CYGNAL Application Note

6\

ANO0O0O7 - Implementing 16-Bit PWM Using the PCA

Relevant Devices

This application note applies to the following devices:
C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F010, C8051F011, and

C8051F012.

Introduction

Pulse-width modulated (PWM) waveforms are
often used in closed-loop feedback and control
applications, such as controlling the on/off
state of a heating element used to regulate the
temperature of a laser in a DWDM (Dense
Wavelength Division Multiplexing) applica-
tion. In some applications, the built-in 8-bit
PWM mode of the Programmable Counter
Array (PCA) provides insufficient resolution
for the task. This application note describes
how to implement a PWM waveform achiev-
ing 16-bit resolution using the PCA in ‘High-
Speed Output’ mode with minimal software
overhead. Software examples in ‘C’ and
assembly are provided at the end of this note.

Background

Figure 1 shows an example PWM waveform.
The frequency of the PWM signal of the class
used in feedback control applications is largely
unimportant, as long as the waveform is ‘fast
enough’, such that the step response of the
control system is much slower than one period
of the PWM signal. Signal information is
encoded instead in the duty cycle of the wave-
form, the ratio of the time the waveform is
high over one period of the PWM signal. The
input to the PWM implementation is a number,
usually an integer, that is proportional to the
duty cycle desired at the output.

t
dutycycle = A
Ip

Figure 1. Example PWM Waveform

CYGNAL Integrated Products, Inc.
4301 Westbank Drive
Suite B-100

Austin, TX 78746

www.cygnal.com

ANO007-1.0 DECOO0

Copyright © 2000 Cygnal Integrated Products, Inc.
(All rights reserved)

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

V

Implementation

There are many methods for implementing a
PWM waveform in an 8051-based design:
software loops, polled or interrupt-driven tim-
ers, etc. The examples in this note use the Pro-
grammable Counter Array (PCA). Using the
PCA for this application results in a substantial
reduction in CPU bandwidth requirements
over any polled scheme (software or timer-
based), and eliminates timing jitter caused by
variable interrupt latency in interrupt-driven
timer-based designs.

An Introduction to the PCA

The PCA consists of a single 16-bit counter/
timer and five capture/compare modules, as
shown in Figure 2. The counter/timer has a 16-
bit timer/counter register (PCAOH:PCAOL), an
associated mode register (PCAOMD), which

selects the time base, and a control register
(PCAOCN), which contains the timer/counter
run control and the modules’ capture/compare
flags. Each capture/compare module has a
configuration register (PCAOCPMx) which
selects the module’s mode (Edge-triggered
Capture, Software Timer, High-Speed Output,
or PWM) and a 16-bit capture/compare regis-
ter (PCAOCPHn:PCAOCPLn).

Because the capture/compare modules share a
common time base, they can operate in con-
cert, to provide phase-locked excitation wave-
forms for motor control, for example. Or,
because each module has its own control and
capture/compare registers, it can operate inde-
pendently of the other modules, as long as the
routines for any module do not affect the
shared time base (by stopping or resetting the

16-Bit Counter/Timer

00
System 3
Clock 01
10
TO Overflow ———— XX X 0
CPS=11
o}

Capture/Compare Capture/Compare Capture/Compare Capture/Compare Capture/Compare
Module 0 Module 1 Module 2 Module 3 Module 4
m @] o] @] @) @)
o m m m m m
= x x X x X
o - N w >
-
| Crossbar !
} |
ro T T T T
' Portl/O i
L
Figure 2. PCA Block Diagram
2 ANO007-1.0 DECO00 © 2000 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

IV

counter/timer or by changing the counter/timer
clock source).

The examples in this note configure the PCA
modules to act independently; the routines for
the allocated module affect only the configura-
tion register and the capture/compare register
for that module. The PCA Mode Register
(PCAOMD) is configured once, then left alone,
and the timer/counter register
(PCAOH:PCAOL) is left free-running.

