

NTC THERMISTORS: TYPE B05/07/10/14

GLASS COATED BEAD THERMISTOR

DESCRIPTION:

Small glass coated bead thermistors on fine diameter platinum alloy lead-wires.

FEATURES:

- Extremely small sizes
- Very fast thermal response times
- Low heat capacity and high power sensitivity
- Special thin glass coatings provide hermetic seal.
- Suitable for self-heated applications such as: gas chromatography, thermal conductivity analysis or gas flow measurement.
- Normal operating/storage temperatures range from -80°C to:

105°C for Material system E0 200°C for Material systems A1 through A4 300°C for Material systems A5 through D17

- Unaffected by severe environmental exposures, including nuclear radiation.
- Intermittent operation to 600°C is permissible, however, stability will be degraded.

OPTIONS:

- Non-standard resistance tolerances
- Non-standard resistance values
- Reference temperature(s) other than 25°C specify
- Mounting in special housings or enclosures
- Longer continuous leads
- Welded or soldered extension leads specify lead material, diameter, length and insulation, if any.
- Solderable or weldable/solderable leads
- Calibration specify temperature(s)
- Interchangeable pairs or sets, R-vs-T curve matching specify temperature range(s) and tolerance(s)
- Special aging and conditioning for high reliability applications

CODING:

The code number to be ordered may be specified as follows:

- **NOTE 1:** Special tolerances are available upon request. Consult factory for special resistance tolerances, non-standard resistances and/or non-standard temperatures.
- NOTE 2: The zero-power resistance at 25°C, expressed in Ohms, is identified by a three digit code number. The first two digits represent significant figures, and the last digit specifies the number of zeros to follow. Example: 10k Ohms= "103". The standard resistance values are from the 24-Value series decade as specified in Military Standard MS90178.

DIMENSIONS:

TABLE A: THERMAL AND ELECTRICAL PROPERTIES:

The following table lists the THERMAL and ELECTRICAL properties for all SMALL GLASS COATED THERMISTORS. All definitions and test methods are per MIL-PRF-23648.

