6\

CYGNAL Application Note

Using the On-Chip Temperature Sensor

Relevant Devices

This application note applies to the following devices:

C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F007, C8051F010, C8051F011,
C8051F012, C8051F015, C8051F016, and C8051F017.

| ADCOGTH | | ADCOGTL | [ADCOLTH | | ADCOLTL |
I 1 1 24 Comb.
g & Logic =3 ADOWINT
AINO e \ x 12
I O S
AINT | g
AIN2 ' T
' 3
AIN3 - | 9-to-1 =
| AMUX
AlN4 I | (SEor|[| X 12 |
AIN5 - | DIFF) —
AING e 1
! 2
AIN7] Q
<
J — (00 —— ADOBUSY (W)
Start Conversion | 01 —— Timer 3 Overflow
— —— tlyead 10 —— CNVSTR
olololo 28aB =2 11 |— Timer 2 Overflow
S (O [™[= g g g <o(O] O} O]
2222 LRER cElE
<|<[<|< ZZ222 e
AMXOCF AMXO0SL ADCOC ADCOCN
Introduction is selected as the ADC input source and the

The purpose of this application note is to
describe how to configure and use the on-chip
temperature sensor (temp sensor). Configura-
tion descriptions and example code are pro-
vided.

The temp sensor produces a voltage that is pro-
portional to the temperature of the die in the
device. This voltage is supplied as one of the
single-ended inputs to the ADC (Analog to
Digital Converter) mux. When the temp sensor

ADC initiates a conversion, the resulting ADC
output code can, with a little math, be con-
verted into a temperature in degrees.

Example applications of the temp sensor
include system environmental monitoring, to
test for system overheating for example, and
measuring the cold-junction temperature in
thermocouple-based applications.

CYGNAL Integrated Products, Inc.
4301 Westbank Drive
Suite B-100

Austin, TX 78746

www.cygnal.com

ANO003 - 1.1 SEPO1

Copyright © 2001 Cygnal Integrated Products, Inc.
(All rights reserved)

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor

%\

Key Points

* The resolution of the temperature sensor
can be improved by averaging.

» The temp sensor measures the die tempera-
ture of the device. If a measurement of
ambient temperature is desired, then the
effects of device self-heating must be taken
into consideration.

Configuration Description

In order to use the temp sensor, it must first be
enabled. The ADC and its associated bias cir-
cuitry must also be enabled. The ADC can use
either the internal or an external voltage refer-
ence. The examples in this note use the inter-
nal voltage reference. The resulting ADC code
is selectable to be either left-justified or right-
justified. The examples in this note use left-
justification, which makes the code weights
independent of the number of bits (12 or 10) in
the ADC.

The temp sensor is enabled by setting TEMPE
(REFOCN.2) to a 'l'. The enable bits for the
analog bias generator and internal voltage ref-
erence are also located in REFOCN
(REFOCN.1 and REFOCN.0 respectively); all
of these can be enabled in a single write, as
follows:

; enable temp sensor, analog bias
; generator, and voltage reference
mov REFOCN, #07h

Next, the temp sensor must be selected as the
input to the ADC, which is accomplished by a
write to AMXOSL as follows:

; select temp sensor as ADC input
mov AMXO0SL, #0fh

The value of AMXO0CF, the AMUX Configu-
ration Register that selects whether an ADC

input is single-ended or differential, does not
affect the temp sensor.

Next, the ADC SAR clock divider, located in
ADCOCF, must be properly set. Specifically,
the ADC conversion clock must have a period
that is at least 500 ns. Table 1 below shows the
minimum required clock divider value vs.
SYSCLK.

