
AN008 - Implementing a Real-Time Clock

Relevant Devices
This application note applies to the following devices:
C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F007, C8051F010, C8051F011,
and C8051F012.

CYGNAL Application Note
Introduction
The purpose of this note is to provide an exam-
ple of how to add a real-time clock (RTC) fea-
ture to a C8051F00x or C8051F01x device.
Example software is included at the end of this
note.

Key Points
• The external oscillator can be used to drive

a crystal for the RTC while the system
clock uses the high-frequency internal
oscillator.

• The system clock can be derived from the
internal or external oscillator, and can
change sources without compromising the
accuracy of the RTC.

• The RTC uses Timer 2, which is config-
ured to increment on falling edges of an
external input.

• Comparator 0 is used to convert the crystal
waveform to a square wave.

Overview
Real-time clocks are used in many embedded
applications to record the time at which an
event occurred, a pressure sensor was acti-
vated, or an ADC reading was taken, for exam-
ple. Currently there are off-the-shelf

components that contain a small crystal time
base coupled with simple logic that have stan-
dardized interfaces for connecting to the I2C,
SPI, or parallel port of a microcontroller. This
application note describes how to implement
the function of a real-time clock inexpensively
by using a C8051Fxxx device, a small 32 kHz
watch crystal, and a few passive components.

Because the CPU overhead and resource
requirements of the RTC are very small, this
functionality can easily be added to an existing
8051-based system.

In this design, a 32 kHz watch crystal is con-
nected to the external oscillator of the C8051
device. The output signal from the crystal
oscillator is conditioned by one of the internal
analog comparators and fed into a timer input.
The timer is configured in auto-reload mode to
generate an interrupt at a periodic rate, one-
tenth second in this example. The interrupt ser-
vice routine for the timer updates a series of
counters for seconds, minutes, hours, and days.
CYGNAL Integrated Products, Inc. AN008-1.1 FEB01
4301 Westbank Drive Copyright © 2001 Cygnal Integrated Products, Inc.

Suite B-100 (All rights reserved)

Austin, TX 78746
www.cygnal.com

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
Hardware Description
A schematic of the hardware is shown in
Figure 1. This design uses an external 32kHz
watch crystal as the time base for the RTC.
This crystal is connected between the XTAL1
and XTAL2 pins of the device. Note that the
external oscillator’s crystal driver can be
enabled while the CPU core is operating from
the internal oscillator.

The XTAL2 output is fed into the (+) input of
an on-chip analog comparator (Comparator 0).
A low-pass filtered version of the XTAL2 sig-
nal is fed to the (-) input of the comparator to
provide the DC bias level at which to detect
the transitions of the oscillating signal. The
corner frequency of this filter, where

R = 1 MΩ and C = 0.022 µF, is substantially
below the frequency of oscillation.

The output of the on-chip comparator is routed
to an external GPIO pin (CP0, determined by
the crossbar) and connected to the input signal
of Timer 2 (T2, also determined by the cross-
bar). Timer 2 increments once for each falling
edge detected at the T2 input.

Timer 2 is configured in 16-bit auto-reload
mode to generate an interrupt every 3200
counts, or once every tenth of a second. The
interrupt handler for Timer 2 updates a series
of counters for tenths of seconds, seconds,
minutes, hours, and days.

XTAL1

XTAL2

CRYSTAL

OSC
Input
Circuit

CP0+

CP0-

P0.0

P0.1

Timer 2

CP0

Digital
Crossbar

R

C

CP0-
XTAL2

LPF

Figure 1. Connection Diagram
2 AN008-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
The default mode of the RTC implementation
assumes that the CPU system clock
(SYSCLK) is derived from the high-speed
internal oscillator. When the system clock is
changed to use the external 32kHz source, for
example to save power, Timer 2 is switched by
the software to use SYSCLK as its time base.
Synchronizing the clock switching inside the
RTC interrupt handler ensures no loss of accu-
racy.

