intel.

Bulk Performance
Analysis of the

8x930Ax USB
Controller

August 20, 1997

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability,
or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 1997

*Third-party brands and names are the property of their respective owners.

intal.

1.0 About This Document

The purpose of this document is to demonstrate the
bulk data transfer capability of the 8x930Ax USB
controller. The performance data provided in this
document is based on actual lab tests.

1.1 Additional Information Sources

Intel documentation may be obtained by calling your
local Intel Sales Representative or Intel Literature
Sales at 1-800-548-4725, or through Intel's World
Wide Web location at: www.intel.com/design/usb/ .

2.0 Summary

The tests were conducted using a COMPAQ
Presario PC, two Intel PDK PC’s, an 8x930Ax
Nohau In-Circuit Emulator, and an Intel 8x930Ax
evaluation board. More complete details on the test
setup are provided in subsequent sections.

USB defines four transfer types: Bulk, Control,
Isochronous and Interrupt. This document provides
performance data solely for bulk transfer. Since
the program execution speed of the 8x930Ax
controller varies depending on the location of
code/data (internal or external), the 8x930Ax was
tested in three different ways:

1. Using Internal ROM only;

2. Using a combination of both internal ROM and
external ROM; and

3. Using external ROM only

Table 1 shows the performance data for the three
code locations. When program execution is from
internal ROM the data transfer rate is very close to
the theoretical maximum for bulk transfers. When
program execution is from external ROM the data
transfer rate is lowest, due to the code fetch
required to external memory.

Bulk Performance Analysis of the 8x930Ax Controller

Table 1. 8x930Ax Controller Bulk Transfer

Rates
Bulk Bulk
Code Location IN ouT
(Mbps) (Mbps)

Internal ROM 9.216 9.216
Internal/External 7.168 7.168
ROM
External ROM 5.632 5.632
*Bulk theoretical 9.728

3.0 USB Bulk Packet

USB defines the allowable maximum bulk data
payload sizes as 8, 16, 32, or 64 bytes. The best
transfer rate is achieved using a data payload size
of 64 bytes. This is because there are less protocol
overhead as larger data payloads are used. Bulk
also has a better data transfer rate than isoch-
ronous, because of the ability to do multiple data
transfers per frame. But the trade-off is that bulk
does not have guaranteed frame time, as isoch-
ronous does. Theoretically, bulk data can be trans-
ferred up to 9.728 Mbps, while isochronous is
8.18Mbps. Refer to Section 5.8, Bulk Transfers, of
the Universal Serial Bus Specification V1.0 for more
details on bulk performance.

4.0 Test Setup

This section describes the controller setup, PC
setup and measurement techniques.

4.1 8x930Ax Controller Setup

The 8x930Ax controller was tested using endpoint
one (EP1) and running at an internal clock
frequency (Fclk) of 12 MHz. The 8x930Ax
controller was also setup to transfer USB data at full
speed (12Mbps). Endpoint one was chosen
because it has the largest USB FIFO/buffer sizes.
The dual-buffering feature of the 8x930Ax controller
USB FIFO was also used. Dual-buffering allows
faster data transmission because it allows the CPU
to access one of the two data sets to load or unload
data while the USB hardware can access the
second data set.

Bulk Performance Analysis of the 8x930Ax Controller

4.2 Host PC Setup

A 166 MHz COMPAQ Presario PC was used as the
host PC to send and receive USB data. A DOS
program was used to generate USB transactions.
The test was carried out using only one USB device
on the bus, for example, only the 8x930Ax
controller.

4.3 Monitoring and Measuring USB
Transactions

An Intel PDK PC, equipped with a CATC USB
Detective Probe, was used to monitor and measure
USB traffic. The transfer rates were measured by
using the number of USB data packets transferred
per USB frames.

5.0 Test Descriptions

As explained above, the 8x930Ax was tested using
three different methods; internal ROM only, combi-
nation of internal/external ROM, and external ROM
only. This section explains how each method was
used to test the 8x930Ax controller. In all three
methods, the 8x930Ax controller was configured to
run in paged mode and source.