Selecting the PCA Time Base

The PCA time base can be derived from one of
four sources: SYSCLK /12, SYSCLK/4,
TimerO overflows, or high-to-low transitions
on an external pin, ECI. A block diagram of
the PCA counter/timer is shown in Figure 3.

As will be shown in the following sections, the
selection of the PCA time base determines the
resulting frequency of the PWM waveform. As
mentioned earlier, the frequency of the PWM

IDLE E

PCAOMD PCAOCN
C c|c[e clcl [cic]c]clc
I P|P|C FIR| |c|c|c|c|c
D s|s|F F|F|F|F|F PCAOL
L 1|0 4(3[2[1]0 read
] l Lt
SYSCLK/12 00
SYSCLK/4 v

Timer 0 Overflow

ECI

waveform is generally not important, so long
as it is ‘fast enough’.

One timing option that is not immediately
obvious is that the PCA can be clocked at the
SYSCLK rate by selecting Timer0O overflows
as the PCA clock source, and setting Timer0 in
8-bit auto-reload mode with a reload value of
‘OxFF’.

The examples in this note all configure the
PCA to use SYSCLK /4 as the PCA clock
source.

o o— >l

™ To SFR Bus
Snapshot
Register
PCAOH PCAOL Mcli—'bTo PCA Interrupt System
CF
LS To PCA Modules

4

Figure 3. PCA Counter/Timer Block Diagram

© 2000 Cygnal Integrated Products, Inc.

ANO007-1.0 DEC00 3

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

V

8-Bit PWM Using the PCA

We first present a method for generating a
PWM waveform with 8-bit precision, for com-
pleteness, and to introduce the PWM mode of
the PCA.

In this mode, the capture/compare module is
configured in PWM mode as shown in
Figure 4. The period of the waveform at CEXn
is equal to 256 PCA clocks. The low-time of
the signal at CEXn is equal to the 8-bit value
stored in the low-byte of the module’s capture/
compare register (PCAOCPLn). This relation-
ship is shown in Figure 5.

PCAOCPHnN
CEXn - >

256

Figure 5. Output Waveform in 8-Bit

At every overflow of the low-byte of the main
PCA counter (PCAOL), the high-byte of the
module’s compare register is copied into the
low-byte of the module’s compare register
(PCAOCPLn = PCAOCPHn). The duty cycle is
changed by updating PCAOCPHn. The copy-
ing process ensures glitch-free transitions at
the output.

The duty cycle of the output waveform (in %)
1s given by:

256 - PCAOCPHn

75¢ x 100

dutycycle =

Because PCAOCPHn can contain a value
between 0 and 255, the minimum and maxi-
mum programmable duty cycles are 0.38 %
(PCAOCPOH = 0xFF) to 100 % (PCAOCPOH =
0x00). The resolution of the duty cycle selec-
tion is:

resolution = —I—X 100 = 0.38

256
PWM Mode
PCAOCPHN
4—
PCAOCPMn
E|C|CIM|T|P|E
O|P|P(T|G|m|C
M|P|N[n|n|n|F
nfnin n
00xO0 | x —__ NZ |
\:') Enable 8-bit L match [o s&7] CEXn ! |
Comparator > > Q | Crossbar :—|X| Port I/O
ﬁ ’_> CLR Q
PCA Timebase ; PCAOL
Overflow
Figure 4. PCA Configuration in 8-Bit PWM Mode
4 ANO007-1.0 DEC00 © 2000 Cygnal Integrated Products. Inc.

http://www.cygnal.com
http://www.cygnal.com

?}g\ ANO007 - Implementing 16-Bit PWM Using the PCA

~

The key advantage of 8-bit PWM mode is that
no CPU intervention is required to maintain an
output waveform of a fixed duty cycle. In fact,
if the CIDL bit (PCAOMD.7) is set to ‘0’
(RESET state), the output waveform will be
maintained even if the CPU is in IDLE mode.

Changing the duty cycle is implemented by a
single 8-bit write to PCAOCPHn.