Table 1. SAR Clock vs. SYSCLK

SYSCLK freq ADCSC2-0

CLK < 2.0 MHz 000
2.0 MHz - 4.0 MHz 001
4.0 MHz - 8.0 MHz 010
8.0 MHz - 16 MHz 011*
CLK > 16 MHz 1XxX
*denotes reset value

Next, the gain of the ADC is selected. In sin-
gle-ended mode, the maximum DC input volt-
age the ADC can accept is equal to VREF. If
the internal voltage reference is used, this
value is about 2.4 V. The maximum voltage
that can be produced by the temp sensor is
slightly more than 1 V. Therefore, we can
safely set the ADC gain to '2' to increase the
temperature resolution. The configuration bits
that set the ADC gain are located in ADCOCF.
Thus we have:

; set ADC clk = SYSCLK/S8;
; set ADC gain = 2
mov ADCOCF, #61h

The remaining ADC configuration bits are
located in ADCOCN, which is a bit address-
able SFR. Any valid conversion start mecha-
nism can be selected: Timer2 or Timer 3
overflows, writing '1' to ADBUSY, or external
CNVSTR. The software examples that follow

2 ANO003 - 1.1 SEP01

© 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

IV

ANO003 - Using the On-Chip Temperature Sensor

use Timer 3 overflows as the start of conver-
sion source. Here, we use writing a 'l' to
ADBUSY.

We configure the ADC for low-power tracking
mode, to use writing a 'l' to ADBUSY as the
start-of-conversion signal, and to output data
in a left-justified format by writing the follow-
ing:

; enable ADC;

; enable low-power tracking mode;
; clear pending conversion

; complete interrupts;

; select ADBUSY as start-of-

; conversion source;

; clear pending Window Compare
; interrupts;

; set output data format to

; left-justified.

mov ADCOCN, #0clh

At this point, we can initiate a conversion by
writing a 'l' to ADBUSY:

setb ADBUSY ; start conversion

Now we wait for the conversion to complete:

; wait for conversion to complete
jnb ADCINT, $

Once the conversion is complete, the 16-bit
value in the ADC output registers, ADCOH
and ADCOL, contains a code which is propor-
tional to the absolute temperature of the die in
the device. The following section tells how to
interpret the code to find the temperature in
degrees Celsius.

Interpreting the Results

The temp sensor produces a voltage output
which is proportional to the absolute tempera-
ture of the die in the device. The relationship
between this voltage and the temperature in
degrees C is shown in Equation 1.

Equation 1.

Vtemp = (2.86%,/) X Temp +776mV

Where:

Vtemp = the output voltage of the temp sensor in
mV

Temp = the die temperature in degrees C

The transfer characteristic of the temp sensor
is shown graphically in Figure 1.

The temp sensor voltage is not directly mea-
surable outside the device. Instead, it is pre-
sented as one of the inputs of the ADC mux,
allowing the ADC to measure the voltage and
produce an output code which is proportional
to it.

The code produced by the ADC in left-justi-
fied single-ended mode is proportional to the
input voltage as follows:

Equation 2.
. Gain 16
CODE = Vinx TREF X2
Where:
CODE = the left-justified ADC output code
Gain = the gain of the ADC's PGA
VREF = the value of the voltage reference, which

is around 2.43 V if the internal VREF is
used.

Substituting Equation 1 into Equation 2,
assuming Gain=2 and VREF = 2.43V, solving
for Temp and rearranging, we obtain an output

© 2001 Cygnal Integrated Products, Inc.

ANO003 - 1.1 SEP01 3

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor

%\

Temperature which in terms of CODE and a
pair of constants:

Equation 3.
_ (CODE — 41857)
T =
emp 154
Where:
Temp = the temperature in degrees C

CODE = the left-justified ADC output code.

(Volts)
1.000

0.900

0.800

0.700

0.600

0.500

-50 0

Implementation
Considerations

Self-Heating

The temp sensor measures the temperature of
the die of the device, which is likely to be a
few degrees warmer than the surrounding
ambient temperature due to device power dis-
sipation.

In order to find the ambient temperature, the
temperature increase due to self-heating must
be subtracted from the result. The value of this
temperature increase can be calculated or mea-
sured.

There are many factors that contribute to the
amount of device self-heating. Chief among

Vieyp = 0.00286(TEMP,) + 0.776

for PGA Gain =1

50 100
Figure 1. Temperature Sensor Transfer Characteristic

(Celsius)

4 ANO003 - 1.1 SEP01

© 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

IV

ANO003 - Using the On-Chip Temperature Sensor

these are: power supply voltage, operating fre-
quency, the thermal dissipation characteristics
of the package, device mounting on the PCB,
and airflow over the package. The temperature
increase can be calculated to the first order by
multiplying the device's power dissipation by
the thermal dissipation constant of the pack-
age, usually called 0y5. The use of this con-

stant assumes a standard PCB mounting, all
pins soldered to traces, and no airflow over the
package.

