

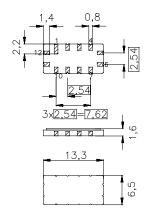
Data Sheet B4942

B4942

Low-Loss Filter for Mobile Communication

85,38 MHz

Data Sheet


Features

- Low-loss IF filter for mobile telephone
- Channel selection in CDMA systems
- High rejection
- Balanced and unbalanced operation possible
- Filter surface passivated
- Package for Surface Mounted Technology (SMT)

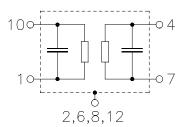
Terminals

■ Gold-plated Ni

SMD Ceramic package QCC12

Dimensions in mm, approx. weight 0,2 g

Pin configuration


1 Input

10 Input ground or balanced input

7 Output

4 Output ground or balanced output

2, 6, 8, 12 Case ground 3, 5, 9, 11 To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to	
B4942	B39850-B4942-Z510	C61157-A7-A55	F61074-V8026-Z000	

Electrostatic Sensitive Device (ESD)

Maximum ratings

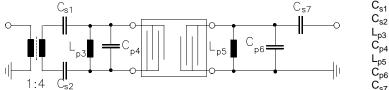
Operable temperature range	T	- 40/+ 85	°C
Storage temperature range	$T_{\rm stq}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

B4942

Low-Loss Filter for Mobile Communication

85,38 MHz

Data Sheet


 \equiv MD

Characteristics

 $= -30 \text{ to } +85 \,^{\circ}\text{C}$ Operating temperature range: $Z_{\rm S} = 1700 \,\Omega \, \| \, 140 \, {\rm nH}$ Terminating source impedance: $Z_{\rm L} = 1500 \,\Omega \, \| \, 142 \, \text{nH}$ Terminating load impedance:

	min.	typ.	max.	
Nominal frequency f_N	_	85,38	_	MHz
Minimum insertion attenuation				
(including loss in matching network without loss in balun) $\alpha_{\mbox{\scriptsize min}}$	_	9,5	11,0	dB
Amplitude ripple (p-p) $\Delta\alpha$				
$f_{N} - 0.3 \text{ MHz}$ $f_{N} + 0.3 \text{ MHz}$	_	0,5	1,0	dB
Phase Linearity (rms) $\Delta \tau$				
$f_{\rm N} - 0.63 \text{ MHz} \qquad f_{\rm N} + 0.63 \text{ MHz}$	_	1,8	3,0	۰
Relative attenuation (relative to α_{min}) α_{rel}				
$f_{\rm N} \pm 0,63~{\rm MHz}$	_	4,0	5,0	dB
f _N – 1,7 MHz	42	48	_	
$f_{N} = 0.9 \text{ MHz}$	40	45	_	
f_{N} + 0,9 MHz	38	45	_	
$f_{N} + 1.7 \text{ MHz}$	42	48	_	
$f_{\rm N} - 25 \text{ MHz}$ $f_{\rm N} - 1,7 \text{ MHz}$	40	45	_	dB
$f_{N} - 1.7 \text{ MHz}$ $f_{N} - 0.9 \text{ MHz}$	37	40	_	dB
$f_{\rm N}$ + 0,9 MHz $f_{\rm N}$ + 1,7 MHz	36	39	_	dB
f_{N} + 1,7 MHz f_{N} + 25 MHz	40	45	_	dB

Test matching network to bal. 200 Ω / **unbal. 50** Ω (element values depend on PCB layout):

 $C_{s1} = 8.2 pF$ $C_{s2} = 8.2 pF$

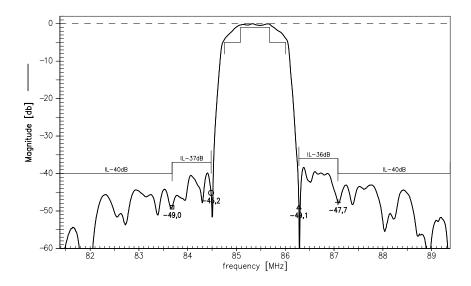
 $L_{p3} = 120 \text{ nH}$ $C_{p4} = 1,2 \text{ pF}$ $L_{p5} = 100 \text{ nH}$

 $C_{p6} = 2.2 \text{ pF}$

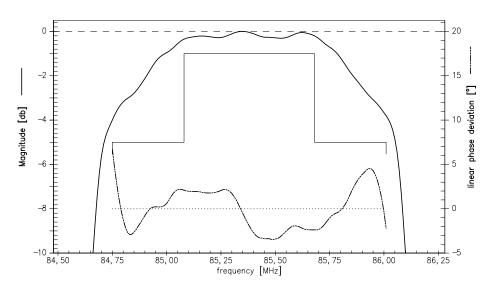
 $C_{s7}^{pc} = 6.8 \, pF$

Note:

The matching environment is realized using M/A-COM 1:4 baluns with an insertion loss of 0,6 dB.



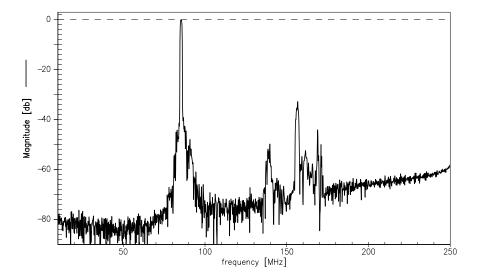
Low-Loss Filter for Mobile Communication


85,38 MHz

Data Sheet

Transfer function (balanced - unbalanced):

Transfer function (passband):


B4942

Low-Loss Filter for Mobile Communication

85,38 MHz

Data Sheet

Transfer function (wideband):

Low-Loss Filter for Mobile Communication

85,38 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.