An example of 8-bit PWM mode is included in
the file ‘PWM8_1.c’ at the end of this note.

Additional notes on 8-bit PWM mode:

1. The output CEXn can be held low by clear-
ing the ECOMn bit (PCAOCPMn.6) in the
module configuration register. This allows
a 0% duty cycle waveform to be generated.
Normal PWM output can be resumed by
writing a ‘1’ to this bit OR by writing any
value to PCAOCPHn.

Write to
PCAOCPLNn

Reset

Write to
PCAOCPHN

B
O
>
o
(@]
Y
<
=

S 200 m«
o3> TT>»O

2. Setting the MATn and ECCFn bits
(PCAOCPMn.3 and PCAOCPMn.0 respec-
tively) to ‘1’ will cause an interrupt to be
generated on the falling edge of CEXn.

16-Bit PWM Using the PCA

To implement a PWM waveform with 16-bit
precision, we configure a PCA module in
High-Speed Output mode, as shown in
Figure 6. In this mode, the CEXn pin is tog-
gled, and an optional interrupt is generated,
each time a match occurs between the main
timer/counter register (PCAOH:PCAOL) and
the module’s capture/compare register
(PCAOCPHn:PCAOCPLn).

In the example code, the interrupt handler for
the PCA module is implemented in two states:
a rising-edge state and a falling-edge state,
depending on which edge on CEXn initiated

PCA Interrupt

PCAOCPLn PCAOCPHN

J U

Enable_
»

16-bit Comparator

/—L\

PCAOCN

C|C C|C
FIR

NEieYe)
- T0OO
[=uleXe)

clc
F|F
3|2

~
Match 0/00 T
r

I

PCA
Timebase

PCAOL PCAOH

TOGn
Toggle | = ——___ |

0 |
X —o/o% Crossbar :—|X| Port I/O
' |

Figure 6. PCA Configuration in High-Speed Output Mode

© 2000 Cygnal Integrated Products. Inc. ANO007-1.0 DEC00 5

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

V

the interrupt. Note that the actual CEXn pin is
decoded as the state variable.

During the rising-edge state, the module’s cap-
ture/compare register is updated with the com-
pare value for the next falling-edge (this value
is called PWM in the attached example code).
During the falling-edge state, the module’s
capture/compare register is loaded with the
compare value for the next rising-edge, which
is zero (0x0000). This is shown in Figure 7.
Note that the period of the PWM waveform is
65536 PCA clocks.

The duty cycle (in %) is given by:

dutycycle = PwM

55536 < 100

The minimum and maximum allowed duty
cycles are determined by the maximum time it
takes to update the compare value after CEXn
changes (which triggers the process interrupt).
In both the ‘C’ example code and the assembly
example code (‘pwmle_1.c’ and
‘pwml6_1.asm’ respectively), the minimum
value for PWM is 7 PCA clocks (28 SYSCLK
cycles in this case). This results in minimum
and maximum duty cycle values of 0.01 % and

99.99 % respectively. The resolution of the
duty cycle (in %) is:

S | B
resolution = 55536 x 100 0.0015

or about 15 ppm (parts per million).

The CPU overhead required to process these
interrupts is minimal. In the assembly exam-
ple, processing both edges takes a total of 41
SYSCLK cycles, not counting the interrupt
call and vector itself. Both edges must be pro-
cessed every 65,536 PCA clocks, or
65,536 * 4=262,144 SYSCLKs, if the PCA
clock is equal to SYSCLK / 4. CPU bandwidth
consumed (in %) is equal to (41/
262,144 * 100) = 0.015 %.

Also note that the CPU can be left in IDLE
mode, as is done in the examples, since the
PCA module interrupt will ‘wake up’ the core
when required for processing.

The duty cycle can be changed by a single 16-
bit write to the variable PWM in the examples.