For a C8051F005 operating at 11.0592 MHz
and a 3.3 V power supply, the power dissipa-
tion is approximately 35 mW. The 0;, value

for the 64-pin TQFP package is 39.5 degrees
C/W. This equates to a self-heating number of
39.5 * 35¢-3 ~ 1.4 degrees C.

The temperature increase due to self-heating
can be measured in a number of ways. One
method is to initiate a conversion soon after
applying power to the device to get a 'cold'
temperature reading, then measure again after
about a minute of operation, to get a 'hot' tem-
perature reading. The difference between the
two measurements is the contribution due to
self-heating.

Another method is to operate the device from a
low SYSCLK frequency, for example a
32 kHz watch crystal, and take a temperature
measurement, then operate the device at a
higher frequency, the 16 MHz internal oscilla-
tor for example, and take the difference. The
amount of self-heating at the lower clock fre-
quency is negligible because the power dissi-
pation of the device at that frequency is low.

Averaging

To minimize the effects of noise on the tem-
perature conversion result, one technique is to
'oversample' the data and then average it.
'Oversampling' means that the sample rate of

the ADC is set higher than the required output
word rate. As a rule-of-thumb, the output reso-
lution increases by 1 bit for every power of 4
of oversampling.

© 2001 Cygnal Integrated Products, Inc.

ANO003 - 1.1 SEP01 5

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor

Example Code

“Temp_3.c”

// Copyright 2001 Cygnal Integrated Products, Inc.

// AUTH: BW

// DATE:

4 SEP 01

// This program prints the C8051F0xx die temperature out the hardware
// UART at 9600bps. Assumes an 18.432MHz crystal is attached between
// XTAL1l and XTAL2.

// The ADC is configured to look at the on-chip temp sensor. The sampling
// rate of the ADC is determined by the constant <SAMPLE RATE>, which is given
// in Hz.

// The ADCO End of Conversion Interrupt Handler retrieves the sample
// from the ADC and adds it to a running accumulator. Every <INT DEC>
// samples,

// <temperatures,
The sampling technique of adding a set of values and

// degree.

// decimating them
// and dump.’

the ADC updates and stores its result in the global variable

which holds the current temperature in hundredths of a

(posting results every (n)th sample) is called ‘integrate

It is easy to implement and requires very few resources.

// For each power of 4 of <INT DEC>, you gain 1 bit of effective resolution.

// For example,

<INT_DEC>

256 gain you 4 bits of resolution: 4%4 = 256.

// Also note that the ADCO is configured for ‘LEFT’ justified mode. In this

// mode,
// high byte.

the MSB of the ADC word is located in the MSB position of the ADCO
Using the data in this way makes the magnitude of the resulting

// code independent of the number of bits in the ADC (12- and 10-bits behave

// the same) .

// Target:
// Tool chain:

#include <c8051£f000.h>

C8051F00x or C8051F01x
KEIL C51 6.03 / KEIL EVAL C51

#include <stdio.h>

sfrile
sfrile
sfrile
sfrile

DP
TMR3RL
TMR3
ADCO

0x82;
0x92;
0x94;
0xbe;

// data pointer

// Timer3 reload value
// Timer3 counter

// ADCO data

ANO003 - 1.1 SEP01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

C\

ANO003 - Using the On-Chip Temperature Sensor

sfrlé6 ADCOGT = 0xc4;
sfrlé6 ADCOLT = 0xcC6;
sfrle RCAP2 = 0xca;
sfrle T2 = 0xcc;
sfrl6e DACO = 0xd2;
sfrlée DAC1 = 0xd5;

// Global CONSTANTS
#define BAUDRATE 9600
#define SYSCLK 18432000
#define SAMPLE _RATE 50000
#define INT_DEC 256
sbit LED = P1%6;

sbit SW1 = P1%7;