5.1 Internal ROM

To emulate internal ROM, a Nohau in-circuit
emulator was used. The in-circuit emulator
employs high-speed SRAMs to emulate internal
ROM. The emulator was installed in an Intel PDK
PC. The sample code examples in Appendix A
were used to run on the emulator. Eighteen (18)
64-byte packets were measured per USB frame for
both transmit and receive directions. This results in
a transfer rate of (18 packets * 64 bytes/packet * 8
bits/byte * 1000) bps or 9.216 Mbits/sec.

5.2 Internal/External ROM
Combination

In this test, an Intel 8x930Ax evaluation board was
used to run the sample code examples in Appendix
A. In these tests, all the code, except for the "block
move" routines, were placed in external memory.
An 8x930Ax with a programmed internal ROM was
used. The "block move" routines similar to the ones
shown in the sample code examples in Appendix A

2

intgl.

were called internally. Thus, each time the "block
move" routines were called, the 8x930Ax fetched
code from the internal ROM. This setup gave the
second best results. Fourteen (14) 64-byte packets
were measured per USB frame in both transmit and
receive directions. This results in a transfer rate of
(14 packets * 64 bytes/packet * 8 bits/byte * 1000)
bps or 7.168 Mbps.

5.3 External ROM

In this test, an Intel 8x930Ax evaluation board was
used to run the sample code examples in Appendix
A. In these tests, all the code were placed in
external memory, even the "block move" routines.
Using this setup, eleven (11) 64-byte packets were
measured per USB frame in both transmit and
receive directions. This results in a transfer rate of
(11 packets * 64 bytes/packet * 8 bits/byte * 1000)
bps or 5.632 Mbps.

6.0 Conclusion

Based on the test results the 8x930Ax controller
performed the best when using only internal ROM.
The results when using only internal ROM are very
close to the theoretical maximum rate (9.728 Mbps).
It is also important to note that the performance to
transfer data over USB may vary based on the
nature of the application. For example, it may
depend on how much of the 8x930Ax controller is
utilized in the application environment to handle
other chores besides transferring USB data.

n
Intel® Bulk Performance Analysis of the 8x930Ax Controller

Appendix A

This appendix contains the sample assembly code
examples used to perform receive and transmit
tests. Both examples are interrupt-driven. After
endpoint one is setup, the program runs in an
infinite loop waiting for a USB interrupt - endpoint
one interrupt in this case. In the interrupt service
routine (ISR), the "block move" routine is called to
either empty or fill the USB FIFO. After the interrupt
is serviced, the program returns to the main loop.

Two techniques are used to optimize the code to
get better throughput:

1. The "block move" routine are enrolled instead
of using a loop reiterating sixty-three times. To
implement the "block move" routine in a loop
form would require a "compare and jump"
instruction, which would take a hit.

2. Inthe receiving example, before the ISR
returns to the main loop after servicing the
request, it checks to see if another data set
were received while the previous one was
being serviced. If so, the ISR empties the sec-
ond data set and then returns to the main loop,
otherwise it simply returns to the main loop
and waits for an interrupt.

In the transmitting example, before the ISR returns
to the main loop after servicing the request, it
checks to see if the other data set has already been
transmitted. If so, the ISR loads the data set and
then returns to the main loop, otherwise it just
returns to the main loop and waits for an interrupt.

L
Bulk Performance Analysis of the 8x930Ax Controller Intel®

Sample Code for Bulk IN Test

; Bulk IN performance test. Uses internal and external nove64 inline

; code to verify/conpare performance. This test is done using HCD_LITE,

; which is DOS-based application to generate USB transacti ons.

This test disregards USB bus errors and uses interrupt-driven nechani sm
; Wien this code is used with the enulator, the external nove64 routine is
; used.

