
Smart Lowside Power Switch

HITFET® BSP 75N

Data Sheet V1.0

Features

- Logic Level Input
- Input protection (ESD)
- Thermal shutdown with auto restart
- Overload protection
- Short circuit protection
- Overvoltage protection
- Current limitation

Application

- All kinds of resistive, inductive and capacitive loads in switching applications
- μC compatible power switch for 12 V and 24 V DC applications and for 42 Volt Powernet
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET in Smart Power Technology. Fully protected by embedded protection functions.

Туре	Ordering Code	Package
HITFET® BSP 75N	Q67060-S7215	P-SOT223-4

Product Summary

Parameter	Symbol	Value	Unit
Continuous drain source voltage	V_{DS}	60	V
On-state resistance	$R_{DS(ON)}$	550	mΩ
Current limitation	$I_{D(lim)}$	1	А
Nominal load current	$I_{D(Nom)}$	0.7	А
Clamping energy	E_{AS}	550	mJ

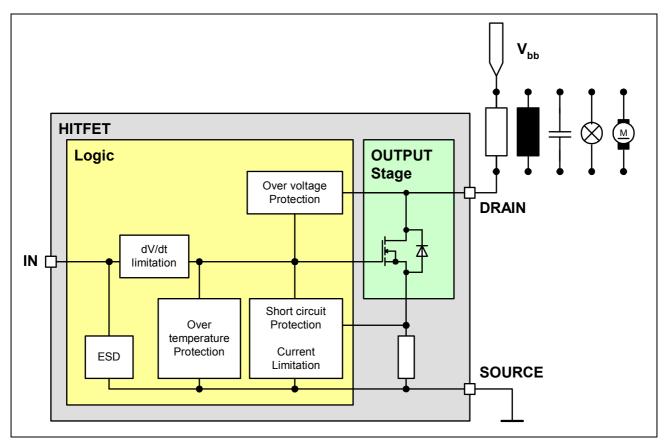


Figure 1 Block Diagram

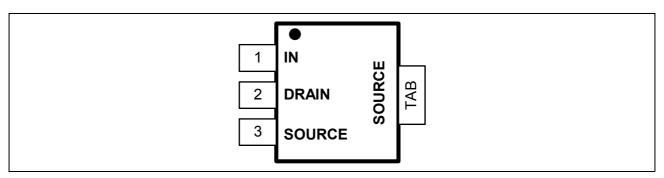


Figure 2 Pin Configuration

Pin Definitions and Functions

Pin No.	Symbol	Function
1	IN	Input; activates output and supplies internal logic
2	DRAIN	Output to the load
3 + TAB	SOURCE	Ground; pin3 and TAB are internally connected

Data Sheet V1.0 2 2003-01-10

Circuit Description

The BSP 75N is a monolithic power switch in Smart Power Technology (SPT) with a logic level input, an open drain DMOS output stage and integrated protection functions. It is designed for all kind of resistive and inductive loads (relays, solenoid) in automotive and industrial applications.

Protection Functions

- Over voltage protection: An internal clamp limits the output voltage at $V_{\rm DS(AZ)}$ (min. 60V) when inductive loads are switched off.
- Current limitation: By means of an internal current measurement the drain current is limited at I_{D(lim)} (1.4 1.5 A typ.). If the current limitation is active the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. This operation leads to an increasing junction temperature until the over temperature threshold is reached.
- Over temperature and short circuit protection: This protection is based on sensing the chip temperature. The location of the sensor ensures a fast and accurate junction temperature detection. Over temperature shutdown occurs at minimum 150 °C. A hysteresis of typ. 10 K enables an automatic restart by cooling.

The device is ESD protected according Human Body Model (4 kV) and load dump protected (see Maximum Ratings).