Crossbar Configuration
The connection between internal digital
peripherals and the GPIO pins is handled by
the crossbar. In this design, the crossbar routes
the CP0 output and T2 input to GPIO pins P0.0
and P0.1, respectively. It is important to note
that the specific port pins used will change if
peripherals with a higher crossbar priority are
enabled (see AN001). Crossbar setup is
accomplished with the following statements:

; enable CP0 output
mov XBR0, #80h
; enable T2 input
mov XBR1, #20h
; enable crossbar and weak pull-
; ups
mov XBR2, #40h

Oscillator Configuration
Refer to AN002 for details on configuring
external oscillator. The following statement
configures and enables the external oscillator
for use with a 32 kHz crystal.

; enable external oscillator
; in ‘crystal’ mode; XFCN = 001
; for a 32kHz crystal
mov OSCXCN, #61h

Once configuration is complete, the external
oscillator must be checked for stability before
enabling the timer. The XTLVLD bit
(OSCXN.7) is set when the crystal is running

and stable. Software polls the XTLVLD bit
before enabling Timer 2:

; wait until the external osc.
; is stable
WAIT:
mov ACC, OSCXCN
jnb ACC.7, WAIT

; enable Timer 2
setb TR2

Comparator Configuration
The Comparator 0 setup involves setting the
positive and negative hysteresis and enabling
the comparator. The comparator hysteresis
can be configured in the comparator control
register CPT0CN. Since the voltage of the
XTAL2 signal will be fairly large (500 mV to
3 V), the CP0 hysteresis can be set high to pro-
vide noise immunity. The hysteresis is set and
the comparator is enabled with the following
statements:

; set CP0 hysteresis 10mV/10mV
mov CPT0CN, #0Ah

; enable CP0
orl CPT0CN, #80h

Timer Configuration
When the CPU system clock (SYSCLK) is
derived from the high-frequency internal oscil-
lator, Timer 2 is configured in auto-reload
mode to count falling edges on the external
signal T2. Timer 2 is configured with the fol-
lowing statement:

mov T2CON, #02h

We must also set the initial and reload values
for Timer 2. The initial value is the value
loaded into Timer 2 before it is enabled, and
the reload value, held in RCAP2H (high byte)
and RCAP2L (low byte), is loaded into
© 2001 Cygnal Integrated Products, Inc. AN008-1.1 FEB01 3

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
Timer 2 after an overflow. The initial and
reload values, which are identical, are deter-
mined by the precision required of the real-
time clock. This design implements precision
of a tenth of a second; therefore, Timer 2 is set
to overflow every tenth of a second, or every
3200 counts of the 32 kHz time base. We set
the COUNT value to 3,200, and set the reload
values in the RCAP2 registers with the follow-
ing commands:

;set T2 reload high byte
mov RCAP2H, #HIGH(-COUNT)

;set T2 reload low byte
mov RCAP2L, #LOW(-COUNT)

When Timer 2 overflows, it will be reloaded to
overflow in another 3200 counts, and it will
generate an interrupt. The program will vector
to the Timer 2 interrupt service routine every
tenth of a second to increment the counters.
Because the interrupt service routine is short
and is only called once every tenth of a second,
CPU utilization is remarkably low.

Once Timer 2 is configured, its interrupt must
be enabled with the following statement:

; enable Timer 2 interrupt
setb ET2

Timer 2 is enabled after all other timer config-
uration is complete by setting its run bit:

; start Timer 2
setb TR2

System Clock Switching
The default configuration of this RTC example
assumes that the CPU system clock
(SYSCLK) is derived from the high-speed
internal oscillator. If SYSCLK is derived
instead from the external oscillator, for power
savings, the configuration for Timer 2 must be
changed to use SYSCLK as the time base

because signals at T2 can have a maximum
frequency of SYSCLK / 4 in order to be prop-
erly detected.

The process for changing the system clock is
as follows:

1. Stop the timer (TR2 = ‘0’).
2. Change timer time base.
3. Change SYSCLK time base.
4. Add correction factor to timer’s counter.
5. Start the timer (TR2 = ‘1’).

In order to guarantee that no external clock
edges are missed, the SYSCLK should be
updated in the RTC’s interrupt service routine.

The system clock can be changed by setting
either SET_EXT_OSC (to change to the exter-
nal oscillator) or SET_INT_OSC (to change to
the internal oscillator) to ‘1’. These bits are
used as flags in the Timer 2 ISR to permit
changing of the system clock without sacrific-
ing RTC accuracy. Details are given in the
software description at the end of this report.

