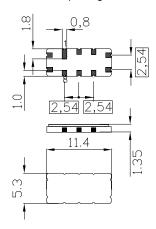


Data Sheet B4939

Low-Loss Filter for Mobile Communication

110,0 MHz

Preliminary Data Sheet


Features

- Low-loss IF filter for mobile telephone
- Channel selection in CDMA systems
- Very small size
- Low insertion attenuation
- Balanced and unbalanced operation possible
- Filter surface passivated
- Ceramic SMD package

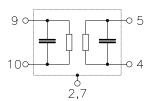
Terminals

■ Gold-plated Ni

Ceramic package QCC10C

Dimensions in mm, approx. weight 0,24 g

Pin configuration


10	Input

9 Input ground or balanced input

5 Output

4 Balanced output or output ground

2, 7 Case – ground 1, 3, 6, 8 To be grounded

Туре	Ordering code	J	Packing according to
B4939	B39111-B4939-U910	C61157-A7-A73	D6104-V8104-Z000

Electrostatic Sensitive Device (ESD)

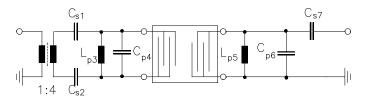
Maximum ratings

Operating temperature range	T	- 20/+ 75	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

Low-Loss Filter for Mobile Communication

110,0 MHz

Preliminary Data Sheet

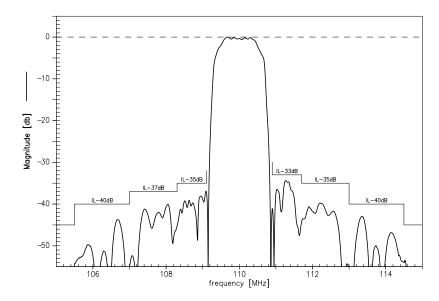

 \equiv MD

Characteristics

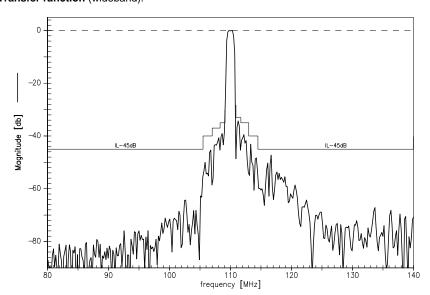
Operating temperature range: $T = -20 \dots +75 \,^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 1070\Omega \parallel 130 \,\text{nH}$ Terminating load impedance: $Z_{\text{L}} = 1050 \,\Omega \parallel 110 \,\text{nH}$

		min.	typ.	max.	
Nominal frequency	f_{N}	_	110,0	_	MHz
Minimum insertion attenuation					
(including losses in matching circuit)	α_{min}	_	8,6	10,0	dB
Amplitude ripple (p-p)	Δα				
$f_{\rm N}$ - 0,3 MHz $f_{\rm N}$ + 0,3 MHz		_	0,4	0,7	dB
Phase Linearity (rms)	Δau				
$f_{\rm N}$ - 0,614 MHz $f_{\rm N}$ + 0,614 MHz		_	1,5	3,0	•
Relative attenuation (relative to α_{min})	α_{rel}				
$f_{\rm N}$ - 0,614 MHz $f_{\rm N}$ + 0,614 MHz		_	4,0	5,0	dB
f _N - 30 MHz f _N - 4,5 MHz		45	55	_	dB
f_{N} - 4,5 MHz f_{N} - 3,0 MHz		40	45	_	dB
f_{N} - 3,0 MHz f_{N} - 1,7 MHz		37	40	—	dB
f _N - 1,7 MHz		40	43	—	dB
f_{N} - 1,7 MHz f_{N} - 0,9 MHz		35	37	_	dB
f _N - 0,9 MHz		35	37	—	dB
f _N + 0,9 MHz		35	37	—	dB
$f_{\rm N}$ + 0,9 MHz $f_{\rm N}$ + 1,7 MHz		33	35	_	dB
f _N + 1,7 MHz		40	43	_	dB
$f_{\rm N}$ + 1,7 MHz $f_{\rm N}$ + 3,0 MHz		35	39	_	dB
$f_{\rm N}$ + 3,0 MHz $f_{\rm N}$ + 4,5 MHz		40	43	_	dB
$f_{\rm N} + 4,5 \text{ MHz}$ $f_{\rm N} + 30 \text{ MHz}$		45	50	_	dB

Test Matching Network to bal. 200 Ω / unbal. 50 Ω (element values depend on PCB layout)

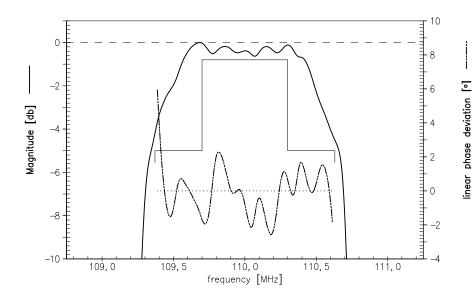

Low-Loss Filter for Mobile Communication

110,0 MHz

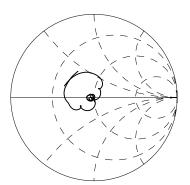

Preliminary Data Sheet

Transfer function (balanced - unbalanced):

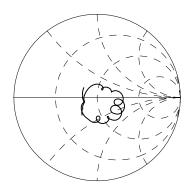
Transfer function (wideband):



Low-Loss Filter for Mobile Communication


110,0 MHz

Preliminary Data Sheet


Transfer function (passband)

input reflection

output reflection

Low-Loss Filter for Mobile Communication

110,0 MHz

Preliminary Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.