Max. Diameter: Max. Length:	THERMISTOR TYPE:				B05		В07		B10		B14	
Nom. Diameter: Max. Diameter: Max. Diameter: Max. Diameter: Max. Diameter: Max. Length:	RODY DIMENS											
Nom. Diameter: Max. Length: Lead Material: Nom. Diameter: Minimum Lead Length: Lead Material: Nom. Diameter: Minimum Alloy Platinum Alloy Platinum Alloy Platinum Alloy Platinum Alloy Nom. Diameter: Mr. adjacent "p" opposite				.005"	(.13 mm)	.007"	(.18 mm)	.010"	(.25 mm)	.014"	(.36 mm)	
Nom. Diameter: Nom					. ,		,			1	(.41 mm)	
Nom. Diameter: Minimum Lead Length: Lead Material: Available Cuts: "J" adj. (stubs) adjacent "F" adjacent				1		1	,				(.76 mm)	
Nom. Diameter: Minimum Lead Length: Lead Material: Lead Material: Lead Material: Available Cuts: "J" adj. (stubs) "J					(10011111)		(,		(,		(
Minimum Lead Length: Lead Material: Platinum Alloy P	lead-wires:											
Minimum Lead Length: Lead Material: Platinum Alloy P		.0007"	(.02 mm)	.0007"	(.02 mm)	.0011"	(.03 mm)	.0011"	(.03 mm)			
Available Cuts: "J" adj. (stubs) "J" adj. (stubs) "J" adj. (stubs) "K" adjacent "P" opposite opposit		.312"	(7.9 mm)	.312"	(7.9 mm)	.312"	(7.9 mm)	.312"	(7.9 mm)			
MATERIAL SYSTEM:			Lead Material:	Platinun	n Alloy	Platinun	n Alloy	Platinum Alloy		Platinum Alloy		
MATERIAL SYSTEM:												
MATERIAL SYSTEM: CODE R-vs-T CURVE ETTER CURVE EATIO FRATIO Resistance Range @ 25°C RATIO Resistance Range @ 25°C RATIO Resistance Range @ 25°C Range @		Available Cuts:				"J"	adj. (stubs)	"J"	adj. (stubs)	"J"	adj. (stubs)	
Nominal Resistance Range @ 25°C		"K"	adjacent	"K"	adjacent	"K"	adjacent	"K"	adjacent			
CODE LETTER R-vs-T CURVE 25/125 RATIO Resistance Range @ 25°C Resis						"P"	opposite	"P"	opposite	"P"	opposite	
CODE LETTER R-vs-T CURVE 25/125 RATIO Resistance Range @ 25°C Resis				_				_				
$ \begin{array}{ c c c c c } \hline \textbf{ETTER} & \textbf{CURVE} & \textbf{RATIO} \\ \hline \textbf{E} & 0 & 5.0 \\ \hline \textbf{A} & 1 & 11.8 \\ \hline \textbf{A} & 2 & 12.5 \\ \hline \textbf{A} & 3 & 14.0 \\ \hline \textbf{A} & 4 & 16.9 \\ \hline \textbf{A} & 5 & 19.8 \\ \hline \textbf{B} & 8 & 29.4 \\ \hline \textbf{B} & 10 & 32.3 \\ \hline \textbf{B} & 11 & 35.7 \\ \hline \textbf{B} & 13 & 45.0 \\ \hline \textbf{D} & 16 & 75.6 \\ \hline \textbf{D} & 16 & 75.6 \\ \hline \textbf{D} & 16 & 75.6 \\ \hline \textbf{D} & 17 & 81.0 \\ \hline \end{array} \right $												
E 0 5.0 — <th></th> <th></th> <th></th> <th></th> <th colspan="2"></th> <th colspan="2">Resistance</th> <th colspan="2"></th>							Resistance					
A 1 11.8 1.0 kΩ - 1.5 kΩ 1.5 kΩ 1.5 kΩ - 3.6 kΩ 3.0 Ω - 680 Ω 680 Ω - 1.6 kΩ Ω - 1.6 kΩ Ω 1.6 kΩ - 1.6 kΩ Ω - 1.6 kΩ Ω 1.6 kΩ - 1.6 kΩ Ω 1.6 kΩ - 1.6 kΩ Ω 1.6 kΩ Ω - 1.6 kΩ Ω	LETTER	CURVE	RATIO	Range	e @ 25°C	Range	@ 25°C	Range	e @ 25°C	Range	@ 25°C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Е	0	5.0		_		_		_		_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	1	11.8	1.0 kΩ	$-$ 1.5 k Ω	1.0 kΩ	$-$ 1.5 k Ω	300 Ω	- 680 Ω	300 🖸	Ω – 680 Ω	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	2	12.5	1.5 kΩ	$-$ 3.6 k Ω	1.5 kΩ	$-$ 3.6 k Ω	680 Ω	$-$ 1.6 k Ω	680 🖸	Ω – 1.6 k Ω	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	3	14.0	3.6 kΩ	$-$ 7.5 k Ω	3.6 kΩ	$-$ 7.5 k Ω	1.6 kΩ	$-$ 3.6 k Ω	1.6 kg	Ω – 3.6 k Ω	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	4	16.9	7.5 kΩ	$-$ 15 k Ω	7.5 kΩ	$-$ 15 k Ω	3.6 kΩ	$-$ 6.8 k Ω	3.6 kΩ	Ω – 6.8 k Ω	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	5	19.8	15 kΩ	$-$ 51 k Ω	15 kΩ	$-$ 51 k Ω	6.8 kΩ	$-27~\mathrm{k}\Omega$	6.8 kg	Ω – 27 k Ω	