// Function PROTOTYPES
void SYSCLK Init (void);
void PORT Init (void);
void UARTO_ Init (void);
void ADCO_Init (void);
void Timer3_Init (int counts);
void ADCO_ISR (void);

// Global VARIABLES

long result;

// MAIN Routine

void main (void) {

long temperature;

ADCO greater than window
ADCO less than window
Timer2 capture/reload
Timer2

DACO data

DAC1 data

Baud rate of UART in bps
SYSCLK frequency in Hz
Sample frequency in Hz
integrate and decimate ratio

LED='1’ means ON
SW1l='1’ means switch pressed

temperature in hundredths of a

// degree C

int temp int, temp frac; // integer and fractional portions of
// temperature

WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK Init () ; // initialize oscillator

PORT Init (); // initialize crossbar and GPIO

UARTO Init (); // initialize UARTO

Timer3 Init (SYSCLK/SAMPLE RATE) ; // initialize Timer3 to overflow at
// sample rate

ADCO_Init (); // init ADC

© 2001 Cygnal Integrated Products, Inc. ANO003 - 1.1 SEP01 7

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor (\

ADCEN = 1; // enable ADC
EA = 1; // Enable global interrupts

while (1) {

EA = 0; // disable interrupts
temperature = result;
EA = 1; // re-enable interrupts

// calculate temperature in hundredths of a degree
temperature = temperature - 41857;

temperature = (temperature * 100L) / 154;
temp int = temperature / 100;
temp frac = temperature - (temp int * 100);

printf (“Temperature is %+02d.%02d\n”, temp_int, temp_ frac);

LED = SW1; // LED reflects state of switch

// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.

//
void SYSCLK Init (void)
{
int i; // delay counter
OSCXCN = 0x67; // start external oscillator with
// 18.432MHz crystal
for (i=0; i < 256; i++) ; // Wait for crystal osc. to start
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector
T EEECTEEEEEERERE
// PORT Init
/== = s
//
// Configure the Crossbar and GPIO ports
//
void PORT_ Init (void)
{
XBRO = 0x04; // Enable UARTO
XBR1 = 0x00;

8 ANO003 - 1.1 SEP01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor

XBR2 = 0x40; // Enable crossbar and weak pull-ups
PRTOCF |= 0x01; // enable TX0 as a push-pull output
PRT1CF |= 0x40; // enable P1.6 (LED) as push-pull output
}
/== oo
// UARTO Init
/] = mmm T m oo oo ooooooooooooo---
//
// Configure the UART using Timerl, for <baudrate> and 8-N-1.
//
void UARTO_ Init (void)
{
SCON = 0x50; // SCON: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 = 1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD = 1
TI = 1; // Indicate TX ready
}
/== e
// ADCO_ Init
e
//
// Configure ADCO to use Timer3 overflows as conversion source, to
// generate an interrupt on conversion complete, and to use left-justified
// output mode. Enables ADC end of conversion interrupt. Leaves ADC disabled.
//
void ADCO_ Init (void)
{
ADCOCN = 0x05; // ADCO disabled; normal tracking
// mode; ADCO conversions are initiated
// on overflow of Timer3; ADCO data is
// left-justified
REFOCN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer
AMX0SL = OxO0f; // Select TEMP sens as ADC mux output
ADCOCF = 0x80; // ADC conversion clock = SYSCLK/16
ADCOCF |= 0x01; // PGA gain = 2
EIE2 |= 0x02; // enable ADC interrupts
}
/== e e
// Timer3 Init
= s
//
// Configure Timer3 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.
//
void Timer3 Init (int counts)
{
TMR3CN = 0x02; // Stop Timer3; Clear TF3;
// use SYSCLK as timebase
TMR3RL = -counts; // Init reload values
© 2001 Cygnal Integrated Products, Inc. ANO003 - 1.1 SEP01 9

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor (\

TMR3 = Oxffff; // set to reload immediately

EIE2 &= ~0x01; // disable Timer3 interrupts

TMR3CN |= 0x04; // start Timer3
!
/== s
// Interrupt Service Routines
/== s
/]~
// RDCO_ISR
/== s
//