; Last Updated: 4/30/97

R R T R I R R R R R R R T R I R R R R I I R N R R R N N R N R R N R N N R AN RS N NN R N A}

| NCLUDE 8X930AX. i nc

DEFI NE VECTOR_SEG, SPACE=CODE, ORG=FF4000h
SEGVENT VECTOR SEG

RESET_VECTOR. LJMP START_EXEC

| NTO_VECTOR: LIMP $
ds 5
TI MO_VECTOR: LIMP $
ds 5
| NT1_VECTOR: LIMP $
ds 5
TI ML_VECTOR: LIMP $
ds 5
SER_VECTOR: LIMP $
ds 5
TI M2_VECTOR: LIMP $
ds 5
PCA_VECTOR: LIMP $
ds 13
SOF_VECTOR: LIMP SOF_| SR
ds 5
USB_FUNC_VECTOR LJMP FUNC I SR
ds 5
SUS RSM VECTOR LJMP $
ds 25h
TRAP_VECTOR: LIMP $
END_VECTORS:

DEFI NE CODE_SEGMVENT, SPACE=CODE, ORG=FF4080H
SEGVENT CODE_SEGVENT
START_EXEC:
CLR LC ; enabl e high clock npde
nov SP, #LOW STACK_DATA)
nov SPH, #Hl GH(STACK_DATA)
MOV EPI NDEX, #01h
MOV EPCON, #03h
MOV TXCON, #C4h
MOV TXCNTL, #00h
MOV TXCON, #C4h

I I R R R N R N N R N N N R N R A RN N R RN R]

Enabl e function interrupt

I R R R R N R R N R N N RN N R N RN N R RN

MOV | ENO, #80h ; enable global interrupt
MOV | EN1, #03h ; enable function interrupt & SOF interrupt

n
Intel® Bulk Performance Analysis of the 8x930Ax Controller

MOV FI E, #04h ; enable transmt interrupt
MOV P1, #00h

MOV VRO, #0OFFh

MOV VR2, #4000h

MOV VR8, #00FFh

MOV WR10, #6000h

MOV WR12, #0O0OFFh

MOV WR14, #7000h

MOV TMOD, #01h

IR R R N N R N N N A N R N RN R NN N LN AR}

; Get 2 datasets ready

I R I A B R AR B R B A B B R SR SR B AR AR S A B A SRR

MOV R4, TXFLG ; check for room

ANL R4, #Q0h

CINE R4, #COh, _EMPTYO ; go get nore data
SETB P1.0

LIMP $; should not get here

_EMPTYO:
MOV THO, #00h
MOV TLO, #0O0h
SETB TCON. 4 ; start tinmer

; The LCALL on the following line calls either internal ROM or
; the BLOCK_MOVE routine located in this assenbly file. One
; the LCALL |ine nust be commented.

R T R T T N T R I N I T I R T I R T B A R R R R T R R R R R R N R N N N N AR NN NS N RN N A

; LCALL 2B83h ; call internal ROM nove64 routine
LCALL _BLOCK_MOVE ; external nopve64 routine
CLR TCON. 4 ; stop tinmer
MOV R4, THO

MOV @R12, R4

INC DR12, #1

MOV R4, TLO

MOV @R12, R4

INC DR12, #1

MOV TXCNTL, #64 ; load FIFO

MOV R4, TXFLG ; check for room
ANL R4, #Q0h

CINE R4, #COh, _EMPTY1 ; go get nore data
SETB P1.1

LIJMP $; should not get here

; The LCALL on the following line calls either internal ROM or
; the BLOCK_MOVE routine located in this assenbly file. One
; the LCALL line nust be commented.

IR e

; LCALL 2B83h ; call internal ROM npbve64 routine
LCALL _BLOCK_MOVE ; external npve64 routine
MOV TXCNTL, #64 ; |load FIFO
MOV R5, #00h
SETB P1. 2
LIMP $; wait here for interrupt

L
Bulk Performance Analysis of the 8x930Ax Controller Intel®

; This is the external block nobve routine which is called
; to nove data fromexternal into the FIFO A simlar routine
; exists internal to the 8x930Ax controller.

