to the microcontroller's address and data buses. However most hardware is mapped in the peripheral segment because the microcontroller can access it more efficiently. The microcontroller uses 4 pins to enable access to the PCE address space (PCE0 – PCE3). If no devices are mapped into this space the microcontroller pins can be used as general-purpose port pins. The system designer is free to use the peripheral area either for interfacing hardware directly to the microcontroller's address and data buses or general purpose TTL I/O, but not both.

#### STRETCH MEMORY CYCLES

The DSTINI1 allows user application software to select the number of machine cycles it takes to execute a bus read or write (MOVX) instruction, allowing access to both fast and slow off-chip data memory and/or peripherals without glue logic. High-speed systems often include memory-mapped peripherals such as LCDs or UARTs with slow access times, so it may not be necessary or desirable to access external devices at full speed.

External MOVX timing is governed by the selection of 0 to 7 Stretch cycles, controlled by the MD2-MD0 SFR bits in the Clock Control Register (CKCON.2-0). A Stretch of zero will result in a 2 machine cycle MOVX instruction. A Stretch of seven will result in a MOVX of twelve machine cycles. Software can dynamically change the stretch value depending on the particular memory or peripheral being accessed<sup>2</sup>.

Stretch cycle settings affect external MOVX timing in three gradations. Changing the Stretch value from 0 to 1 adds an additional clock cycle each to the data setup and hold times. When a Stretch value of 4 or above is selected, the interface timing changes dramatically to allow for very slow peripherals. The address is held on the bus for one additional machine cycle increasing the address hold time by this amount. Next, The WR and RD signals are then lengthened by a machine cycle. Finally, during a MOVX write the data is held on the bus for one additional machine cycle, thereby increasing the data hold time by this amount. For every Stretch value greater than 4, the setup and hold times remain constant, and only the width of the read or write signal is increased. These three gradations are reflected in the AC Electrical characteristics, where only three timing diagrams represent the eight MOVX timing specifications.

The specific timing of MOVX instructions as a function of stretch settings is provided in the Electrical Specifications section of this data sheet, also refer to the DS80C390 datasheet. As an example, Table 1 shows the read and write strobe widths corresponding to each stretch value.

## **DATA MEMORY CYCLE STRETCH VALUES Table 1**

| MD2 | MD1 | MD0 | Stretch<br>Cycle | MOVX<br>Machine | RD and WR, Pulse Width (in oscillator clocks) |
|-----|-----|-----|------------------|-----------------|-----------------------------------------------|
|     |     |     | Count            | Cycles          |                                               |
| 0   | 0   | 0   | 0*               | 2               | 1 t <sub>CLCL</sub>                           |
| 0   | 0   | 1   | 1*               | 3               | 2 t <sub>CLCL</sub>                           |
| 0   | 1   | 0   | 2                | 4               | 4 t <sub>CLCL</sub>                           |
| 0   | 1   | 1   | 3                | 5               | 6 t <sub>CLCL</sub>                           |
| 1   | 0   | 0   | 4                | 9               | 8 t <sub>CLCL</sub>                           |
| 1   | 0   | 1   | 5                | 10              | 10 t <sub>CLCL</sub>                          |
| 1   | 1   | 0   | 6                | 11              | 12 t <sub>CLCL</sub>                          |
| 1   | 1   | 1   | 7                | 12              | 14 t <sub>CLCL</sub>                          |

<sup>&</sup>lt;sup>2</sup> See the runtime environment documentation of the DataPort class for details.

-

#### SERIAL BOOTSTRAP LOADER

The serial loader is the easiest and most reliable way to load the DSTINI1 runtime environment into the flash ROM. Communication can be performed over a standard asynchronous serial communications port. A typical application would use a simple RS232C serial interface on a host PC or workstation to program the DSTINI1 as a final production procedure. The loader will autobaud to any of the following bit rates: 12800, 14400, 16457, 19200, 23040, 28800, 38400, 57600, and 115200 bps.