Software Description
This section contains a description of the soft-
ware flow. The program listing begins on
page 6.

Main Function
The MAIN function is used to configure the
crossbar, external oscillator, comparator, and
timer. First we setup the external crystal by
enabling the external oscillator and setting the
power factor bits.

The crossbar setup and CP0 setup values
described above are then loaded, and then each
device is enabled. Software polls the XTLVLD
bit so that Timer 2 is not enabled until the crys-
tal is settled. When hardware sets the
4 AN008-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
XTLVLD bit, the program moves past the
WAIT loop. At the end of the MAIN function
the RTC_INIT function is called, Timer 2 is
enabled, and global interrupts enabled.

RTC Initialization Function
The RTC_INIT function is used to reset the
counter values and to configure Timer 2. This
function can be used as a reset for the RTC.
After clearing the counter values, the initial
value for Timer 2 is set to the COUNT value as
described in the configuration section. The
COUNT value is also loaded into the reload
registers (RCAP2H & RCAP2L). Timer 2 is
then set to increment on external input edges,
and the Timer 2 interrupt is enabled.

Timer Interrupt Service Rou-
tine
The Timer 2 ISR is called each time Timer 2
overflows (once every tenth of a second).
When the ISR is called, it first clears the
Timer 2 interrupt flag (TF2). The ISR then
checks for overflows in all of the counters,
starting with the tenths counter. If the tenths
counter is at 9, it is reset to 0 and the seconds
are checked for an overflow. Similarly, if the
seconds are at 59, they are reset to 0, and the
minutes are checked. The hours and days are
checked in the same fashion. The counter is
incremented, and then the oscillator selection
bits (SET_EXT_OSC and SET_INT_OSC) are
checked.

Oscillator Selection
If the SET_EXT_OSC bit is set, the ISR clears
the bit and jumps to the EXT_OSC label. First,
OSCICN is checked--if the system clock is
already using the external oscillator, the ISR
exits. If not, Timer 2 is disabled to avoid any
miscounts during the system clock switch.
CKCON is setup so that the Timer 2 input

clock is the system clock divided by one.
Timer 2 is then set to increment on the system
clock, and the Timer 2 counter register is
updated to compensate for missed ticks during
the SYSCLK transition. Between the system
clock switch and the Timer 2 re-enable,
Timer 2 misses 5 ticks. The correction value,
EXT_COR, is set to 5; this value is added to
the Timer 2 register before the system clock is
switched to the external oscillator. After the
switch, Timer 2 is enabled again, and the ISR
exits.

If the SET_INT_OSC bit is set, the ISR clears
the bit and jumps to the INT_OSC label.
OSCICN is checked first to make sure the sys-
tem clock is not already using the internal
oscillator. If it is not, Timer 2 is disabled for
the clock switch. The internal oscillator is
selected as the system clock, and then the cor-
rection value, INT_COR is added to the
Timer 2 register. In this case, 3 ticks are
missed during the switch. INT_COR, which is
set to 3, is added to Timer 2. The external input
pin is selected as the Timer 2 input, and
Timer 2 is enabled. The ISR then exits to wait
for another overflow.

Counter Access
The tenths/seconds/minutes/etc. counters can
be accessed by calling the SAVE routine. The
SAVE routine first saves the current state of
the Timer 2 interrupt flag in the Carry bit and
then disables the Timer 2 interrupt so that no
interrupts occur during the save. Disabling the
interrupt does no harm here because the inter-
rupt will be enabled again at the end of the
SAVE routine. If an interrupt is generated dur-
ing the SAVE routine, it will be serviced as
soon as the Timer 2 interrupt is enabled again.
After ET2 is cleared, each counter is saved
(TENTHS into STORE_T, SECONDS into
STORE_S, etc.). The interrupt flag is restored,
and the function returns to its caller.
© 2001 Cygnal Integrated Products, Inc. AN008-1.1 FEB01 5

