
SPACE ELECTRONICS INC. Space Products

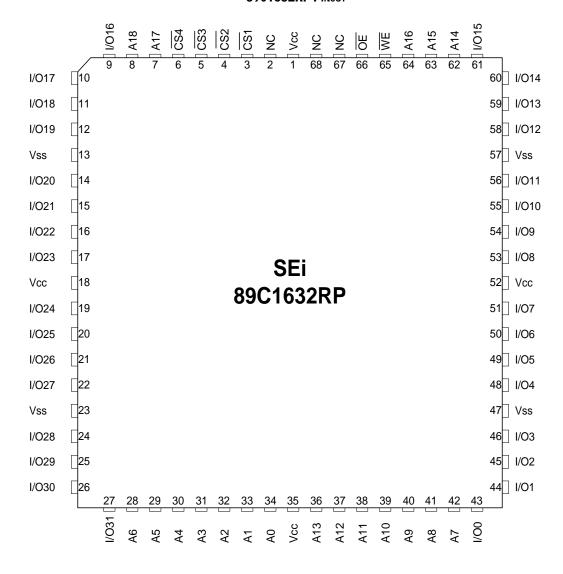
16 Megabit (512k x 32-bit) MCM SRAM

89C1632RP

16 Megabit (512k x 32-bit) SRAM MCM

FEATURES:

- Four 512k x 8 SRAM architecture
- Rad-Pax® technology hardens against natural space radiation technology
- Total dose hardness: typical 100 krad (Si); dependent upon orbit
 - No single event latchup > 117 MeV/mg/cm²
 - SEU threshold = 3 MeV/mg/cm^2
- Package: 68-pin guad flat package
- Fast access time: 25,30 ns
- Completely static memory no clock or timing strobe required
- Internal bypass capacitor
- High-speed silicon-gate CMOS technology
- 5V or 3V \pm 10% power supply
- Equal address and chip enable access times
- Three-state outputs
- All inputs and outputs are TTL compatible


DESCRIPTION:

Space Electronics' 89C1632RP (RP for Rap-Pak®) high-performance 16 Megabit Multi-Chip Module (MCM) Static Random Access Memory features a typical 100 kilorad (Si) total dose tolerance. The four 4-Megabyte SRAM die and bypass capacitors are incorporated into a high-reliable hermetic quad flat-pack ceramic package. With high-performance silicongate CMOS technology, the 89C1632RP reduces power consumption and eliminates the need for external clocks or timing strobes. It is equipped with output enable (\overline{OE}) and four byte enable $(\overline{CS1} - \overline{CS4})$ inputs to allow greater system flexibility. When $\overline{\text{OE}}$ input is high, the output is forced to high impedance. The 89C1632RP has been specifically designed to meet exposure to radiation environments. It has a total-dose survivability of greater than 100 krad (Si), based on a GEO-type orbit (actual TID tolerance depends upon orbit and mission duration). Space Electronics' RAD-Pak® advanced technology incorporates radiation shielding in the microcircuit package that eliminates box shielding. The 89C1632RP is available in Class H or Class K packaging and screening.

TABLE 1. PIN DESCRIPTION

Pin	Description
A0-A18	Address Enable
WE	Write Enable
 OE	Output Enable
<u>CS</u>	Chip Enable
1/00-1/031	Data Input/Output
NC	No Connection
V _{CC}	Power Supply
V _{SS}	Ground

89C1632RP PINOUT

TABLE 2. 89C1632RP ABSOLUTE MAXIMUM RATINGS

(Voltage referenced to $V_{SS} = 0V$)

Parameter	Symbol	Min	Мах	Units
Power Supply Voltage Relative to V_{SS}	V _{CC}	-0.5	+7.0	V
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{IN} , V _{OUT}	-0.5	+0.5	V
Power Dissipation	P_{D}		4.0	W
Operating Temperature	T _A	-55	+125	oC.
Storage Temperature	T _{STG}	-65	+150	oC

TABLE 3. 89C1632RP ABSOLUTE MAXIMUM RATINGS

 $(V_{CC} 2.7 - 5.5V, T_A = -55 \text{ to } +125 \, ^{\circ}\text{C}$, unless otherwise noted)