Following is a partial list of the command set supported by the serial bootstrap loader.

| Selects a memory bank. Calculates the CRC-16 of the specified range. Dumps a specified bank of memory. Exit to bank 1 and begin execution. Fill memory in the selected bank. Prints help. Load into the selected bank. Copies the loader to the selected bank. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dumps a specified bank of memory. Exit to bank 1 and begin execution. Fill memory in the selected bank. Prints help. Load into the selected bank.                                                                                                              |
| Exit to bank 1 and begin execution. Fill memory in the selected bank. Prints help. Load into the selected bank.                                                                                                                                                |
| Fill memory in the selected bank. Prints help. Load into the selected bank.                                                                                                                                                                                    |
| Prints help.  Load into the selected bank.                                                                                                                                                                                                                     |
| Load into the selected bank.                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                |
| Copies the loader to the selected bank.                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                |
| Sets comm. Speed to ½ of present.                                                                                                                                                                                                                              |
| Invoke tests.                                                                                                                                                                                                                                                  |
| Verify hex against memory.                                                                                                                                                                                                                                     |
| Erases a sector of flash.                                                                                                                                                                                                                                      |

#### PIN DESCRIPTION

| PIN     | SIGNAL NAME            | DESCRIPTION                                                                  |
|---------|------------------------|------------------------------------------------------------------------------|
| 67, 68, | Vcc                    | +5V DC +/- 5% @ 250mA max <sup>3</sup>                                       |
| 69, 70  |                        |                                                                              |
| 3 - 7   | GND                    | Digital Circuit Ground.                                                      |
| 2       | IN1                    | TTL input– dual-purpose input pin. Can be used as CTS for RTS/CTS            |
|         |                        | flow control or as a general-purpose data input pin.                         |
| 59      | IN2                    | TTL input – Can be used as general-purpose input port pin.                   |
| 1       | IN3                    | TTL input – dual-purpose input pin. Can be used as DCD for RTS/CTS           |
|         |                        | flow control or as a general-purpose data input pin.                         |
| 8       | OWIO                   | 1-Wire Input/Output Pin: 1-Wire bus with slew-rate-controlled pull-          |
|         |                        | down, active pull-up, ability to switch in $V_{PP}$ to program EPROM, and    |
|         |                        | ability to switch in V <sub>DD</sub> through a low-impedance path to program |
|         |                        | EEPROM or to perform a temperature conversion.                               |
| 9       | $V_{PP}$               | +12V supply input for EPROM programming <sup>1</sup> .                       |
| 10      | CTX                    | CAN bus TX line or bi-directional port pin                                   |
| 11      | CRX                    | CAN bus RX line or bi-directional port pin                                   |
| 12      | CE0                    | CPU chip enable $0^2$                                                        |
| 14      | TX1                    | Serial Port 1 output TTL                                                     |
| 15      | XRX1                   | Serial Port 1 input TTL                                                      |
| 16      | $\overline{\text{RD}}$ | CPU read strobe <sup>7</sup>                                                 |

| 17                 | INTOW                | Internal 1-Wire bus <sup>4</sup>                                                            |
|--------------------|----------------------|---------------------------------------------------------------------------------------------|
| 18                 | SMCRST               | Peripheral reset from CPU                                                                   |
| 19                 | TX232                | Serial Port 0 output                                                                        |
| 20                 | RX232                | Serial Port 0 input                                                                         |
| 21                 | TX                   | Serial Port 0 output TTL                                                                    |
| 22                 | XRX0                 | Serial Port 0 input TTL                                                                     |
| 23                 | EXTINT               | CPU interrupt input                                                                         |
| 24                 | CPURST               | CPU reset input <sup>5</sup>                                                                |
| 25                 | DTR232               | RS232 CPU reset input <sup>6</sup>                                                          |
| 26                 | EN2480               | On-board DS2480 enable                                                                      |
| 27                 | PCE3                 | Peripheral chip enables from CPU <sup>7</sup>                                               |
| 28                 | PCE2                 |                                                                                             |
| 29                 | PCE1                 |                                                                                             |
| 30                 | $\frac{PCE1}{PCE0}$  |                                                                                             |
| 31                 | <u> </u>             | Chip Enable 3 from CPU <sup>7</sup>                                                         |
| 32                 | CE3                  |                                                                                             |
|                    | PSEN                 | Program Store enable from CPU <sup>7</sup>                                                  |
| 45                 | RCE0                 | CE0 return to on-board Flash ROM <sup>2</sup>                                               |
| 58                 | WR                   | CPU Write Strobe <sup>7</sup>                                                               |
| 63                 | ETH3                 | 10Base-T differential inputs.                                                               |
| 64                 | ETH6                 |                                                                                             |
| 65                 | ETH2                 | 10Base-T differential outputs.                                                              |
| 66                 | ETH1                 |                                                                                             |
| 71                 | OUT1                 | TTL output – dual-purpose output pin. Can be used as RTS for                                |
| 70                 | OT ITES              | RTS/CTS flow control or as a general-purpose data output pin.                               |
| 72                 | OUT2                 | TTL output – dual-purpose output pin. Can be used as DTR for                                |
| 22 26              | A7 – A4              | RTS/CTS flow control or as a general-purpose data output pin.  Address lines <sup>7</sup> . |
| 33 - 36<br>37 – 44 | A / – A4<br>A8 – A15 | Address lines .                                                                             |
| 54 - 57            | A0 - A13<br>A0 - A3  |                                                                                             |
| 60 - 62            | A16 - A18            |                                                                                             |
| 13                 | A19                  |                                                                                             |
| 46 - 53            | D7 - D0              | Data lines <sup>7</sup>                                                                     |
|                    |                      |                                                                                             |

