

B4909 238,55 MHz

Data Sheet

Features

- IF filter for mobile telephone
- Channel selection in CDMA-systems
- Ceramic SMD package
- Low insertion attenuation
- High rejection

Terminals

Gold-plated Ni

Ceramic package QCC12B

Dimensions in mm, approx. weight 0,2g

Pin configuration

10	Input
12	Input ground
4	Output
6,2	Output ground
1, 7, 8	to be grounded
3, 9	Case ground

Electrostatic Sensitive Device (ESD)

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
B4909	B39241-B4909-Z910	C61157-A7-A38	F61064-V8026-Z000		

Maximum ratings

Operable temperature range	T	- 40/ + 85	°C
Storage temperature range	$T_{\rm stg}$	- 40/ + 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 1 of 4

OFW EM AA Jan. 15, 1999

B4909 238,55 MHz

Data Sheet Characteristics

Operating temperature: $T = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 310\Omega \, \| \, 32 \, \text{nH}$ Terminating load impedance: $Z_{\text{L}} = 400\Omega \, \| \, 42 \, \text{nH}$

			min.	typ.	max.	
Nominal frequency		f_{N}	_	238,55	_	MHz
Insertion attenuation at f _N		α_{fN}	_	6,5	8,5	dB
(including loss in matching network)						
Amplitude ripple (p-p,after gating ¹⁾)		$\Delta \alpha$				
f _N -0,30 f _N +0,30	MHz		_	0,4	1,2	dB
Phase linearity (after gating ¹⁾) (rms deviation)						
f_{N} =0,63 f_{N} +0,63	MHz		_	1,5	3,0	٥
Relative attenuation (relative to α_{fN})		α_{rel}				
f _N -0,63 f _N +0,63	MHz		_	2,8	5,0	dB
f _N -200,0 f _N -30,0	MHz		60,0	70,0	_	dB
<i>f</i> _N –30,0 <i>f</i> _N –4,05	MHz		45,0	52,0	_	dB
<i>f</i> _N -4,05 <i>f</i> _N -2,05	MHz		40,0	48,0	_	dB
<i>f</i> _N −2,05 <i>f</i> _N −1,25	MHz		34,0	48,0	_	dB
f _N -1,25	MHz		_	48,0	_	dB
f _N +1,25	MHz		_	45,0	_	dB
$f_{N}+1,25 \dots f_{N}+2,05$	MHz		34,0	45,0	_	dB
f _N +2,05 f _N +4,05	MHz		40,0	50,0	_	dB
f_{N} +4,05 f_{N} +60,0	MHz		45,0	50,0	_	dB
f _N +60,0 f _N +200,0	MHz		60,0	65,0	_	dB
Reflected wave signal suppression			30,0	34,0	_	dB
Temperature coefficient of frequency 2)		TC_{f}	_	-0,036	_	ppm/K ²
Frequency inversion point		T_0	_	20	_	°C

¹⁾ Removal of trailing end of time domain response for which all of signal is more than 30dB below main pulse

²⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4909 238,55 MHz

Data Sheet
Transfer function:

Transfer function (pass band, after gating¹⁾):

B4909 238,55 MHz

Data Sheet

Transfer function (wideband):

Test matching network to 50 Ω (element values depend on PCB layout):

 $L_{s1} = 68nH$ $L_{p2} = 39nH$ $L_{p3} = 47nH$ $L_{s4} = 82nH$