Parameter	Symbol	Min	Мах	Units
Supply Voltage, (Operating Voltage Range)	V_{CC}	2.7	5.5	V
Input High Voltage	V _{IH}	2.2	$V_{\rm CC}$ + 0.5 ⁽¹⁾	V
Input Low Voltage	$V_{\rm IL}$	-0.5 (2)	0.8	V

- 1. V_{IH} (max) = V_{CC} + 2V ac (pulse width \leq 10ns) for I \leq 80 mA.
- 2. V_{II} (min) = -2.0V dc; (pulse width \leq 20 ns) for I \leq 80 mA.

TABLE 4. 89C1632RP CAPACITANCE

 $(f = 1.0 \text{ MHz, dV} = 3.0 \text{V, T}_A = 25 \text{ °C})$

PARAMETER	Symbol	Test Conditions	Мах	Units
Input Capacitance	C _{IN}	$V_{IN} = 0 V$	7 28 7	pF
Input / Output Capacitance	C _{OUT}	$V_{I/0} = 0 V$	8	pF

TABLE 5. 89C1632RP DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Max	Units
Input Leakage Current	I _{LI}	$V_{IN} = 0$ to V_{CC}	-8.0	+8.0	uA
Output Leakage Current	I _{LO}	$\overline{\text{CS}} = V_{\text{IH}}, V_{\text{OUT}} = V_{\text{SS}} \text{ to } V_{\text{CC}}$	-8.0	+8.0	uA
Average Operating Current Cycle Time: 25 ns 30 ns	I _{CC}	Min. Cycle, 100% Duty, $\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{I}_{\text{OUT}} = 0 \text{ mA}$ $\text{V}_{\text{IN}} = \text{V}_{\text{IH}} \text{ or V}_{\text{IL}}$		760 720	mA
Standby Power Supply Current	I _{SB}	$\overline{\text{CS}} = V_{\text{IH}}$, cycle time ≥ 25 ns		240	mA

16 Megabit (512k x 32-bit) MCM SRAM

TABLE 5. 89C1632RP DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Max	Units
CMOS Standby Power Supply Current	I _{SB1}	$\overline{\text{CS}} \ge \text{V}_{\text{CC}}$ - 0.2V, f = 0 MHz, $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}}$ - 0.2V or $\text{V}_{\text{IN}} <$ 0.2V		60	mA
Output Low Voltage	V _{OL}	$I_{0L} = +8.0 \mathrm{mA}$		0.4	V
Output High Voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$	2.4		V

TABLE 6. AC OPERATING CONDITIONS AND CHARACTERISTICS

Parameter	Min	Мах	Units
Input Pulse Level	0.0	3.0	V
Output Timing Measurement Reference Level		1.5	V
Input Rise/Fall Time		3.0	ns
Input Timing Measurement Reference Level		1.5	V

TABLE 7. 89C1632RP READ CYCLE

Parameter	Symbol	Min	Max	Units
Read Cycle Time 89C1632RP-25 89C1632RP-30	t _{RC}	25 30	 	ns
Address Access Time 89C1632RP-25 89C1632RP-30	t _{AA}		25 30	ns
Chip Select to Output 89C1632RP-25 89C1632RP-30	t _{co}		25 30	ns
Output Enable to Output 89C1632RP-25 89C1632RP-30	t _{OE}		7 9	ns
Output Enable to Low-Z Output 89C1632RP-25 89C1632RP-30	t _{OLZ}	0	 	ns
Chip Enable to Low-Z Output 89C1632RP-25 89C1632RP-30	t _{ILZ}	3 3		ns
Output Disable to High-Z Output 89C1632RP-25 89C1632RP-30	t _{OHZ}		7 9	ns
Chip Disable to High-Z Output 89C1632RP-25 89C1632RP-30	t _{HZ}		7 9	ns

16 Megabit (512k x 32-bit) MCM SRAM

TABLE 7. 89C1632RP READ CYCLE

Parameter	Symbol	Min	Max	Units
Output Hold from Address Change	t _{oh}			ns
89C1632RP-25	·	3		
89C1632RP-30		3		