// ADCO end-of-conversion ISR

// Here we take the ADCO sample, add it to a running total <accumulators>, and
// decrement our local decimation counter <int_dec>. When <int_dec> reaches
// zero, we post the decimated result in the global variable <results.

void ADCO_ ISR (void) interrupt 15 using 1
{
static unsigned int dec=INT DEC; // integrate/decimate counter
// we post a new result when
// int _dec = 0
static long accumulator=0L; // here’s where we integrate the
// ADC samples

ADCINT = 0; // clear ADC conversion complete
// indicator

accumulator += ADCO; // read ADC value and add to running
// total
int dec--; // update decimation counter
if (int_dec == 0) { // if zero, then post result
int_dec = INT_DEC; // reset counter
result = accumulator >> 8;
accumulator = O0L; // reset accumulator

10 ANO003 - 1.1 SEP01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

C\ ANOO3 - Using the On-Chip Temperature Sensor

“Temp_2.asm”

; Copyright 2001, Cygnal Integrated Products, Inc.

; FILE: Temp 2.ASM
; DEVICE: C8051F00x, C8051F01x
; ASSEMBLER: Keil A51

; AUTH: BW

; DATE: 23 JUL 01

; This program provides an example of how to configure the on-chip temperature
; sensor with the ADC. The ADC is configured for left-justified mode, so this
; code will work as-is on devices which have 10 or 12-bit ADCs.

; An external 18.432MHz crystal is used as the system clock source.

; The ADC is configured for left-justified mode, GAIN = 2, using Timer3 overflows
; as the start-of-conversion source. Timer3 is configured in auto-reload mode

; to overflow every 10ms. The ADC conversion complete interrupt handler

; reads the ADC value and compares it with the expected value for room

; temperature (about 25 degrees C), stored in ROOMCODE. If the measured

; temperature is below this value, the LED is turned off. If the measured

; value is above ROOMCODE, the LED is turned on.

; The LED switch point can be easily modified by changing the value of ROOMCODE.

SINCLUDE (C8051F000.1inc)

LED EQU P1.6 ; LED on target board (‘'1’ is LED ON)
SYSCLK EQU 18432 ; SYSCLK frequency in kHz
TC 10ms EQU (SYSCLK / 12) * 10; number of timer counts in 10ms
ROOMCODE EQU 0xb3f0 ; left-justified ADC value for 25 degrees C.
; VARIABLES
MYDATA SEGMENT DATA ; declare DATA segment

RSEG MYDATA ; select DATA segment

; ADC data variables
TEMPCODE : DS 2 ; holding register for temp code (16-bit)
; stored MSB-first (like in ‘C’ code)

© 2001 Cygnal Integrated Products. Inc. ANO003 - 1.1 SEP01 11

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor (\

; STACK
STACK SEGMENT IDATA ; declare STACK segment
RSEG STACK
DS 80h ; reserve 128 bytes for stack

CSEG AT 0
ljmp Main

org 7bh
ljmp ADCO_ ISR ; ADCO end of conversion interrupt

Temp_ 2 SEGMENT CODE ; declare CODE segment
RSEG Temp 2 ; select CODE segment
USING O ; using register bank 0
Main:
mov WDTCN, #0deh ; disable watchdog timer

mov WDTCN, #0adh
mov SP, #STACK-1 ; init stack pointer

mov OSCXCN, #67h ; enable external crystal oscillator
; at 18.432MHz

clr A ; wait at least 1ms

djnz acc, $; wait 512us

djnz acc, $; wait 512us
osc_wait: ; poll for XTLVLD-->1

mov a, OSCXCN
jnb acc.7, osc_wait

orl OSCICN, #08h ; select external oscillator as
; system clock source
orl OSCXCN, #80h ; enable missing clock detector
mov XBR2, #40h ; Enable crossbar and weak pull-ups
orl PRT1CF, #40h ; enable P1.6 (LED on target board) as
; push-pull
acall ADCO Init ; initialize ADCO and temp sensor
acall Timer3 Init ; initialize Timer3

12 ANO003 - 1.1 SEP01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor

; ADCO_ISR

acall Timer3 Start ; enable Timer3

acall ADCO_ Enable ; enable ADC

setb EA ; enable global interrupts
sjmp $; spin forever

; This ISR is activated on the completion of an ADC sample. When this event

; occurs,

the ADC value is copied to the holding variable TEMPCODE, and is

; compared with the code for 25 degrees C. If the temperature is above
; 25 degrees C, the LED is turned on. If the temperature is below 25 degrees
; C, the LED is turned off. There is no correction here for self-heating.

