

B4846 225,0 MHz

Data Sheet

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN systems
- Ceramic SMD package
- Very small size
- Low insertion attenuation
- Low group delay ripple

Terminals

Gold-plated Ni

SMD ceramic package QCC8C

Dimensions in mm, approx. weight 0,10 g

Pin configuration

1,2	Input, balanced
5,6	Output, balanced
4,8	Case - ground
3,7	To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B4846	B39231-B4846-U310	C61157-A7-A53	F61074-V8070-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 25/+ 80	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	5	V
Source power	P_{s}	10	dBm

B4846 225,0 MHz

Data Sheet Characteristics

Reference temperature:

T = 25 °C $Z_{\rm S}$ = 860 Ω || -2,0 pF $Z_{\rm L}$ = 860 Ω || -2,0 pF Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f _N	_	225,01	_	MHz
Minimum importing attenuation	α_{min}	2.0	2.0	4.5	4D
Minimum insertion attenuation		3,0	3,9	4,5	dB
(including loss in baluns and matching elements)	A				
Amplitude ripple (p-p)	Δα		0.0	4.0	4D
f_{N} - 67,5 kHz f_{N} + 67,5 kHz		_	0,6	1,6	dB
$f_{\rm N}$ - 80,0 kHz $f_{\rm N}$ + 80,0 kHz		_	0,7	3,0	dB
Group delay ripple (p-p)	$\Delta \tau$			4.0	
$f_{\rm N}$ - 50,0 kHz $f_{\rm N}$ + 50,0 kHz		_	0,2	1,3	μs
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz		_	0,3	1,5	μs
f_{N} - 80,0 kHz f_{N} + 80,0 kHz		_	0,6	1,8	μs
Relative attenuation (relative to α_{min})	α_{rel}				
f_{N} - 15,00 MHz f_{N} - 5,00 MHz		42	45	_	dB
f_{N} - 5,00 MHz f_{N} - 2,00 MHz		43	46	_	dB
f_{N} - 2,00 MHz f_{N} - 0,60 MHz		36	37	_	dB
f_N - 0,60 MHz f_N - 0,40 MHz		26,5	29	_	dB
f_{N} - 0,40 MHz f_{N} - 0,20 MHz		6,5	12	_	dB
$f_{\rm N}$ + 0,20 MHz $f_{\rm N}$ + 0,40 MHz		6,5	12	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		26,5	29	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 2,00 MHz		36	37	_	dB
$f_{\rm N}$ + 2,00 MHz $f_{\rm N}$ + 5,0 MHz		43	47		dB
$f_{\rm N}$ + 3,00 MHz $f_{\rm N}$ + 15,0 MHz		42	45	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	860 2,0	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	860 2,0	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	<i>TC</i> _f	_	-0,036	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4846 225,0 MHz

Data Sheet

Characteristics

Operating temperature range: $T = -20 \text{ to } +70 \,^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 860 \,\Omega \,|| -2,0 \,\text{pF}$ Terminating load impedance: $Z_{\text{L}} = 860 \,\Omega \,|| -2,0 \,\text{pF}$

		min.	typ.	max.	
Nominal frequency	f_{N}	_	225,00	_	MHz
Minimum insertion attenuation		3,0	3,9	5,0	dB
(including loss in baluns and matching elements)					
Amplitude ripple (p-p)	$\Delta \alpha$				
f_{N} - 67,5 kHz f_{N} + 67,5 kHz			0,7	2,2	dB
f_{N} - 80,0 kHz f_{N} + 80,0 kHz			0,8	3,2	dB
Group delay ripple (p-p)	Δau				
f_{N} - 50,0 kHz f_{N} + 50,0 kHz			0,2	1,3	μs
f_{N} - 67,5 kHz f_{N} + 67,5 kHz			0,4	1,6	μs
f_{N} - 80,0 kHz f_{N} + 80,0 kHz			0,7	1,8	μs
Relative attenuation (relative to α_{min})	$lpha_{rel}$				
f_{N} - 15,00 MHz f_{N} - 5,00 MHz		42	45	_	dB
f_{N} - 5,00 MHz f_{N} - 2,00 MHz		43	46	_	dB
f_{N} - 2,00 MHz f_{N} - 0,60 MHz		35	37	_	dB
f_N - 0,60 MHz f_N - 0,40 MHz		26	29	_	dB
f_{N} - 0,40 MHz f_{N} - 0,20 MHz		5	13	_	dB
$f_{\rm N}$ + 0,20 MHz $f_{\rm N}$ + 0,40 MHz		5	11	_	dB
$f_{N} + 0.40 \text{ MHz} \dots f_{N} + 0.60 \text{ MHz}$		26	29	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 2,00 MHz		35	37	_	dB
$f_{N} + 2,00 \text{ MHz} \dots f_{N} + 5,00 \text{ MHz}$		43	47	_	dB
$f_{\rm N}$ + 5,00 MHz $f_{\rm N}$ + 15,00 MHz		42	45	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$			860 2,0	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	860 2,0	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	TC_{f}	_	-0,036	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4846 225,0 MHz

Data Sheet

Test matching network (element values depend on pcb layout)

Source impedance $\rm Z_S{=}50~\Omega,$ load impedance $\rm Z_L{=}50~\Omega$

$$\begin{array}{l} \mathsf{L_{s1}} = \; \mathsf{L_{s2}} \; = \; 47 \; \mathsf{nH} \\ \mathsf{L_{s5}} = \; \mathsf{L_{s6}} \; = \; 47 \; \mathsf{nH} \\ \mathsf{C_{p3}} = \mathsf{C_{p4}} \; = \; 1,2 \; \mathsf{pF} \end{array}$$

B4846 225,0 MHz

Data Sheet
Transfer function (normalized)