#### **NOTES FOR PIN DESCRIPTION:**

- 1. Pin 9 ( $V_{PP}$ ) may be connected to +12V DC to allow EPROM programming with the on-board DS2480. If pin 9 ( $V_{PP}$ ) is not used in this manner, it <u>must</u> be connected to  $V_{CC}$ .
- 2. To execute from the on-board Flash ROM, connect  $\overline{CE0}$  (Pin 12) to  $\overline{RCE0}$  (Pin 45). If an external boot-up memory is provided,  $\overline{RCE0}$  must be pulled high ( $V_{CC}$ ) to disable the on-board Flash ROM or data bus interference could occur. Logic in the  $\overline{CE0}$  to  $\overline{RCE0}$  path must take care to present minimal delay (<6 ns) to the  $\overline{CE0}$  signal.
- 3. TINI board power consumption is rated at no more than 250 mA.
- 4. The internal 1-Wire bus (INTOW) is a micro-controller port pin that drives the CPU status LED and links to the board's 1-Wire EPROM memory chip that contains the DSTINI1's Ethernet MAC address. Other 1-Wire devices may be connected to this bus in the future to convey configuration

- data to the DSTINI. If this bus is shorted to ground (low) during system boot-up, a Master Clear will be invoked. This forces the contents of the SRAM to be reinitialized.
- 5. CPURST must be taken high ( $V_{CC}$ ) and then released to cause a reset of the DSTINI1. An active state on the DTR232 (pin 25) will also take this line high. This line is pulled down through a  $22k\Omega$  pull-down on-board.
- 6. The RS232 level DTR control line is used to invoke a DSTINI1 reset when asserted. This is to facilitate loaders and diagnostic equipment that must invoke a reset of the board to gain control of the system. This line is pulled to –8 V via 22K ohms and has a .01 μF capacitor filter to prevent cross talk on an open DTR conductor from causing spurious resets of the DSTINI if this function is not used.
- 7. Address bus, data bus and strobe lines are subject to strict loading limitations. Exceeding these limits can cause erratic system operation with on-board as well as off-board resources. Be sure to buffer any signals that will be heavily loaded off-board. Always adhere to the design specifications to assure reliable system operation.

# ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

Voltage on Any Pin Relative to Ground -0.3V to  $V_{CC}+0.3V$ 

Except for the following pins:

RX232 ±30 V ETH3, ETH6 +125 V ETH2, ETH1 +125 V

Operating Temperature -40°C to +85°C Storage Temperature -55°C to +85°C Soldering Temperature 260°C for 10 seconds

#### RECOMMENDED DC OPERATING CONDITIONS

(-20°C to 70°C)

| PARAMETER            | SYMBOL   | MIN  | TYP | MAX  | UNITS | NOTES |
|----------------------|----------|------|-----|------|-------|-------|
| Power Supply Voltage | $V_{CC}$ | 4.75 | 5.0 | 5.25 | V     |       |