TABLE 8. 89C1632RP WRITE CYCLE

Parameter	Symbol	Min	Мах	Units
Write Cycle Time 89C1632RP-25 89C1632RP-30	t _{WC}	25 30		ns
Chip Select to End of Write 89C1632RP-25 89C1632RP-30	t _{cw}	10 12		ns
Address Set-up Time 89C1632RP-25 89C1632RP-30	t _{AS}	0		ns
Address Valid to End of Write 89C1632RP-25 89C1632RP-30	t _{AW}	10 12		ns
Write Pulse Width (OE High) 89C1632RP-25 89C1632RP-30	t _{WP}	10 12		ns
Write Pulse Width (OE Low) 89C1632RP-25 89C1632RP-30	t _{WP}	12 14		ns
Write Recovery Time 89C1632RP-25 89C1632RP-30	t _{WR}	0		ns
Write to Output High-Z 89C1632RP-25 89C1632RP-30	t _{whz}		7 9	ns
Data to Write Time Overlap 89C1632RP-25 89C1632RP-30	t _{DW}	7 9		ns
Data Hold from Write Time 89C1632RP-25 89C1632RP-30	t _{DH}	0		ns
End Write to Output Low-Z 89C1632RP-25 89C1632RP-30	t _{ow}	3 3		ns

16 Megabit (512k x 32-bit) MCM SRAM

FIGURE 1. AC TEST LOADS

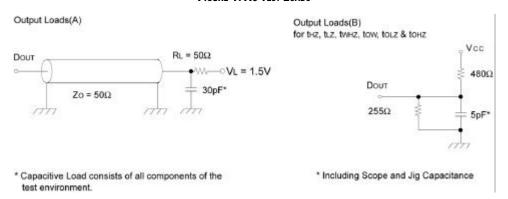


FIGURE 2. TIMING WAVEFORM OF READ CYCLE (1) (ADDRESS CONTROLLED)

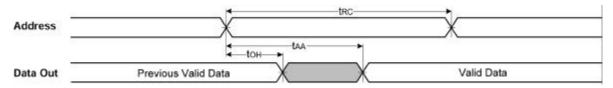
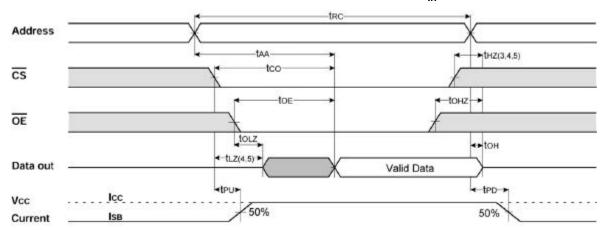



Figure 3. Timing Waveform of Read Cycle (2) ($\overline{WE} = V_{IH}$)

- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. t_{H7} and t_{OH7} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OI} levels.
- 4. At any given temperature and voltage conditions, t_{HZ} (max) is less than t_{LZ} (min) both for a given device and from device to device.
- 5. Transition is measured <u>+</u>200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with $\overline{CS} = V_{II}$.
- 7. Address valid prior to coincident with $\overline{\text{CS}}$ transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

16 Megabit (512k x 32-bit) MCM SRAM

FIGURE 4. TIMING WAVEFORM OF WRITE CYCLE (1) (OE CLOCK)

