

B2585 140,00 MHz

Data Sheet

Metal package DIP 16

Features

- Spectrum shaping filter for digital radio systems
- High performance passband
- Group delay predistortion
- Hermetically sealed metal package

Terminals

Gold plated NiFeCo alloy

Dimensions in mm, approx. weight 4,2 g

Pin configuration

Input - ground
Input
Output - ground
Output

1, 5, 8, 9, 12, 16 Case - ground 6, 7, 14 15 Not connected

Туре	Ordering code	Marking and Package according to	Packing according to		
B2585	B39141-B2585-E110	C61157-A7-A11	F61064-V8013-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 40/ + 85	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	15	dBm

B2585 140,00 MHz

Data Sheet

Characteristics

 $\begin{array}{lll} \mbox{Operating temperature:} & \mbox{T} & = 45 \ ^{\circ}\mbox{C} \\ \mbox{Terminating source impedance:} & Z_{\mbox{S}} & = 50 \ \Omega \\ \mbox{Terminating load impedance:} & Z_{\mbox{L}} & = 50 \ \Omega \end{array}$

		min.	typ.	max.	
Center frequency	$f_{\mathbb{C}}$	139,75	140,00	140,25	MHz
(center between 6 dB points)					
Insertion attenuation at $f_{\mathbb{C}}$	α_{C}	_	29,5	30,5	dB
Pass band tilt		_	0,0	0,01	dB/MHz
Deviation from theoretical frequency resp. ¹⁾					
$f_{\mathbb{C}}$ $f_{\mathbb{C}} \pm f_{Y}$			± 0,1	± 0,4	dB
Phase ripple (p-p) ²⁾	Δφ				
$f_{\mathbb{C}}$ $f_{\mathbb{C}} \pm f_{\mathbb{Y}}$	·	_	2,5	4,0	0
Relative attenuation (relative to α_C)					
40,0 122,0 MHz		40	48	_	dB
158,0 240,0 MHz		40	45	_	dB
Reflected wave signal suppression					
1,0 μs 4,5 μs after main pulse		45	65		dB
1,5 μs 1,0 μs before main pulse		45	65	_	dB
Group delay at $f_{\mathbb{C}}$	τ_{C}		1,5	_	μs
Nyquist frequency	f _Y	_	13,805	_	MHz
Roll-off factor	а	_	0,25	_	
Partitioning factor	p	_	0,5	_	
Phase coefficient	р3	_	9,987	_	1E-03
Phase coefficient	p5	_	6,524	_	1E-01
Phase coefficient	p7	_	-6,715	_	1E-01
Phase coefficient	p9	_	3,920	_	1E-01
Phase coefficient	p11	_	-1,100	_	1E-01
Phase coefficient	p13	_	1,421	_	1E-02
Phase coefficient	p15	_	-6,794	_	1E-04
Temperature coefficient of frequency	TC _f	_	- 87	_	ppm/K

¹⁾ and 2) see next page

B2585 140,00 MHz

Data Sheet

1) Theoretical frequency response:

$$\begin{array}{lll} H(x) & = & (S(x))^p \\ S(x) & = \begin{cases} 1 & \text{for} & |x| \leq & 1+a \\ (1+\cos(\pi \cdot (|x|-1+a)/2a))/2 & \text{for} & 1-a & < & |x| & < & 1+a \\ 0 & \text{for} & 1+a & \leq & |x| \end{cases} \\ x & = & (f-f_C)/f_Y \end{array}$$

2) Theoretical phase response:

$$\begin{array}{lll} Ph(f) & = & p3^*((f\text{-}f_C)/1 \text{ MHz})^3 + p5^*((f\text{-}f_C)/1 \text{ MHz})^5 \\ & + & p7^*((f\text{-}f_C)/1 \text{ MHz})^7 + p9^*((f\text{-}f_C)/1 \text{ MHz})^9 \\ & + & p11^*((f\text{-}f_C)/1 \text{ MHz})^{11} + p13^*((f\text{-}f_C)/1 \text{ MHz})^{13} \\ & + & p15^*((f\text{-}f_C)/1 \text{ MHz})^{15} \end{array}$$

The part will not show any critical pyroelectric effect.

B2585 140,00 MHz

Data Sheet Normalized frequency response

Normalized frequency response

Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 4 of 4

OFW E NK Mar 17, 1998