CEXn

A

o

PCAOCPn PWM \>>< 0x0000
compare compare
match register match register
occurred; updated occurred; updated
interrupt interrupt
called called

Figure 7. Capture/Compare Register Loading for 16-Bit PWM

ANO007-1.0 DEC00 © 2000 Cygnal Integrated Products. Inc.

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

IV

n-Bit PWM Using the PCA

A generalized case of 16-bit PWM, we present
n-Bit PWM for applications requiring more
than 8-bits of precision but less than 16-bits of
precision. One motivation for adopting the n-
Bit approach is to achieve a higher output fre-
quency from the PWM than can be obtained in
the 16-bit implementation.

In this example (‘PWMn_1.c’), two 16-bit
variables are used: PWM_HIGH, which holds
the number of PCA clocks for the output
waveform to remain high, and PWM_LOW,
which correspondingly holds the number of
PCA clocks for the output waveform to remain
low. The period of the output waveform is
given by the sum of these two variables:

period = PWMHIGH + PWMLOW

The duty cycle (in %) is given by:

PWMHIGH

pwaiHIGH + pwaiLow < %

dutycycle =

The resolution of the duty cycle (in %) is:

1

PWMHIGH + PWMLOW>< 100

resolution =

Similar to the 16-bit PWM case, the interrupt
handler is implemented in two states, one for
the rising-edge and one for the falling-edge.
The primary difference is that in the 16-bit
case, a constant (PWM or zero) was loaded
into the PCA module’s compare registers. In
the n-Bit case, a constant (PWM_HIGH or
PWM_LOW) is added to the current value in
the module’s compare register. The addition
operation takes a few more cycles than loading
a constant, which restricts the minimum high

or low time of the output waveform a little
more than the corresponding 16-bit solution.

Note: the n-Bit PWM solution can be used to
generate a waveform of an arbitrary frequency
by programming the appropriate high and low
values into PWM_HIGH and PWM_LOW.

© 2000 Cygnal Integrated Products, Inc.

ANO007-1.0 DEC00 7

http://www.cygnal.com
http://www.cygnal.com

(.\ ANO007 - Implementing 16-Bit PWM Using the PCA

Software Examples

// AUTH: BW

// Target: C8051F000, FO001, FOO2, FO005, FOO6, FO010, FO011l, or FO12
// Tool chain: KEIL C51

//
// Description:
// Example source code for implementing 8-bit PWM.
// The PCA is configured in 8-bit PWM mode using
// SYSCLK/4 as its time base. <PWM> holds the number of
// PCA cycles for the output waveform to remain low per 256-
// count period. The waveform is high for (256 - PWM) cycles.
// The duty cycle of the output is equal to (256 - PWM) / 256.
//
// Because the 8-bit PWM is handled completely in hardware,
// no CPU cycles are expended in maintaining a fixed duty
// cycle. Altering the duty cycle requires a single 8-bit
// write to the high byte of the module’s compare register,
// PCAOCPOH, in this example.
//
// Achievable duty cycle ranges are 0.38% (PCAOCPOH = Oxff)
// to 100% (PCAOCPOH = 0x00).
//
[/ == oo
// Includes
[== oo
#include <c8051£f000.h> // SFR declarations
[=== e e oo
// Global CONSTANTS
[=== e e e oo
#define PWM 0x80 // Number of PCA clocks for
// waveform to be low
// duty cycle = (256 - PWM) / 256
// Note: this is an 8-bit wvalue
/] = e
// Function PROTOTYPES
/== e e e

void main (void) ;

8 ANO007-1.0 DEC00 © 2000 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

(.\ ANO007 - Implementing 16-Bit PWM Using the PCA
>

void main (void) {

WDTCN = Oxde; // Disable watchdog timer

WDTCN = Oxad;

OSCICN = 0x07; // set SYSCLK to 16MHz,
// internal osc.