Data Sheet V1.0 3 2003-01-10

Absolute Maximum Ratings

 $T_{\rm i}$ = 25 °C, unless otherwise specified

Parameter	Symbol	Values	Unit	Remarks
Continuous drain source voltage 1)	V_{DS}	60	V	_
Drain source voltage for short circuit protection	V_{DS}	36	V	_
Continuous input voltage	V_{IN}	-0.2 +10	V	_
Peak input voltage	V_{IN}	-0.2 +20	V	_
Continuous Input Current $-0.2\text{V} \leq V_{\text{IN}} \leq 10\text{V}$ $V_{\text{IN}} < -0.2\text{V}$ or $V_{\text{IN}} > 10\text{V}$	I_{IN}	no limit I _{IN} ≤ 2mA	mA	_
Operating temperature range Storage temperature range	$T_{ m j} \ T_{ m stg}$	-40 +150 -55 +150		_
Power dissipation (DC)	P_{tot}	1.8	W	_
Unclamped single pulse inductive energy	E_{AS}	550	mJ	$I_{\rm D(ISO)} = 0.7 \text{ A};$ $V_{\rm bb} = 32 \text{V}$
Load dump protection ²⁾ $IN = low or high (8 V); R_{L} = 50 \Omega$ $IN = high (8 V); R_{L} = 22 \Omega$	$V_{\sf LoadDump}$	80 47	V	$V_{\rm LoadDump} = V_{\rm P} + V_{\rm S};$ $V_{\rm P} = 13.5 \text{ V}$ $R_{\rm I}^{(3)} = 2 \Omega;$ $t_{\rm d} = 400 \text{ ms};$
Electrostatic discharge voltage (Human Body Model) according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1 - 1993	V_{ESD}	4000	V	_
DIN humidity category, DIN 40 040	_	Е	_	_
IEC climatic category, DIN IEC 68-1	_	40/150/56	_	_

Thermal Resistance

Junction soldering point	R_{thJS}	≤ 10	K/W –
Junction - ambient ⁴⁾	R_{thJA}	≤ 70	K/W –

¹⁾ See also Figure 7 and Figure 10.

Data Sheet V1.0 4 2003-01-10

 $^{^{2)}}$ $V_{\rm LoadDump}$ is setup without DUT connected to the generator per ISO 7637-1 and DIN 40 839. See also page 7.

 $^{^{3)}}$ $R_{\rm I}$ = internal resistance of the load dump test pulse generator LD200.

⁴⁾ Device on epoxy pcb 40 mm \times 40 mm \times 1.5 mm with 6 cm² copper area for pin 4 connection.

Electrical Characteristics

 $T_{\rm j}$ = 25 °C, unless otherwise specified

Parameter	Sym-	Limit Values			Unit	Test Conditions
	bol	min.	typ.	max.		

Static Characteristics

Drain source clamp voltage	$V_{\mathrm{DS(AZ)}}$	60	_	75	V	$I_{\rm D}$ = 10 mA, $T_{\rm j}$ = -40 +150 °C
Off state drain current	I_{DSS}	_	_	5	μΑ	$V_{\rm IN} = 0 \text{ V},$ $V_{\rm DS} = 32 \text{ V},$ $T_{\rm j} = -40 \dots +150 \text{ °C}$
Input threshold voltage	$V_{IN(th)}$	1	1.8	2.5	V	$I_{\rm D}$ = 10 mA
Input current: normal operation, $I_{\rm D} < I_{\rm D(lim)}$: current limitation mode, $I_{\rm D} = I_{\rm D(lim)}$: After thermal shutdown, $I_{\rm D} = 0$ A:	$I_{IN(1)}$	- - 1000	100 250 1500	200 400 2000	μΑ	V _{IN} = 5 V
On-state resistance $T_{\rm j}$ = 25 °C $T_{\rm j}$ = 150 °C	$R_{DS(on)}$	_ _	490 850	675 1350	mΩ	$I_{\rm D}$ = 0.7 A, $V_{\rm IN}$ = 5 V
On-state resistance $T_{\rm j}$ = 25 °C $T_{\rm j}$ = 150 °C	$R_{\mathrm{DS(on)}}$	_ _	430 750	550 1000	mΩ	$I_{\rm D} = 0.7 \text{ A},$ $V_{\rm IN} = 10 \text{ V}$
Nominal load current	$I_{D(Nom)}$	0.7	_	_	Α	$V_{\rm BB}$ = 12 V, $V_{\rm DS}$ = 0.5 V, $T_{\rm S}$ = 85 °C, $T_{\rm j}$ < 150 °C
Current limit	$I_{ m D(lim)}$	1	1.5	1.9	Α	$\begin{split} V_{\rm IN} &= 10 \text{ V}, \\ V_{\rm DS} &= 12 \text{ V} \end{split}$

Dynamic Characteristics 1)

Turn-on time	V_{IN} to 90% I_{D} :	t_{on}	_	10	20	μs	$R_{L} = 22 \ \Omega,$
							$V_{IN} = 0 \text{ to } 10 \text{ V},$
							$\begin{split} R_{\rm L} &= 22~\Omega, \\ V_{\rm IN} &= 0~{\rm to}~10~{\rm V}, \\ V_{\rm BB} &= 12~{\rm V} \end{split}$
Turn-off time	V_{IN} to 10% I_{D} :	$t_{\rm off}$	_	10	20	μs	$R_{L} = 22 \ \Omega,$
							V_{IN} = 10 to 0 V,
							$\begin{split} R_{\rm L} &= 22~\Omega, \\ V_{\rm IN} &= 10~{\rm to}~0~{\rm V}, \\ V_{\rm BB} &= 12~{\rm V} \end{split}$