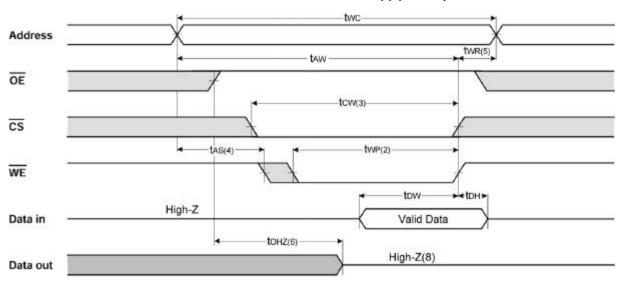
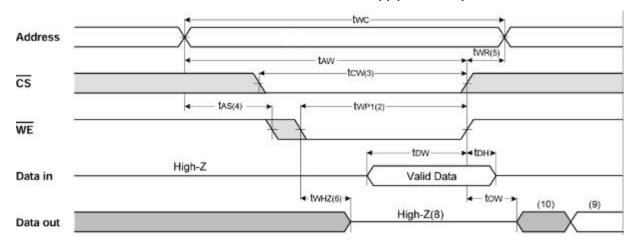
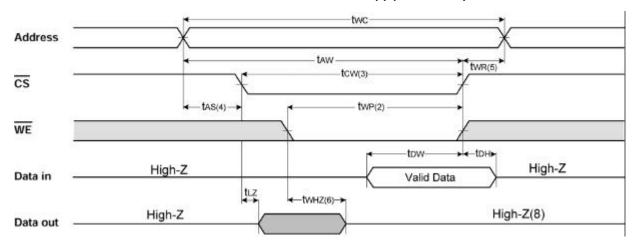
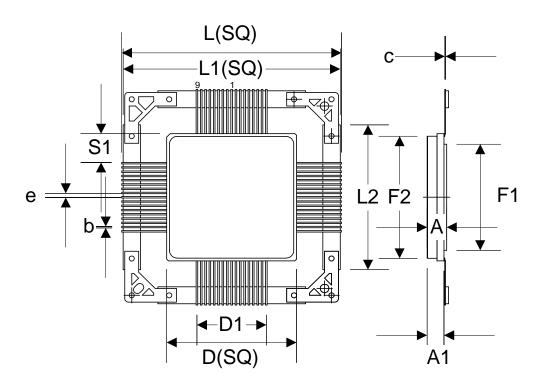




FIGURE 5. TIMING WAVEFORM OF WRITE CYCLE (2) (OE LOW FIXED)



16 Megabit (512k x 32-bit) MCM SRAM

FIGURE 6. TIMING WAVEFORM OF WRITE CYCLE (3) (CS CONTROLLED)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low $\overline{\text{CS}}$ and $\overline{\text{WE}}$. A write begins at the latest transition $\overline{\text{CS}}$ going low and $\overline{\text{WE}}$ going low. A write ends at the earliest transition $\overline{\text{CS}}$ going high or $\overline{\text{WE}}$ going high. t_{WP} is measured from the beginning of write to the end of write.
- 3. t_{CW} is measured from the later of \overline{CS} going low to end of write.
- 4. t_{AS} is measured from the address valid to the beginning of write.
- 5. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as \overline{CS} or \overline{WE} going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization of elimination of bus contention conditions is necessary during read and write cycle.
- 8. If \overline{CS} foes low simultaneously with \overline{WE} going or after \overline{WE} going low, the outputs remain high impedance state.
- 9. D_{OLIT} is the read data of the new address.
- 10. When \overline{CS} is low, I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

68 PIN RAD-PAK® QUAD FLAT PACKAGE

Symbol		DIMENSION			
	Min	Nом	Max		
А	0.206	0.225	0.244		
b	0.015	0.017	0.018		
С	0.008	0.009	0.0012		
D	1.479	1.494	1.509		
D1		0.800			
L1	2.485	2.500	2.505		
L2	1.690	1.700	1.710		
A1	0.180	0.195	0.210		
е		0.050 BSC			
\$1		0.339			
L	2.485	2.510	2.545		
F1	1.239	1.244	1.249		
F2	1.429	1.434	1.439		
N		68			

Q68-04 Note: All dimensions in inches

16 Megabit (512k x 32-bit) MCM SRAM

Important Notice:

These data sheets are created using the chip manufacturers published specifications. Space Electronics verifies functionality by testing key parameters either by 100% testing, sample testing or characterization.

The specifications presented within these data sheets represent the latest and most accurate information available to date. However, these specifications are subject to change without notice and Space Electronics assumes no responsibility for the use of this information.

Space Electronics' products are not authorized for use as critical components in life support devices or systems without express written approval from Space Electronics.

Any claim against Space Electronics Inc. must be made within 90 days from the date of shipment from Space Electronics. Space Electronics' liability shall be limited to replacement of defective parts.