XBRO = 0x08; // enable CEX0 at P0.0

XBR2 = 0x40; // enable crossbar and weak
// pull-ups

PRTOCF = 0x01; // set P0.0 output state to
// push-pull

PRTI1CF = 0x20; // set P1l.6 output to

// push-pull (LED)

// configure the PCA

PCAOMD = 0x02; // disable CF interrupt

// PCA time base = SYSCLK / 4
PCAOCPLO = PWM; // initialize PCA PWM value
PCAOCPHO = PWM;
PCAOCPMO = 0x42; // CCMO in 8-bit PWM mode
PCAOCN = 0x40; // enable PCA counter

while (1) {
PCON |= 0x01; // set IDLE mode
}

}// *** END OF FILE **%*

PWM16_1.c

// AUTH: BW

// Target: C8051F000, F001l, F002, F005, F006, F010, FOll, or FO012
// Tool chain: KEIL C51

//

// Description:

// Example source code for implementing 16-bit PWM.

// The PCA is configured in high speed output mode using
// SYSCLK/4 as its time base. <PWM> holds the number of
// PCA cycles for the output waveform to remain high. The
// waveform is low for (65536 - PWM) cycles. The duty

// cycle of the output is equal to PWM / 65536.

//

// Due to interrupt service times, there are minimum and
// maximum values for PWM, and therefore the duty cycle,
// depending on interrupt service times. On the Keil C51
// compiler (Eval version), the minimum PWM value is 7

// PCA clocks; the maximum value is 65530. This equates
// to a minimum duty cycle of 0.01% and a maximum duty

// cycle of 99.99%. This assumes a PCA time base of SYSCLK/4

© 2000 Cygnal Integrated Products, Inc. ANO007-1.0 DEC00

http://www.cygnal.com
http://www.cygnal.com

(.\ ANO007 - Implementing 16-Bit PWM Using the PCA

// and no other interrupts being serviced.
//
/]~
// Includes
/== s
#include <c8051f000.h> // SFR declarations
e
// Global CONSTANTS
/== s
#define PWM_ STARTO0x4000 // starting value for the PWM

// high time
sbit PWM _OUT = P0"0; // define PWM output port pin
/== s
// Function PROTOTYPES
/= oo
void main (void) ;
void PCA_ISR (void) ; // PCA Interrupt Service Routine
/= oo
// Global VARIABLES
=== e e e e e s
unsigned PWM = PWM_START; // Number of PCA clocks for

// waveform to be high
// duty cycle = PWM / 65536
// Note: this is a 16-bit value

void main (void)

WDTCN = Oxde; // Disable watchdog timer

WDTCN = Oxad;

OSCICN = 0x07; // set SYSCLK to 16MHz,
// internal osc.

XBRO = 0x08; // enable CEX0 at P0.0

XBR2 = 0x40; // enable crossbar and weak
// pull-ups

PRTOCF = 0x01; // set P0.0O output state to
// push-pull

PRTICF = 0x20; // set Pl.6 output to

// push-pull (LED)

// configure the PCA
PCAOMD = 0x02; // disable CF interrupt
// PCA time base = SYSCLK / 4

10 ANO007-1.0 DEC00 © 2000 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

(.\ ANO007 - Implementing 16-Bit PWM Using the PCA
>

PCAOCPLO = (Oxff & PWM) ; // initialize PCA compare value
PCAOCPHO = (0xff & (PWM >> 8));

PCAOCPMO = 0x4d; // CCMO in High Speed output mode
EIEl |= 0x08; // enable PCA interrupt

EA = 1; // Enable global interrupts
PCAOCN = 0x40; // enable PCA counter

while (1) ({
PCON |= 0x01; // set IDLE mode

This ISR is called when the PCA CCMO obtains a match

PWM_OUT is the CEX0O port pin that holds the state of the current edge:
1 = rising edge; 0 = falling edge

On the rising edge, the compare registers are loaded with PWM HIGH.