Electrical Characteristics (cont'd)

 $T_{\rm i}$ = 25 °C, unless otherwise specified

Parameter		Sym-	Limit Values			Unit	Test Conditions
		bol	min.	typ.	max.		
Slew rate on	70 to 50% V_{BB} :	$\frac{-\mathrm{d}V_\mathrm{DS}}{\mathrm{d}t_\mathrm{on}}$	_	5	10	V/ μs	$R_{\rm L} = 22~\Omega,$ $V_{\rm IN} = 0~{\rm to}~10~{\rm V},$ $V_{\rm BB} = 12~{\rm V}$
Slew rate off	50 to 70% V_{BB} :	$\frac{\mathrm{d}V_\mathrm{DS}}{\mathrm{d}t_\mathrm{off}}$	_	10	15	V/ μs	$\begin{split} R_{\rm L} &= 22~\Omega, \\ V_{\rm IN} &= 10~{\rm to}~0~{\rm V}, \\ V_{\rm BB} &= 12~{\rm V} \end{split}$

Protection Functions²⁾

Thermal overload triptemperature	р	$T_{\rm jt}$	150	165	180	°C	_
Thermal hysteresis		$\Delta T_{\rm jt}$	_	10	_	K	_
Unclamped single pu energy	ulse inductive $T_{\rm j}$ = 25 °C $T_{\rm j}$ = 150 °C	E_{AS}	550 200	_ _		mJ	$I_{\mathrm{D(ISO)}} = 0.7 \mathrm{~A},$ $V_{\mathrm{BB}} = 32 \mathrm{~V}$

Inverse Diode

	1	1	1	1		
Continuous source drain voltage	V_{SD}	_	1	_	V	$V_{IN} = 0 V,$
						$-I_{\rm D} = 2 \times 0.7 {\rm A}$

¹⁾ See also **Figure 9**.

Data Sheet V1.0 6 2003-01-10

Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous, repetitive operation.

EMC-Characteristics

The following EMC-Characteristics outline the behavior of typical devices. They are not part of any production test.

Table 1 Test Conditions

Parameter	Symbol	Value	Unit	Remark		
Temperature	T _A	23 ±5	°C	_		
Supply Voltage	V _S	13.5	V	_		
Load	R_{L}	27	Ω	ohmic		
Operation mode	PWM DC	_ _	_ _	f _{INx} =100Hz, <i>D</i> =0.5 ON / OFF		
DUT specific	V _{IN} ('HIGH')=5V					

Fast electrical transients

acc. to ISO 7637

Test ¹⁾ Pulse	Max. Test Level	Test Result		Pulse Cycle Time
		ON	OFF	and Generator Impedance
1	-200V	С	С	500ms ; $10Ω$
2	+200V	С	С	500ms ; $10Ω$
3a	-200V	С	С	100ms ; 50 $Ω$
3b	+200V	С	С	100ms ; 50Ω
4	-7V	С	С	0.01Ω
5	175V	E(65V)	E(75V)	400ms ; 2Ω

 $^{^{1)}}$ The test pulses are applied at $V_{\rm S}$

Definition of functional status

Class	Content
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more function of a device does not perform as designed after exposure and can not be returned to proper operation without repairing or replacing the device. The value after the character shows the limit.

Data Sheet V1.0 7 2003-01-10

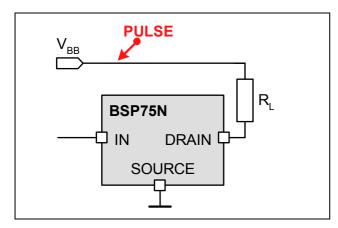
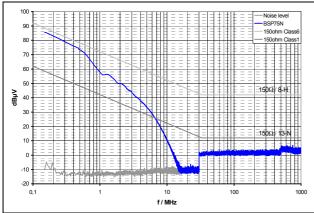



Figure 3 Test circuit for ISO pulse

Conducted Emissions

Acc. IEC 61967-4 ($1\Omega/150\Omega$ method)