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
Software Example
;--
; CYGNAL INTEGRATED PRODUCTS, INC.
;
;
; FILE NAME : RTC_1.asm
; TARGET DEVICE : C8051F0xx
; DESCRIPTION : Software implementation of a real-time clock
;
; AUTHOR : JS
;
; Software implementation of a real-time clock using a 32KHz crystal oscillator.
; This program uses the crystal driver, XTAL2 to drive Comparator 0. The positive
; comparator input is from XTAL2, and the negative input is an averaged version of
; XTAL2. The averaging is done by a low pass filter. The output of Comparator 0
; is routed to the Timer 2 input (T2).
;
; Timer 2 is configured in auto-reload mode, and is set to trigger on
; the external input pin connected to the Comparator 0 output.
;
; This code assumes the following:
;
; (1) An external oscillator is connected between XTAL1 and XTAL2
; (2) A low pass averaging filter is connected between XTAL2 and CP0-
; (3) XTAL2 is routed to CP0+
; (4) CP0 output is routed to Timer 2 input through the port pins assigned
; by the crossbar
;
; For a 32KHz crystal, the low pass filter consists of a 0.022uF capacitor and a
; 1 Mohm resistor.
;--

;--
; EQUATES
;--

$MOD8F000

; Count value: This value is used to define what is loaded into timer 2 after each
; overflow.The count value is 3200, meaning the timer will count 3200 ticks before an
; overflow. Used with the 32KHz crystal, this means the timer will overflow every
; tenth of a second.

COUNT EQU 3200d ; count value

; Compensation factors for system clock switching used to update Timer 2 after a
; system clock change

EXT_COR EQU 5d
INT_COR EQU 3d

;--
; VARIABLES
;--

DSEG
6 AN008-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
org 30h

TENTHS: DS 1 ; counts tenths of seconds
SECONDS: DS 1 ; counts seconds
MINUTES: DS 1 ; counts minutes
HOURS: DS 1 ; counts hours
DAYS: DS 1 ; counts days

STORE_T: DS 1 ; storage byte for tenths,
; used by SAVE routine

STORE_S: DS 1 ; storage byte for seconds
STORE_M: DS 1 ; minutes
STORE_H: DS 1 ; hours
STORE_D: DS 1 ; days

BSEG

org 00h

SET_EXT_OSC: DBIT 1 ; flag to change system clock
; to external osc

SET_INT_OSC: DBIT 1 ; flag to change system clock
; to internal osc

;--
; RESET and INTERRUPT VECTORS
;--

CSEG

; Reset Vector
org 00h
ljmp MAIN

; Timer 2 ISR Vector
org 2Bh
ljmp T2_ISR ; Timer 2 ISR

;--
; MAIN PROGRAM
;--

org 0B3h

MAIN:

mov OSCXCN, #61h ; enable external oscillator
; in ‘crystal’ mode for a
; 32kHz watch crystal

mov WDTCN, #0DEh ; disable watchdog timer
mov WDTCN, #0ADh

; Setup Crossbar
mov XBR0, #80h ; enable CP0 output
mov XBR1, #20h ; enable T2 input
© 2001 Cygnal Integrated Products, Inc. AN008-1.1 FEB01 7

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
mov XBR2, #40h ; enable crossbar

; Setup Comparator 0
mov CPT0CN, #08h ; set positive hysteresis to 10mV
orl CPT0CN, #02h ; set negative hysteresis to 10mV
orl CPT0CN, #80h ; enable CP0

acall RTC_INIT ; Initialize RTC and Timer 2

WAIT:

mov ACC, OSCXCN ; wait until the external
; oscillator is steady

jnb ACC.7, Wait ; by checking the XTLVLD bit
; in OSCXCN

setb TR2 ; turn on Timer 2 (starts RTC)

setb EA ; enable global interrupts

jmp $; spin forever

;---
; Initialization Subroutine
;---

RTC_INIT:

; Clear all counters
mov TENTHS, #0
mov SECONDS, #0
mov MINUTES, #0
mov HOURS, #0
mov DAYS, #0

; Setup Timer2 in auto-reload mode to count falling edges on external T2

mov TH2, #HIGH(-COUNT) ; set initial value for timer 2
mov TL2, #LOW(-COUNT)

mov RCAP2H, #HIGH(-COUNT) ; set reload value for timer 2
mov RCAP2L, #LOW(-COUNT)

mov T2CON, #02h ; configure Timer 2 to increment
; falling edges on T2

setb ET2 ; enable Timer 2 interrupt
ret

;---
; Timer 2 ISR
;---

T2_ISR:
clr TF2 ; clear overflow interrupt flag
push PSW ; preserve PSW (carry flag)
push ACC ; preserve ACC
8 AN008-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
; Check for overflows
mov A, TENTHS
cjne A, #9d, INC_TEN ; if tenths less than 9, jump