#### DC ELECTRICAL CHARACTERISTICS

 $(-20^{\circ}\text{C to } 70^{\circ}\text{C}; \text{V}_{\text{CC}} = 4.75 \text{ to } 5.25\text{V})$ 

| PARAMETER               | SYMBOL          | MIN  | TYP | MAX  | UNITS | NOTES |
|-------------------------|-----------------|------|-----|------|-------|-------|
| Supply Voltage          | V <sub>CC</sub> | 4.75 |     | 5.25 | V     |       |
| Output Low Voltage      | V <sub>OL</sub> |      |     | 0.4  | V     |       |
| @I <sub>OL</sub> =1.7mA |                 |      |     |      |       |       |
| Output High Voltage     | V <sub>OH</sub> | 2.4  |     |      | V     |       |
| @-680μA                 |                 |      |     |      |       |       |

<sup>&</sup>lt;sup>1</sup> This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

| Input Leakage Current                                       | $I_{\mathrm{IL}}$  |      |     | 320   | μA |  |
|-------------------------------------------------------------|--------------------|------|-----|-------|----|--|
| $0.45 < V_{\rm IN} < V_{\rm CC}$                            |                    |      |     |       |    |  |
| Reset Trip Point                                            | $V_{RST}$          | 4.50 |     | <4.75 | V  |  |
| Supply Current Active Mode                                  | $I_{CC}$           |      | 250 |       | mA |  |
| Output Low Voltage for Port 3, 5 $@I_{OL} = 1.6$ mA         | $ m V_{OL1}$       |      |     | 0.45  | V  |  |
| Output Low Voltage for Port 3, 5 $@I_{OL} = 3.2 \text{mA}$  | $ m V_{OL2}$       |      |     | 0.45  | V  |  |
| Output High Voltage for Port 3, 5 @ I <sub>OH</sub> =-50μA  | $V_{\mathrm{OH1}}$ | 2.4  |     |       | V  |  |
| Output High Voltage for Port 3, 5 @ I <sub>OH</sub> =-1.5mA | $V_{\mathrm{OH2}}$ | 2.4  |     |       | V  |  |
| Logic 1 to 0 Transition<br>Current for Port 3,5             | $I_L$              | -300 |     | 300   | μA |  |
| Input Current for IN1, IN2, IN3                             | $I_{\mathrm{IH}}$  |      | +75 | +150  | μΑ |  |
| Output Low Voltage for OUT1, OUT2 @ I <sub>OL</sub> =4mA    | $V_{OL3}$          |      |     | 0.4   | V  |  |
| Output High Voltage for OUT1, OUT2 @I <sub>OH</sub> =-2mA   | V <sub>OH3</sub>   | 2.4  |     |       | V  |  |
| Output Leakage Current for OUT1, OUT2                       | $I_{OL3}$          | -10  |     | 10    | μА |  |
| $0 < V_{IN} < V_{CC}$                                       |                    |      |     |       |    |  |

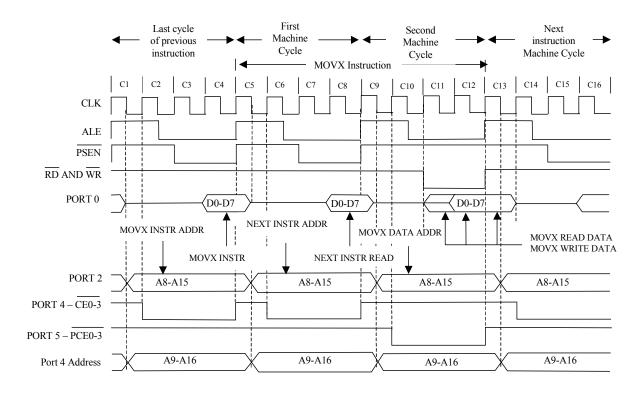
# **AC ELECTRICAL CHARACTERISTICS** (-20°C to 70°C; $V_{CC} = 4.75$ to 5.25V)