Typ. V_{bb} Emissions at PWM-mode with 150 Ω -matching network

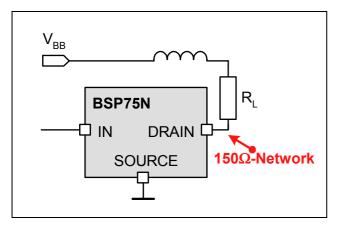
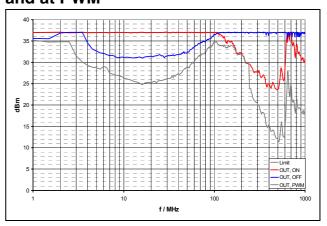
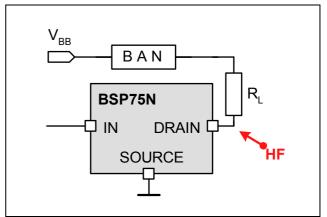


Figure 4 Test circuit for conducted emission 1)

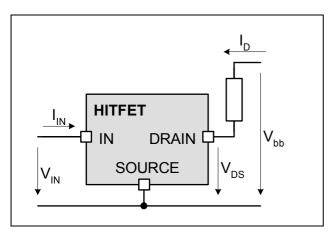

Conducted Susceptibility


Acc. 47A/658/CD IEC 62132-4 (Direct Power Injection)

Direct Power Injection: Forward Power CW

Failure Criteria: Amplitude or frequency variation max. 10% at OUT

Typ. V_{bb} Susceptibility at DC-ON/OFF and at PWM


Test circuit for conducted susceptibility

For defined de coupling and high reproducibility a defined choke ($5\mu H$ at 1MHz) is inserted in the Vbb-Line.

Broadband Artificial Network (short: BAN) consists of the same choke (5μH at 1MHz) and the same 150 Ohm-matching network as for emission measurement for defined de coupling and high reproducibility.

Block diagram

BSP75N
Px.1 IN D
SOURCE

Figure 8 Application Circuit

Figure 5 Terms

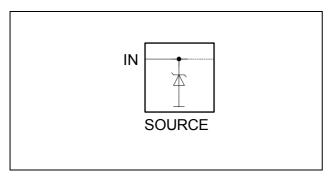


Figure 6 Input Circuit (ESD protection)

ESD zener diodes are not designed for DC current.

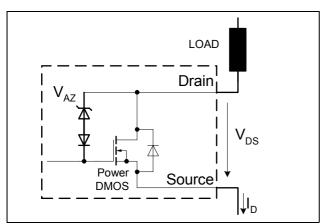


Figure 7 Inductive and Over voltage Output Clamp

Timing diagrams

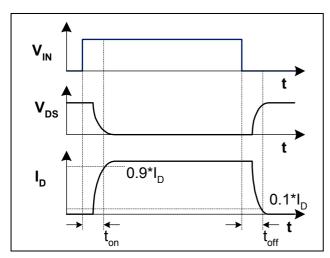


Figure 9 Switching a Resistive Load

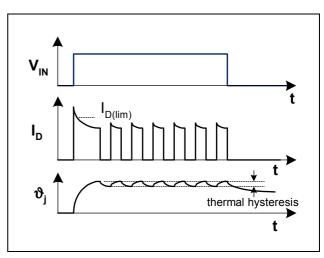
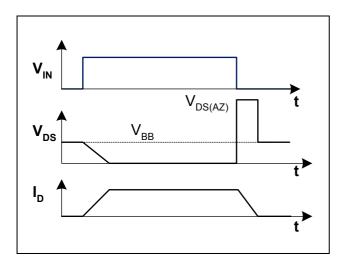
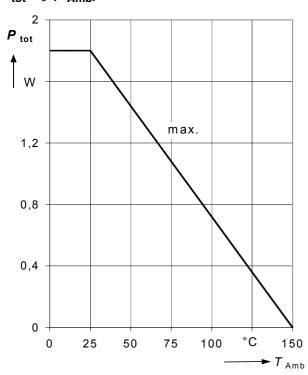
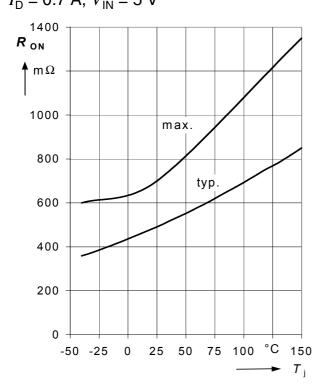
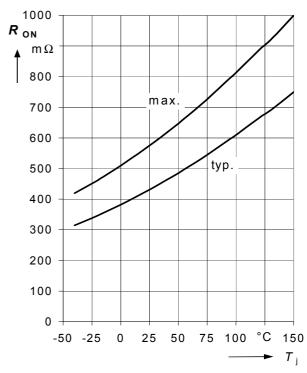