; to increment
mov TENTHS, #0 ; if tenths = 9, reset to zero,

; and check seconds

mov A, SECONDS
cjne A, #59d, INC_SEC ; if seconds less than 59, jump

; to increment
mov SECONDS, #0 ; if seconds = 59, reset to zero,

; and check minutes

mov A, MINUTES
cjne A, #59d, INC_MIN ; if minutes less than 59, jump

; to increment
mov MINUTES, #0 ; if minutes = 59, reset to zero,

; and check hours

mov A, HOURS
cjne A, #23d, INC_HOUR ; if hours less than 23, jump

; to increment
mov HOURS, #0 ; if hours = 23, reset to zero,

; and check days

inc DAYS ; DAYS will roll over after 255

jmp CHECK_OSC ; jump to check for oscillator
; change request

;Increment counters--

INC_TEN:
inc TENTHS ; increment tenths counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

INC_SEC:
inc SECONDS ; increment seconds counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

INC_MIN:
inc MINUTES ; increment minutes counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

INC_HOUR:
inc HOURS ; increment hours counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

;Oscillator changes--

CHECK_OSC:
jbc SET_EXT_OSC, EXT_OSC ; check for external oscillator

; select
© 2001 Cygnal Integrated Products, Inc. AN008-1.1 FEB01 9

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
jbc SET_INT_OSC, INT_OSC ; check for internal oscillator
; select

jmp END_ISR ; exit

EXT_OSC: ; switch system clock to
; external oscillator

mov ACC, OSCICN ; check current system clock
jb ACC.3, END_ISR ; exit if already using external

; oscillator

orl CKCON, #20h ; select system clock (divide by 1)
; for Timer 2

clr TR2 ; disable Timer 2 during clock change
clr CT2 ; select SYSCLK as Timer 2 input

mov A, #LOW(EXT_COR) ; load correction value into
; accumulator

add A, TL2 ; add correction value to Timer 2
; counter register

mov TL2, A ; store updated Timer 2 value

orl OSCICN, #08h ; select external oscillator as
; system clock

setb TR2 ; enable Timer 2 after clock change

jmp END_ISR ; exit

INT_OSC: ; switch system clock to internal
; oscillator

mov ACC, OSCICN ; check current system clock
jnb ACC.3, END_ISR ; exit if already using internal

; oscillator

clr TR2 ; disable Timer 2 during clock change
anl OSCICN, #0f7h ; select internal oscillator as

; system clock

mov A, #LOW(INT_COR) ; load correction value into
; accumulator

add A, TL2 ; add correction value to Timer 2
; register

mov TL2, A ; store updated Timer 2 value

setb CT2 ; select external Timer 2 input
setb TR2 ; enable Timer 2 after clock change

jmp END_ISR ; exit

END_ISR:

pop ACC ; restore ACC
pop PSW ; restore PSW
reti

;---
; Counter Save Routine
10 AN008-1.1 FEB01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN008 - Implementing a Real-Time Clock
;---

SAVE:

mov C, ET2 ; preserve ET2 in Carry

clr ET2 ; disable Timer 2 interrupt
; during copy

mov STORE_T, TENTHS ; copy all counters
mov STORE_S, SECONDS
mov STORE_M, MINUTES
mov STORE_H, HOURS
mov STORE_D, DAYS

mov ET2, C ; restore ET2
ret

;---

END
© 2001 Cygnal Integrated Products, Inc. AN008-1.1 FEB01 11

http://www.cygnal.com
http://www.cygnal.com

	Introduction
	Key Points
	Overview
	Hardware Description
	Figure 1. Connection Diagram
	Crossbar Configuration
	Oscillator Configuration
	Comparator Configuration
	Timer Configuration
	System Clock Switching

	Software Description
	Main Function
	RTC Initialization Function
	Timer Interrupt Service Routine
	Oscillator Selection
	Counter Access

	Software Example