On the falling edge, the compare registers are loaded with zero.

void PCA ISR (void) interrupt 9

{

}
//

if (ccro)

CCFO0 = 0; // clear compare indicator

if (PwM_OUT) // process rising edge
PCAOCPLO = (Oxff & PWM) ; // set next match to PWM
PCAOCPHO = (Oxff & (PWM >> 8));

} else { // process falling edge
PCAOCPLO = 0; // set next match to zero

PCAOCPHO = O;

}

} else if (CCF1) { // handle other PCA interrupt
CCFl = 0; // sources
} else if (
CCF2 0
} else if (
CCF3 = 0;
(
0
(

} else if
CCF4 =
} else if
CF = 0;
}

*%% END OF FILE ***

PWM16_1.asm

© 2000 Cygnal Integrated Products. Inc. AN007-1.0 DECO00 11

http://www.cygnal.com
http://www.cygnal.com

(.\ ANO007 - Implementing 16-Bit PWM Using the PCA
>

; CYGNAL INTEGRATED PRODUCTS, INC.

; FILE NAME : pwmlé_ 1.ASM
; TARGET MCU: C8051F000, FO001, FO02, FO005, FO06, FO010, FO011l, or FO12
; DESCRIPTION: Example source code for implementing 16-bit PWM.

; The PCA is configured in high speed output mode using

; SYSCLK/4 as its time base. PWM holds the number of

; PCA cycles for the output waveform to remain high. The
; waveform is low for (65536 - PWM) cycles. The duty

; cycle of the output is equal to PWM / 65536.

; Due to interrupt service times, the minimum value for
; PWM is 7 PCA cycles, and the maximum value is 65529.

; This equates to a minimum duty cycle of 0.01068% and a
; maximum duty cycle of 99.9893%.

; If the PCA time base is changed to SYSCLK / 12, the min and
; max values for PWM change to 3 and 65533 respectively,

; for min and max duty cycles of 0.0046% and 99.9954%

; respectively.

; Processing the rising edge interrupt handler takes 18 cycles.
; Processing the falling edge interrupt handler takes 19 cycles.

; One interrupt handler is called for each edge, and there are
; 2 edges for every 65536 PCA clocks. Using SYSCLK / 4 as the
; PCA time base, that means that 37 cycles are consumed for

; edge maintenance for every (65536 * 4) = 262,144 SYSCLK

; cycles, not counting vectoring the interrupt.

; CPU utilization is (37 / 262,144)*100% = 0.0141%

; Using SYSCLK / 12 as the PCA timebase, 37 cycles are

i consumed for edge maintenance for every (65536 * 12) =

; 786,432 SYSCLK cycles. CPU utilization is (37 / 786,432)
= 0.0047%.

; The period of the waveform is 65536 PCA clocks. Using

; SYSCLK / 4 as the PCA time base, the period is 262,144 SYSCLK
; cycles. TUsing the default internal oscillator at 2MHz, the

; period is 131ms (7.6Hz). Using the 16MHz internal

; oscillator (as in this example), the period is 16.4us

i (61 Hz) .

; Using SYSCLK / 12 as the PCA time base, the period is

; 65536 * 12 = 786,432 SYSCLK cycles. Using the default

; internal oscillator at 2MHz, the period is 393ms (2.5Hz).
; Using the 16MHz internal oscillator, the period is 49.2ms
; (20Hz) .

; In this example, the output is routed to P0.0, which is
; also labeled ‘PWM_OUT’.

; EQUATES

12 ANO007-1.0 DEC00 © 2000 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

SMOD8F000
PWM EQU 32768
PWM_OUT EQU P0.0O

Number of PCA clocks for waveform

to be high
duty cycle = PWM / 65536
max = 65529 (99.9893% duty cycle)
min = 7 (0.01068% duty cycle)

Note: this is a 16-bit constant

define PWM output port pin

I

PCA Interrupt Service Routine

CSEG
org 00h
ljmp Main
org 04bh
ljmp PCA_ISR
; MAIN PROGRAM CODE
org 0b3h
Main:

; Disable watchdog timer
mov WDTCN, #0deh
mov WDTCN, #0adh

7

7

start at end of interrupt handler
space

; Enable the Internal Oscillator at 16 MHz

mov OSCICN, #07h

; Enable the Crossbar, weak pull-ups

mov XBRO, #08h
mov XBR2, #40h
orl PRTOCF, #01h

; Configure the PCA

mov PCAOMD, #02h

mov PCAOCPLO, #LOW (PWM)
mov PCAOCPHO, #HIGH (PWM)
mov PCAOCPMO, #4dh

; Enable interrupts

orl EIE1l, #08h
setb EA

mov PCAOCN, #40h
jmp $

enabled

I

route CEXO0 to P0.O

Configure Port 0.0 as Push-Pull

disable cf interrupt,
PCA time base = SYSCLK/4
initialize the PCA compare value

CCMO in High Speed output mode
Enable PCA interrupt
Enable global interrupts

enable PCA counter

© 2000 Cygnal Integrated Products, Inc.

ANO007-1.0 DEC00

13

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

; CCFO0 Interrupt Vector

; This ISR is called when the PCA CCMO obtains a match
; PWM OUT is the CEXO port pin that holds the state of the current edge:

;1 = rising edge; 0 =
; On the rising edge,

; On the falling edge,

falling edge
the compare registers are loaded with PWM HIGH.
the compare registers are loaded with zero.

; handle CCF0 comparison
; stub routines

; handle rising edge

; handle falling edge

PCA_ISR:
jbc CCFO0, CCFO_HNDL
jbc CCF1, PCA_STUB
jbe CCF2, PCA_STUB
jbc CCF3, PCA_STUB
jbe CCF4, PCA_STUB
jbc CF, PCA_STUB
PCA_STUB:
PCA ISR END:
reti
CCFO_HNDL:
jnb PWM_OUT, CCFO_FALL
CCFO_RISE:
mov PCAQOCPLO, #LOW (PWM)
mov PCAQOCPHO, #HIGH (PWM)
reti
CCFO_FALL:
mov PCAOCPLO, #00
mov PCAOCPHO, #00
reti
; rising edge takes 4+3+11 = 18 cycles
; falling edge takes 4+4+11 = 19 cycles
; END
END
; *** END OF FILE ***
PWMn_1.c
/e
// PWMn_1.c
=
//
// AUTH: BW
//
// Target: C8051F000, F001l, F002, F005, F006, FO10,

FO11,

or F012

14

ANO007-1.0 DEC00

© 2000 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

(.\ ANO007 - Implementing 16-Bit PWM Using the PCA
>

// Tool chain: KEIL C51

// Description:

// Example source code for implementing an n-bit PWM.

// The PCA is configured in high speed output mode using

// SYSCLK/4 as its time base. <PWM_HIGH> holds the number of
// PCA cycles for the output waveform to remain high.

// <PWM_LOW> holds the number of PCA cycles for the output
// waveform to remain low. The duty cycle of the output

// is equal to PWM_HIGH / (PWM _HIGH + PWM_LOW) .

//

// Due to interrupt service times, there are minimum and

// maximum values for PWM HIGH and PWM_LOW, and therefore

// the duty cycle, depending on interrupt service times.

// Regardless ofthe efficiency of the compiler, duty

// cycles betweenl% and 99% should be very easy to achieve.
//

// With the eval version of the Keil compiler, the minimum
// high and low counts are 20 PCA cycles each (max frequency
// is about 100kHz w/ 16MHz internal SYSCLK). This assumes
// no other interrupts being serviced, and PCA time base is
// SYSCLK / 4.

//

/] = m oo oo oo

#define PWM_START 0x8000

A

sbit PWM_OUT = PO"0;

void main (void) ;
void PCA ISR (void);

// Global VARIABLES
unsigned PWM_HIGH = PWM_ START;
unsigned PWM_LOW = ~PWM_START;

// MAIN Routine

starting value for the
PWM HIGH time and PWM_LOW time
define PWM output port pin

Number of PCA clocks for
waveform to be high
Number of PCA clocks for
waveform to be low

duty cycle =

PWM_HIGH / (PWM _HIGH + PWM_ LOW)

© 2000 Cygnal Integrated Products, Inc.