7

ADCO_TISR:

push PSW ; preserve registers
push acc

clr ADCINT ; clear ADCO interrupt flag

mov TEMPCODE, ADCOH ; copy MSB of ADCO result into
; TEMPCODE

mov TEMPCODE+1, ADCOL ; copy LSB of ADC result into
; TEMPCODE

; compare TEMPCODE with value expected for 25 degrees C

; 1f (TEMPCODE - ROOMDEG) < 0, then turn LED off, otherwise, turn it on.
; calculate TEMPCODE - ROOMREG and store in TEMPCODE (16-bit subtract)

clr c

mov a, TEMPCODE+1 ; subtract LSBs

subb a, #LOW(ROOMCODE)

mov TEMPCODE+1, a ; store new LSB

mov a, TEMPCODE ; subtract MSBs (and carry)

subb a, #HIGH (ROOMCODE)

mov TEMPCODE, a ; store new MSB

setb LED ; turn LED on.

jnc ADCO_ISR _END ; exit if subtract result was positive,
clr LED ; otherwise, turn LED off then exit

ADCO_ISR_END:

pop acc
pop PSW

reti

© 2001 Cygnal Integrated Products. Inc. ANO003 - 1.1 SEP01 13

http://www.cygnal.com
http://www.cygnal.com

ANO003 - Using the On-Chip Temperature Sensor (\

; This routine initializes Timer3 in 16-bit auto-reload mode to overflow
; at 100Hz using SYSCLK/12 as its time base. Exits with Timer3
; stopped and Timer3 interrupts disabled.
Timer3_Init:
mov TMR3CN, #00h ; stop Timer3, clear TF3, use
; SYSCLK/12 as timebase
mov TMR3RLH, #HIGH(-TC 10ms); init reload values
mov TMR3RLL, #LOW (—TC_l oms)

mov TMR3H, #0ffh ; set to auto-reload immediately
mov TMR3L, #0ffh

anl EIE2, #NOT(01lh) ; disable Timer3 interrupts

ret

; This routine starts Timer3
Timer3_ Start:

orl TMR3CN, #04h ; set TR3
ret

; This routine initializes ADCO for left-justified mode monitoring the

; on-chip temp sensor at a gain of '2’. Leaves ADC in disabled state.
ADCO_Init:
clr ADCEN ; disable ADC
mov REFOCN, #07h ; enable temp sensor, bias
; generator, and output
; buffer
mov AMXO0SL, #0fh ; select TEMP sensor as ADCO
; input
mov ADCOCF, #80h ; set SAR clock to SYSCLK/16
orl ADCOCF, #01h ; PGA Gain = 2
mov ADCOCN, #45h ; ADC disabled, low power

; track mode, ADCO conversions
; initiated by overflow on
; Timer3, left-justified data

; This routine enables the ADC and ADC interrupts.

ADCO_Enable:

14 ANO003 - 1.1 SEP01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

ic\ ANO003 - Using the On-Chip Temperature Sensor

setb ADCEN ; enable ADC
orl EIE2, #02h ; enable ADC EOC interrupt
ret

; End of file.

END

© 2001 Cygnal Integrated Products, Inc. ANO003 - 1.1 SEP01

15

http://www.cygnal.com
http://www.cygnal.com

	Introduction
	Key Points
	Configuration Description
	Interpreting the Results
	Figure 1. Temperature Sensor Transfer Characteristic

	Implementation Considerations
	Self-Heating
	Averaging

	Example Code
	“Temp_3.c”
	“Temp_2.asm”

