SAW Components Bandpass Filter

B4832 400,0 MHz

Data Sheet

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM/PCN-systems
- Ceramic SMD package

Terminals

Gold-plated

ceramic package QCC 8C

Dimensions in mm, approx. weight 0,07 g

Pin configuration

- 1 Input
- 2 Input ground or balanced input
- 5 Output
- 6 Output ground or balanced output
- 7 External coupling coil
- 4, 8 Case ground
- 3 To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B4832	B39401-B4832-U310	C61157-A7-A53	F61074-V8070-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 40/+ 85	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

SAW Components Bandpass Filter

B4832 400,0 MHz

Data Sheet Characteristics

 $T = -40 \,^{\circ}\text{C} \text{ to} + 85 \,^{\circ}\text{C}$ Operating temperature range: Terminating source impedance: $Z_{\rm S} = 600 \,\Omega \,||\,90 \,{\rm nH}$ $Z_{L} = 600 \Omega || 90 \text{ nH}$ $L_{c} = 47 \text{ nH}$ Terminating load impedance:

External coil:

		min.	typ.	max.	
Nominal frequency	f_{N}	_	400,0		MHz
Maximum insertion attenuation					
(excluding losses in matching network)					
$f_{\rm N}$ -0,083 $f_{\rm N}$ +0,083 MH:	Z	_	3,7	6,0	dB
(including losses in matching network)	α_{max}		,	,	
,	MHz	_	5,2	7,5	dB
Amplitude ripple (p-p)	Δα				
	MHz	_	1,0	2,0	dB
Relative attenuation (relative to α_{max})	$lpha_{rel}$				
	MHz	35,0	48,0	_	dB
f _N -1,5 f _N -0,8	MHz	20,0	51,0	_	dB
f _N -0,8 f _N -0,6	MHz	10,0	45,0	_	dB
	MHz	7,0	15,0	_	dB
f _N +0,4 f _N +0,6	MHz	7,0	15,0	_	dB
f _N +0,6 f _N +0,8	MHz	10,0	30,0	_	dB
f _N +0,8 f _N +1,5	MHz	20,0	40,0	_	dB
f _N +1,5f _N +100,0 I	MHz	35,0	54,0	_	dB
Group delay ripple (p-p)	Δau				
	MHz	_	0,55	1,0	μs
Temperature coefficient of frequency 1)	TC _f	_	-0,036		ppm/K ²
Frequency inversion point	•		20		°C
requestey inversion point	T_0	_	20	_	

¹⁾ Temperature dependance of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

SAW Components Bandpass Filter

B4832 400,0 MHz

Data Sheet

Test matching network to 50 Ω (element values depend on PCB layout):

Transfer function (including losses of matching elements and balun):

SAW Components Bandpass Filter

B4832 400,0 MHz

Data Sheet

Transfer function (pass band, including losses of matching elements and balun):

