

June 1995

File Number 1412

8A, 100V - 200V Ultrafast Dual Diodes

The BYW51 series devices are low forward voltage drop, ultra-fast-recovery rectifiers ($t_{RR} < 35 ns$). They use a planar ion-implanted epitaxial construction.

These devices are intended for use as output rectifiers and fly-wheel diodes in a variety of high-frequency pulse-width-modulated and switching regulators. Their low stored charge and attendant fast reverse-recovery behavior minimize electrical noise generation and in many circuits markedly reduce the turn-on dissipation of the associated power switching transistors.

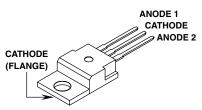
Ordering Information

PACKAGING AVAILABILITY

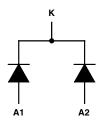
PART NUMBER	PACKAGE	BRAND
BYW51-100	TO-220AB	BYW51100
BYW51-150	TO-220AB	BYW51150
BYW51-200	TO-220AB	BYW51200

NOTE: When ordering, use the entire part number.

Features


- Ultra Fast Recovery Time (<35ns)
- Low Forward Voltage
- Low Thermal Resistance
- Planar Design
- Wire-Bonded Construction

Applications


- General Purpose
- · Power Switching Circuits to 100kHz
- Full-Wave Rectification

Package

JEDEC TO-220AB

Symbol

Absolute Maximum Ratings Per Junction

	BYW51-100	BYW51-150	BYW51-200	UNITS
Maximum Peak Repetitive Reverse Voltage $\dots V_{RRM}$	100	150	200	V
Maximum Peak Surge VoltageV _{RSM}	110	165	220	V
Repetitive Peak Surge Current I_{FRM} , $t_P < 10 \mu s$	100	100	100	Α
Nonrepetitive Peak Surge Current $I_F(RMS)$, Total	20	20	20	Α
Average Rectified forward Current $I_{F(AV)}$, Total $T_C = +125^{\circ}C$, $a = 0.5$	8	8	8	Α
Repetitive Peak Surge Current I_{FSM} $t_P = 10$ ms, Sinusoidal	100	100	100	Α
Maximum Power Dissipation P_D , $T_C = +125 \infty^0 C$	20	20	20	W
Operating and Storage Temperature	-40 + 150	-40 + 150	-40 + 150	°C
T_L (Lead Temperature During Soldering) At Distance > $^{1}/_{8}$ in. (3.17mm) From Case For 10s max.	260	260	260	°C

BYW51-100, BYW51-150, BYW51-200

Electrical Specifications Per Junction

	TEST CONDITIONS		LIMITS							
	т.	VOLTAGE	CURRENT	BYW	51-100	BYW	51-150	BYW	51-200	1
SYMBOL	T _J °C	V _R V	i _F A	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
IR	25	100	-	-	5	-	-	-	-	μΑ
		150	-	-	-	-	5	-	-	μΑ
		200	-	-	-	-	-	-	5	μА
	100	100	-	-	1	-	-	-	-	mA
		150	-	-	-	-	1	-	-	mA
		200	-	-	-	-	-	-	1	mA
V _F	25	-	8	-	0.95	-	0.95	-	0.95	٧
	100	-	8	-	0.89	-	0.89	-	0.89	٧
t _{RR}	25	-	1 (Note 1)	-	35	-	35	-	35	ns
R _{0JC} , Per Leg		-	-	-	2.5	-	2.5	-	2.5	°C/W
R _{0JC} , Total		-	-	-	1.3	-	1.3	-	1.3	°C/W
$R_{\theta JA}$		-	-	-	60	-	60	-	60	°C/W
СЈ	25	10	0		•	All types	(typ.) 40		•	pF

NOTE:

^{1.} $dI_F/dt > 50A/\mu s$, $I_{RM}(rec) < 1A$, $I_{RR} = 0.25A$.

Typical Performance Curves

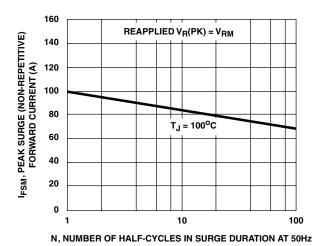


FIGURE 1. PEAK SURGE FORWARD CURRENT vs SURGE DURATION

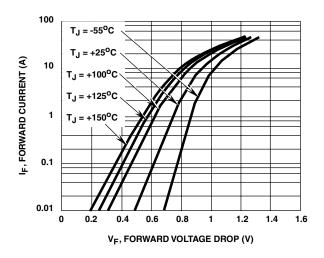


FIGURE 3. TYPICAL FORWARD CURRENT vs FORWARD VOLTAGE DROP

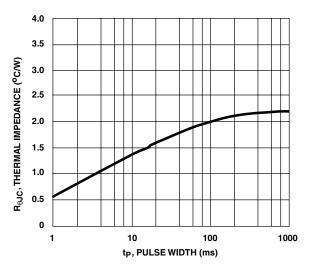


FIGURE 2. THERMAL IMPEDANCE vs PULSE WIDTH (PER JUNCTION)

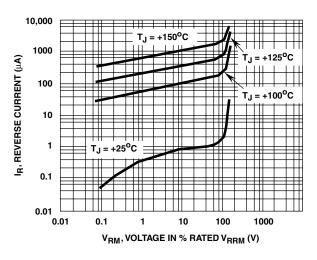


FIGURE 4. TYPICAL REVERSE CURRENT vs VOLTAGE

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST®	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP^{TM}	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench ®	SuperSOT™-8
CROSSVOLT TM	GTO™ .	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics™	UHC TM
EcoSPARK™	LittleFET™	Quiet Series™	UltraFET™
E^2CMOS^{TM}	MicroFET™	SILENT SWITCHER ®	VCX^{TM}
EnSigna™	MICROWIRE™	SMART START™	

FACT Quiet SeriesTM OPTOPLANARTM Star* PowerTM
Star* PowerTM
StealthTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design This datasheet contains the design specifications product development. Specifications may change i any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			