Figure 11 Short circuit

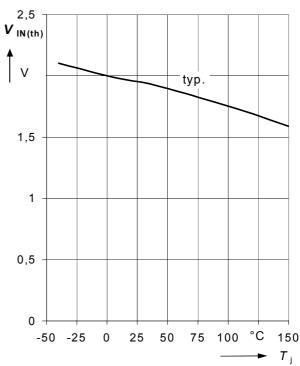




Figure 10 Switching an Inducitve Load

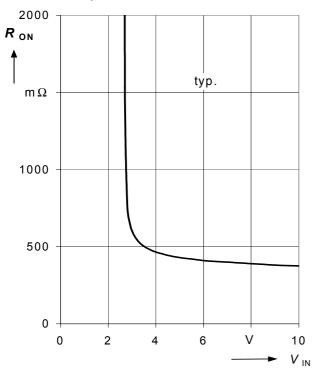
1 Max. allowable power dissipation $P_{\text{tot}} = f(T_{\text{Amb}})$



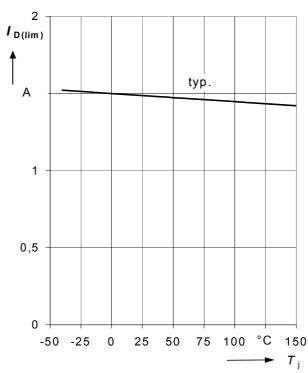
3 On-state resistance $R_{\rm ON}$ = $f(T_{\rm j})$; $I_{\rm D}$ = 0.7 A; $V_{\rm IN}$ = 5 V

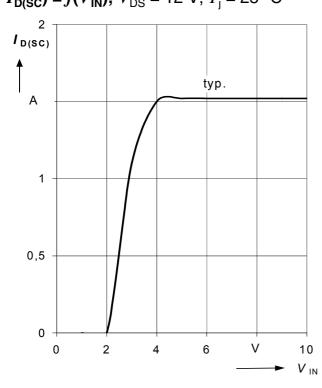

2 On-state resistance $R_{ON} = f(T_j)$;

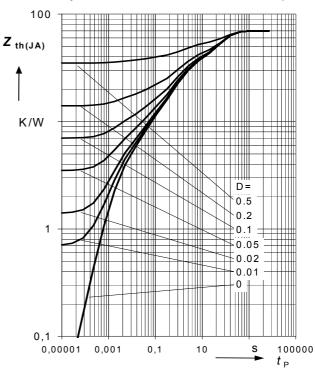
$$I_{\rm D}$$
 = 0.7 A; $V_{\rm IN}$ = 10 V


4 Typ. input threshold voltage

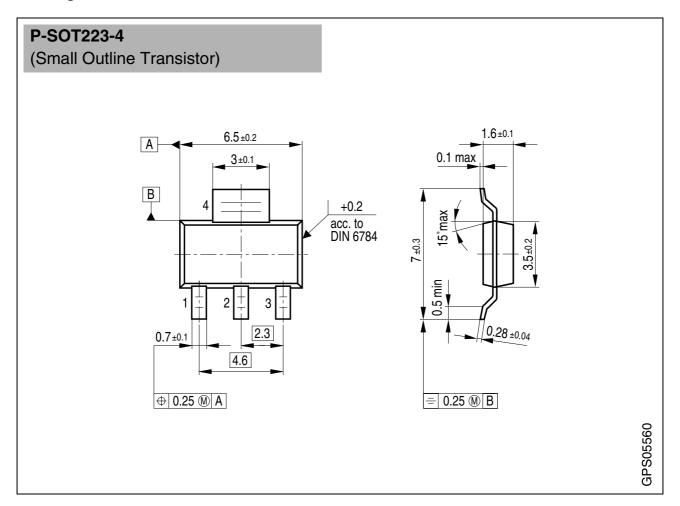
$$V_{\text{IN(th)}}$$
 = $f(\mathbf{T}_{\text{j}})$; I_{D} = 10 mA; V_{DS} = 12 V




5 Typ. on-state resistance $R_{\rm ON}$ = $f(V_{\rm IN})$; $I_{\rm D}$ = 0.7 A; $T_{\rm i}$ = 25 °C


6 Typ. current limitation $I_{\rm D(lim)}$ = $f({\rm T_j})$; $V_{\rm DS}$ = 12 V, $V_{\rm IN}$ = 10 V

7 Typ. short circuit current $I_{D(SC)} = f(V_{IN})$; $V_{DS} = 12 \text{ V}$, $T_{j} = 25 ^{\circ}\text{C}$



8 Max. transient thermal impedance $Z_{thJA} = f(t_p)$ @ 6cm²; Parameter: D = t_p/T

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

SMD = Surface Mounted Device

Dimensions in mm

Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 76,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are in-tended to be implanted in the human body, or to support and/ or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.