| PARAMETER                                     | SYMBOL              | MIN               | TYP    | MAX                         | UNITS |
|-----------------------------------------------|---------------------|-------------------|--------|-----------------------------|-------|
| External Oscillator Frequency                 | 1/t <sub>CLCL</sub> |                   | 18.432 |                             | MHz   |
| PSEN Pulse Width                              | $t_{PLPH}$          | $0.5 t_{MCS} - 5$ |        |                             | ns    |
| PSEN Low to Valid Instruction In              | $t_{PLIV}$          |                   |        | 0.5 t <sub>MCS</sub> - 20   | ns    |
| Input Instruction Hold after PSEN             | $t_{PXIX}$          | 0                 |        |                             | ns    |
| Input Instruction Float after PSEN            | $t_{PXIZ}$          |                   |        | See MOVX<br>Characteristics | ns    |
| Capacitive load presented to external devices | $C_{L}$             |                   |        | 90                          | pF    |

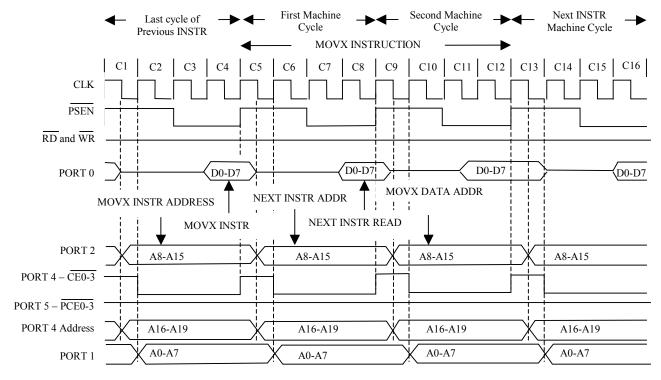
| PARAMETER               | SYMBOL            | MIN | TYP | MAX | UNITS | NOTES |
|-------------------------|-------------------|-----|-----|-----|-------|-------|
| Expected Data Retention | $t_{\mathrm{DR}}$ | 10  |     |     | Years | 5     |
| Time                    |                   |     |     |     |       |       |

# NOTES FOR AC ELECTRICAL CHARACTERISTICS

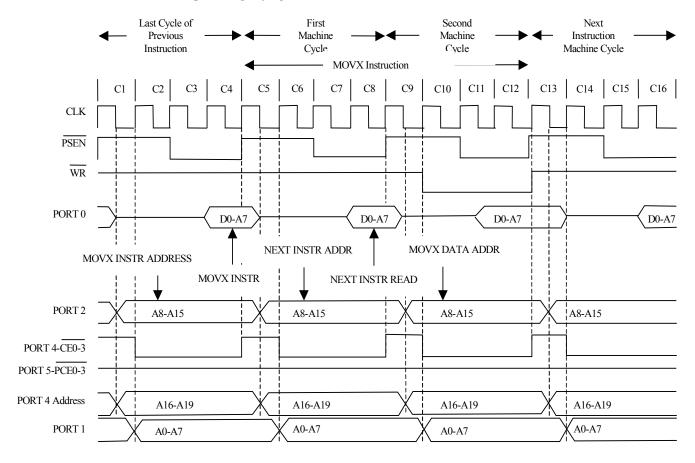
- 1. The value  $t_{MCS}$  is a function of the machine cycle clock in terms of the processor's input clock frequency. These relationships are described in the "Stretch Value Timing" table.
- 2. All signals characterized with load capacitance of 80 pF except PSEN, RD and WR with 100 pF.
- 3. Specifications assume a 50% duty cycle for the oscillator.
- 4.  $t_{MCS}$  is defined as  $2*t_{CLCL}$
- 5. The minimum expected data retention time in the absence of  $V_{CC}$  is 10 years at 25°C.