ANO007-1.0 DEC00

15

http://www.cygnal.com
http://www.cygnal.com

vO

void PCA_ISR (void)

{

ANO007 - Implementing 16-Bit PWM Using the PCA

id main (void) {

WDTCN = Oxde;
WDTCN Oxad;

OSCICN = 0x07;

XBRO 0x08;
XBR2 = 0x40;

PRTOCF

0x01;

PRT1CF = 0x20;

// configure the PCA
PCAOMD = 0x02;

PCAOCPLO = (0xff & PWM_HIGH) ;
PCAOCPHO = (Oxff & (PWM HIGH >> 8));
PCAOCPMO = 0x4d;

EIE1l |= 0x08;

EA = 1;

PCAOCN = 0x40;

while (1) {
PCON |= 0x01;

Disable watchdog timer
set SYSCLK to 16MHz,
internal osc.

enable CEXO0 at P0.0
enable crossbar and weak
pull-ups

set P0.0 output mode to
push-pull

set P1.6 output to
push-pull (LED)

disable CF interrupt

PCA time base = SYSCLK / 4
initialize PCA compare value
CCMO in High Speed output mode
enable PCA interrupt

Enable global interrupts

enable PCA counter

set IDLE mode

This ISR is called when the PCA CCMO obtains a match
PWM _OUT is the CEX0 port pin that holds the state of the current edge:

1 = rising edge; 0 = falling edge
On the rising edge,
next falling edge.
On the falling edge,
next rising edge.

interrupt 9
unsigned temp;
if (ccro)

CCFO = 0;
if (PwWM_OUT) {

//

//
//

the compare registers are updated to trigger for the

the compare registers are updated to trigger for the

holding value for 16-bit math

clear compare indicator
process rising edge

16

ANO007-1.0 DEC00

© 2000 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

ANO007 - Implementing 16-Bit PWM Using the PCA

C\

// update compare match for next falling edge

temp = (PCAOCPHO << 8)
temp += PWM HIGH;

PCAOCPLO
PCAOCPHO

} else {

// update compare match for next rising

(0xff & temp) ;

(oxff

&

(temp >> 8));

| PCAOCPLO;

//
//

//

//

get current compare value
add appropriate offset

replace compare value

process falling edge

edge

temp = (PCAOCPHO << 8) | PCAOCPLO; // get current compare value
temp += PWM_LOW; // add appropriate offset
PCAOCPLO = (0xff & temp) ; // replace compare value
PCAOCPHO = (0xff & (temp >> 8));
}
} else if (CCF1) // handle other PCA interrupt
CCF1 = 0; // sources
} else if (CCF2)
CCF2 = 0;
} else if (CCF3)
CCF3 = 0;
} else if (CCF4)
CCF4 = O;
} else if (CF) {
CF = 0;
}
}
// *** END OF FILE ***
© 2000 Cygnal Integrated Products. Inc. AN007-1.0 DEC00 17

http://www.cygnal.com
http://www.cygnal.com

	Introduction
	Background
	Figure 1. Example PWM Waveform

	Implementation
	An Introduction to the PCA
	Figure 2. PCA Block Diagram

	Selecting the PCA Time Base
	Figure 3. PCA Counter/Timer Block Diagram

	8-Bit PWM Using the PCA
	Figure 4. PCA Configuration in 8-Bit PWM Mode
	Figure 5. Output Waveform in 8-Bit PWM Mode

	16-Bit PWM Using the PCA
	Figure 6. PCA Configuration in High-Speed Output Mode
	Figure 7. Capture/Compare Register Loading for 16-Bit PWM

	n-Bit PWM Using the PCA

	Software Examples
	PWM8_1.c
	PWM16_1.c
	PWM16_1.asm
	PWMn_1.c