B 8 29.4 150 kΩ - 270 kΩ 150 kΩ - 270 kΩ 75 kΩ - 130 kΩ 75 kΩ - 130 kΩ 75 kΩ - 130 kΩ 130 kΩ - 240 kΩ 140 kΩ - 160 kΩ 140 kΩ -	Α	6	22.1		_		_		_		_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	7	22.7	51 kΩ	$-$ 150 k Ω	51 kΩ	$-$ 150 k Ω	27 kΩ	$-75~\mathrm{k}\Omega$	27 kΩ	Ω – 75 k Ω	
B 10 32.3 $470 \text{ kΩ} - 750 \text{ kΩ}$ $470 \text{ kΩ} - 750 \text{ kΩ}$ $470 \text{ kΩ} - 750 \text{ kΩ}$ $240 \text{ kΩ} - 360 \text{ kΩ}$ $240 \text{ kΩ} - 360 \text{ kΩ}$ $360 \text{ kΩ} - 360 \text{ kΩ}$	В	8	29.4	150 kΩ	$-$ 270 k Ω	150 kΩ	$-$ 270 k Ω	75 kΩ	$-$ 130 k Ω	75 kΩ	Ω – 130 k Ω	
B 11 35.7 750 kΩ - 1.6 MΩ 1.6 MΩ - 2.7 MΩ 1.6 MΩ - 1.0 MΩ 1.3 MΩ - 3.3 MΩ 1.3 MΩ - 6.8 MΩ 1.3 MΩ - 3.3 MΩ 1.3 MΩ - 6.8 MΩ 1.	В	9	30.8	270 kΩ	$-$ 470 k Ω	270 kΩ	$-$ 470 k Ω	130 kΩ	$-$ 240 k Ω	130 kg	Ω – 240 k Ω	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	В	10		470 kΩ	$-$ 750 k Ω	470 kΩ	$-$ 750 k Ω	240 kΩ	$-$ 360 k Ω	240 kΩ	Ω – 360 k Ω	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	В		35.7	750 kΩ	$-$ 1.6 M Ω	750 kΩ	$-$ 1.6 M Ω	360 kΩ	$-$ 820 k Ω	360 kΩ	Ω – 820 k Ω	
B 14 48.1 6.8 MΩ – 10 MΩ 6.8 MΩ 6.8 MΩ 6.8 MΩ 6.8 MΩ – 10 MΩ 6.8 MΩ						1.6 MΩ	$-$ 2.7 M Ω	820 kΩ	$-$ 1.3 M Ω	820 kΩ $-$ 1.3 MΩ		
B 15 56.5 — — — — — — — — — — — — — — — — — — —						1				$1.3 \text{ M}\Omega - 3.3 \text{ M}\Omega$		
D 16 75.6 — — — — — — — — — — — — — — — — — — —				$ 6.8 \text{ M}\Omega - 10 \text{ M}\Omega $		6.8 MΩ	$6.8 \text{ M}\Omega - 10 \text{ M}\Omega$				$3.3~\mathrm{M}\Omega$ $-6.8~\mathrm{M}\Omega$	
D 17 81.0 — — — — — — — — — — — — — — — — — — —					_		_	$6.8 \text{ M}\Omega - 10 \text{ M}\Omega$		$6.8 \text{ M}\Omega - 10 \text{ M}\Omega$		
THERMAL TIME CONSTANT: Still Air at 25°C: Plunge into Water: 0.12 sec 0.23 sec 0.5 sec 1.0 sec 15 msec							_		_		_	
Still Air at 25°C: Plunge into Water: 0.12 sec 0.23 sec 0.5 sec 1.0 sec 15 msec	D	17	81.0		_		_		_		_	
Still Air at 25°C: Plunge into Water: 0.12 sec 0.23 sec 0.5 sec 1.0 sec 15 msec	THEDMAI TIM	E CONSTANT.										
Plunge into Water: 5.0 msec 7.0 msec 10 msec 15 msec	INERWAL IIIVII		Still Air at 25°C.	0.1	2 sec	0.3)3 sec	_	5 sec	1	0.000	
				1								
DISSIPATION CONSTANT:		i-iu	ngo into water.] 3.0	111300	'.0	111300	10	111300		111300	
	DISSIPATION (CONSTANT:										
Still Air at 25°C: .045 mW/°C .06 mW/°C .09 mW/°C .10 mw/°C			Still Air at 25°C:	.045	mW/°C	.06	mW/°C	.09	mW/°C	.10) mw/°C	
Still Water at 25°C: .23 mW/°C .30 mW/°C .45 mW/°C .50 mW/°C		Still Water at 25°C:										
POWER RATING: (in air)	POWER RATIN	` ,										
Maximum Power Rating: .006 Watts .008 Watts .010 Watts .014 Watts		1						.014 Watts				
100% Max. Power to: 25°C 25°C 25°C 25°C		1										
Derated to 0% at: 200°C 200°C 200°C 200°C		De	rated to 0% at:	20	O0°C	20	00°C	200°C		2	200°C	

RESISTANCE -VS- TEMPERATURE CHARACTERISTICS: The nominal resistance range for the zero-power resistance at 25°C is shown for each THERMISTOR Type and each available Material System. Each Material System is denoted by an ordering Code Letter, a referenced Curve number and the nominal 25°C/125°C resistance ratio.

TABLE B: STANDARD TOLERANCES:

Tolerance Code Letter	F	G	J	K	L	М	N	Р	Q	R	S
± % Tolerance at 25°C	1	2	5	10	15	20	25	30	40	50	Non-standard – consult factory

Fax +1 (732) 287 8847