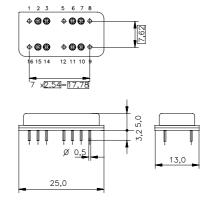


# SAW Components Spectrum Shaping Filter

B2565 70,00 MHz

## **Data Sheet**

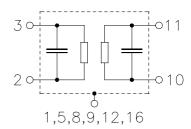

Metal package DIP 16

#### **Features**

- Spectrum shaping filter for digital radio systems
- High performance passband
- Constant group delay
- Hermetically sealed metal package

## **Terminals**

Gold plated NiFeCo alloy




Dimensions in mm, approx. weight 4,2 g

# Pin configuration

2 Input - ground 3 Input 10 Output - ground 11 Output

1, 5, 8, 9, 12, 16 Case - ground 6, 7, 14 15 Not connected



| Туре  | Ordering code     | Marking and Package according to | Packing according to |  |  |
|-------|-------------------|----------------------------------|----------------------|--|--|
| B2565 | B39700-B2565-E110 | C61157-A7-A11                    | F61064-V8013-Z000    |  |  |

Electrostatic Sensitive Device (ESD)

#### **Maximum ratings**

| Operable temperature range | T             | - 40/ <del>+</del> 85 | °C  |                              |
|----------------------------|---------------|-----------------------|-----|------------------------------|
| Storage temperature range  | $T_{\rm stg}$ | <b>- 40/+ 85</b>      | °C  |                              |
| DC voltage                 | $V_{\rm DC}$  | 0                     | V   |                              |
| Source power               | $P_{s}$       | 15                    | dBm | source impedance 50 $\Omega$ |



# SAW Components Spectrum Shaping Filter

B2565 70,00 MHz

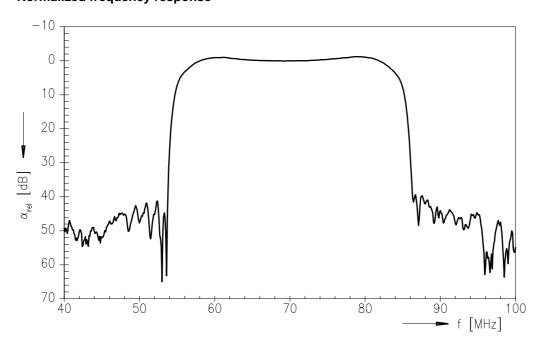
**Data Sheet** 

**Characteristics** 

Operating temperature: T=25 °C Terminating source impedance:  $Z_S=50$   $\Omega$  Terminating load impedance:  $Z_L=50$   $\Omega$  Group delay aperture  $Z_L=50$  MHz

|                                                |                                                          |                | min.  | typ.        | max.  |       |
|------------------------------------------------|----------------------------------------------------------|----------------|-------|-------------|-------|-------|
| Center frequency                               |                                                          | f <sub>C</sub> | 69,85 | 70,00       | 70,15 | MHz   |
| (center between 6 dB points)                   |                                                          |                |       |             |       |       |
| Insertion attenuation at f <sub>C</sub>        |                                                          |                | _     | 34,0        | 36,0  | dB    |
| Deviation from theoretical frequency resp. 1)  |                                                          |                |       |             |       |       |
|                                                | $f_{\mathbb{C}}$ $f_{\mathbb{C}} \pm 0,7*f_{\mathbb{Y}}$ |                | _     | ±0,15       | ±0,2  | dB    |
|                                                | $f_{\mathbb{C}}$ $f_{\mathbb{C}}\pm 1,0*f_{\mathbb{Y}}$  |                | _     | ±0,3        | ±0,5  | dB    |
| Phase ripple (p-p)                             |                                                          | Δφ             |       |             |       |       |
|                                                | $f_{\mathbb{C}}$ $f_{\mathbb{C}}\pm 1,0*f_{\mathbb{Y}}$  |                | _     | 1,0         | 2,0   | 0     |
| Relative attenuation (relative to $\alpha_C$ ) |                                                          | $\alpha_{rel}$ |       |             |       |       |
|                                                | 10,0 53,5 MHz                                            |                | 37,0  | 42,0        | _     | dB    |
|                                                | 86,5 110,0 MHz                                           |                | 35,0  | 40,0        | _     | dB    |
| Reflected wave signal suppression              |                                                          |                |       |             |       |       |
| 2,1 μs 4,0 μs after main pulse                 |                                                          |                | 55,0  | 60,0        | _     | dB    |
| Group delay at $f_{\mathbb{C}}$                |                                                          | $\tau_{C}$     | _     | 1,31        | _     | μs    |
| Group delay ripple (p-                         | p)                                                       | $\Delta 	au$   |       |             |       |       |
|                                                | $f_{\mathbb{C}}$ $f_{\mathbb{C}}\pm 1,0*f_{\mathbb{Y}}$  |                | _     | 2,0         | 4,0   | ns    |
| Nyquist frequency                              |                                                          | f <sub>Y</sub> | _     | 12,3        | _     | MHz   |
| Roll-off factor                                |                                                          | а              | _     | 0,33        | _     |       |
| Partitioning factor                            |                                                          | р              | _     | 0,5         | _     |       |
| Temperature coefficient of frequency           |                                                          | $TC_{f}$       | _     | <b>–</b> 87 | _     | ppm/K |

#### 1) Theoretical frequency response:


$$\begin{split} H(x) &= (S(x)/\text{sinc}(x*\pi/2))^p \\ S(x) &= \begin{cases} 1 & \text{for} & |x| \leq 1\text{- a} \\ (1+\cos(\pi\cdot(|x|\text{-}1+a)/2a))/2 & \text{for } 1\text{-a} < |x| < 1\text{+a} \\ 0 & \text{for } 1\text{+a} \leq |x| \end{cases} \\ x &= (f\text{-}f_C)/f_Y \end{split}$$




# SAW Components Spectrum Shaping Filter

B2565 70,00 MHz

Data Sheet Normalized frequency response



## Normalized frequency response



Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 3 of 3

OFW E NK Mar 17, 1998