

B4830 200,0 MHz

Data Sheet

SMD ceramic package QCC12B

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN, PCS systems
- Ceramic SMD package
- Balanced and unbalanced operation possible

Terminals

Gold-plated Ni

Dimensions in mm, approx. weight 0,2 g

Pin configuration

12	Input
10	Input ground or balanced input
6	Output
4	Output ground or balanced output
8	External Coil
3,9	Case - ground
1, 2, 7	To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to		
B4830	B39201-B4830-Z910	C61157-A7-A52	F61074-V8038-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

	_	00/ 00	° C
Operable temperature range	I	- 30/+ 80	l C
Storage temperature range	$T_{\rm stg}$	- 35/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

B4830 200,0 MHz

Data Sheet Characteristics

Operating temperature: $T = 25 \,^{\circ}\text{C}$

Terminating source impedance: $Z_{\rm S} = 1 \ {\rm k}\Omega \parallel 450 \ {\rm nH}$ Terminating load impedance: $Z_{\rm L} = 1 \ {\rm k}\Omega \parallel 450 \ {\rm nH}$ External coil $L_{\rm C} = 170 \ {\rm nH}$

		min.	typ.	max.	
Nominal frequency	f_{N}	_	200,0	_	MHz
Minimum insertion attenuation	α_{min}				
(including losses in the matching network)		_	3,8	5,0	dB
Amplitude ripple (p-p)	Δα				
$f_N - 70,0 \text{ kHz } f_N + 90,0 \text{ kHz}$		_	0,5	1,5	dB
f _N - 90,0 kHz f _N +110,0 kHz		_	0,7	2,0	dB
Group delay ripple (p-p)	Δau				
f _N - 70,0 kHz f _N + 90,0 kHz		-	0,9	2,5	μs
Relative attenuation (relative to α_{min})					
0,10 MHz f _N - 2,98 MHz		45	54	_	dB
f _N - 2,98 MHz f _N - 1,58 MHz		35	51	_	dB
f _N - 1,58 MHz f _N - 0,78 MHz		27	51	_	dB
f_N - 0,78 MHz f_N - 0,58 MHz		25	44	_	dB
f_N - 0,58 MHz f_N - 0,38 MHz		15	32	_	dB
f_N - 0,38 MHz f_N - 0,18 MHz		3	10	_	dB
$f_N + 0.20 \text{ MHz} \dots f_N + 0.40 \text{ MHz}$		3	8	_	dB
$f_N + 0,40 \text{ MHz } \dots f_N + 0,60 \text{ MHz}$		15	26	_	dB
$f_N + 0,60 \text{ MHz } \dots f_N + 0,80 \text{ MHz}$		25	42	_	dB
$f_N + 0.80 \text{ MHz } \dots f_N + 1.60 \text{ MHz}$		27	50		dB
$f_N + 1,60 \text{ MHz } \dots f_N + 3,00 \text{ MHz}$		35	58		dB
$f_N + 3,00 \text{ MHz } \dots f_N + 400,0 \text{ MHz}$		45	56	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	1 1,4	_	kΩ pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	1 1,4	_	kΩ pF
Temperature coefficient of frequency 1)	TC_{f}	_	0,036	_	ppm/K ²
Turnover temperature	T_0	_	30	_	°C

¹⁾ Temperature dependence of center frequency f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4830 200,0 MHz

Data Sheet

Test matching network to 50 Ω (element values depend on pcb layout):

B4830 200,0 MHz

Data Sheet

Transfer function (measured in test matching network to 50 Ω):

Transfer function - passband (measured in test matching network to 50 Ω):