#### **MOVX CHARACTERISTICS**

| PARAMETER               | SYMBOL              | MIN                 | MAX                | UNITS | STRETCH                |
|-------------------------|---------------------|---------------------|--------------------|-------|------------------------|
|                         |                     |                     |                    |       | VALUES C <sub>ST</sub> |
|                         |                     |                     |                    |       | (MD2:0)                |
| Input Instruction Float | $t_{\mathrm{PXIZ}}$ | $0.5 t_{MCS} - 5$   |                    |       | $C_{ST} = 0$           |
| after PSEN              |                     | $0.75 t_{MCS} - 5$  |                    |       | $1 \le C_{ST} \le 3$   |
|                         |                     | $2.75 t_{MCS} - 10$ |                    | ns    | $4 \le C_{ST} \le 7$   |
| RD Pulse Width          | $t_{ m RLRH}$       | $0.5 t_{MCS} - 5$   |                    | ns    | $C_{ST} = 0$           |
|                         |                     | $C_{ST}*t_{MCS}-10$ |                    |       | $1 \le C_{ST} \le 7$   |
| WR Pulse Width          | $t_{ m WLWH}$       | $0.5 t_{MCS} - 5$   |                    | ns    | $C_{ST} = 0$           |
|                         |                     | $C_{ST}*t_{MCS}-10$ |                    |       | $1 \le C_{ST} \le 7$   |
| RD Low to Valid Data    | $t_{ m RLDV}$       |                     | 0.5tMCS $-20$      | ns    | $C_{ST} = 0$           |
| In                      |                     |                     | CST*tMCS-20        |       | $1 \le C_{ST} \le 7$   |
| Data Hold after Read    | $t_{RHDX}$          | 0                   |                    | ns    |                        |
| Data Float after Read   | $t_{RHDZ}$          |                     | $0.5 t_{MCS} - 5$  | ns    | $C_{ST} = 0$           |
|                         |                     |                     | $0.75 t_{MCS} - 5$ |       | $1 \le C_{ST} \le 3$   |
|                         |                     |                     | $1.75 t_{MCS} - 5$ |       | $4 \le C_{ST} \le 7$   |
| Data Valid to           | $t_{\rm QVWX}$      | -5                  |                    | ns    | $C_{ST} = 0$           |
| WR Transition           |                     |                     |                    |       | $1 \le C_{ST} \le 3$   |
|                         |                     |                     |                    |       | $4 \le C_{ST} \le 7$   |
| Data hold after         | $t_{ m WHZX}$       | $0.25 t_{MCS} - 5$  |                    | ns    | $C_{ST} = 0$           |
| WR high                 |                     | $0.5 t_{MCS} - 5$   |                    |       | $1 \le C_{ST} \le 3$   |
|                         |                     | $1.5 t_{MCS} - 10$  |                    |       | $4 \le C_{ST} \le 7$   |


#### NOTES FOR MOVX CHARACTERISTICS

1. t<sub>MCS</sub> is defined as 2\*t<sub>CLCL</sub>


## 2 CYCLE DATA MEMORY PCE0-3 READ OR WRITE



## 2 CYCLE DATA MEMORY CEO-3 READ



# 2 CYCLE DATA MEMORY $\overline{\text{CE0-3}}$ WRITE



#### TYPICAL TEMPERATURE VERSUS LOAD CHARACTERISTICS

| Number of Loads <sup>1</sup> | Minimum Temperature (°C) | Maximum Temperature (°C) |
|------------------------------|--------------------------|--------------------------|
| 0                            | -20                      | 70                       |
| 1                            | -20                      | 70                       |
| 2                            | -20                      | 70                       |
| 3                            | -20                      | 60                       |
| 4                            | -20                      | 55                       |
| 5                            | -20                      | 50                       |

A load is characterized as 7pF applied to the address, control and data lines of a DSTINI1-512.

#### HANDLING INSTRUCTIONS

Handle the DSTINI1 as if it were a PC style memory module. The DSTINI1 is designed to be robust, however Electrostatic Discharge (ESD) precautions should be observed when handling this module. As with any other electronic device with exposed circuitry, the DSTINI1 should be stored in an anti-static box. When inserting the DSTINI1 into a socket, verify that power is not present. VCC and GND connections should be checked before applying power. Also, verify that the input power is between 4.75 and 5.25 volts.

#### ORDERING INFORMATION

| PART<br>NUMBER | FLASH SIZE | RAM SIZE    | CRYSTAL SPEED           |
|----------------|------------|-------------|-------------------------|
| DSTINI1-512    | 512 kbytes | 512 kbytes  | 36.864 MHz <sup>1</sup> |
| DSTINI1-1MG    | 512 kbytes | 1024 kbytes | 36.864 MHz <sup>1</sup> |

<sup>&</sup>lt;sup>1</sup> The external crystal frequency is 18.432MHz, which is doubled on chip to 36.864MHz.