R R R R R R N R R R R R R N R N R R R R R R R N R R R N R R B R B R N N R N R A R N R NN N RN R R RS L BN BE RN

_BLOCK_MOVE:
"o MOV VR, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
1: MOV VR6, @FRO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
2: MOV VR6, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
3: MOV WR6, (@RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
4: MOV VR, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
5: MOV WR6, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
6: MOV VR, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
7: MOV WR6, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
8: MOV VR6, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
9: MOV WR6, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
_10: MOV WR6, @RO
MOV TXDAT, R6
MOV TXDAT, R7

INC DRO, #2
11 MOV VR, @RO
MOV TXDAT, R6

_12:

_13:

_14:

_15:

_16:

_17:

_18:

_19:

_20:

_21:

_22:

_23:

_24:

TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @PRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @PRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @PRO
TXDAT, R6
TXDAT, R7

Bulk Performance Analysis of the 8x930Ax Controller

L
Bulk Performance Analysis of the 8x930Ax Controller Intel®

_25:

_26:

_27:

_28:

_29:

_30:

_31:

; This routi

I NC
RET

FUNC | SR

JB TXSTAT. 1,

CLR

DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @DRO
TXDAT, R6
TXDAT, R7
DRO, #2

WR6, @RO
TXDAT, R6
TXDAT, R7
DRO, #2

ne serves

FTXD1

PUSH R4

MoV
ANL

CINE R4, #C0h,

POP

RETI

_ERRORO
R4, TXFLG
R4, #COh

R4

as the ISR for the USB function interrupt.

; clear pending interrupt

; check for room

_EMPTY2 ; g0 get nore data

; The LCALL on the following line calls either internal ROM or
; the BLOCK_MOVE routine located in this assenbly file. One
; the LCALL line nust

LCALL 2B83h
LCALL _BLOCK_MOVE ; call external nobve64 routine
MOV TXCNTL, #64 ; |oad FI FO

be comment ed.

call internal ROM npbve64 routine

n
Intel® Bulk Performance Analysis of the 8x930Ax Controller

P R R R R R R R A R B R B R B R R R BN R A B N R A R R R R B R B R B R B R R R R I A R SR B R R BN B A B NN SR AR NN S B B BRI

; Fill the next dataset to save sone context-switch tine.

I R R T R R R R R R N R R R R R N R R R R R R R R R R R N R R R N N R N N R R N R R N N N A R R AR B R BN A

JB TXSTAT. 1, _ERRORO
MOV R4, TXFLG ; check for room

ANL R4, #COh

CINE R4, #COh, _EMPTY3 ; go get nore data
POP R4

RETI

R T R R T N I R N R R I I A I A N R R R I R A R R A R N A R R N N N N N A R NN NS RN RN N A

; The LCALL on the following line calls either internal ROM or
; the BLOCK_MOVE routine located in this assenbly file. One
; the LCALL line nmust be commented.
; LCALL 2B83h ; call internal ROM nobve64 routine
LCALL _BLOCK_MOVE ; external nove64 routine
MOV TXCNTL, #64 ; |load FIFO
POP R4
RETI
SOF_| SR
RETI
_ERRORO:
CLR I EN1. 1
MOV P1, #OEh
LIMP $
_ERRORI1:
CLR I EN1. 1
MOV P1, #OFh
LIMP $
DEFI NE PDATA _SEG SPACE=PDATA
SEGVENT PDATA SEG
STACK_DATA: ds 100h

L
Bulk Performance Analysis of the 8x930Ax Controller Intel®

Sample Code for Bulk OUT Test

; Bulk IN performance test. Uses internal and external nove64 inline

; code to verify/conpare performance. This test is done using HCD_LITE,

; which is DOS-based application to generate USB transacti ons.

; This test disregards USB bus errors and uses interrupt-driven mechani sm
; Wien this code is used with the enulator, the external nove64 routine is
; used.

; Last Updated: 4/30/97

R R T R I R R R R R R R T R I R R R R I I R N R R R N N R N R R N R N N R AN RS N NN R N A}

| NCLUDE 8X930AX. i nc

DEFI NE VECTOR_SEG, SPACE=CODE, ORG=FF4000h
SEGVENT VECTOR SEG

RESET_VECTOR. LJMP START_EXEC

| NTO_VECTOR: LIMP $
ds 5
TI MO_VECTOR: LIMP $
ds 5
| NT1_VECTOR: LIMP $
ds 5
TI ML_VECTOR: LIMP $
ds 5
SER_VECTOR: LIMP $
ds 5
TI M2_VECTOR: LIMP $
ds 5
PCA_VECTOR: LIMP $
ds 13
SOF_VECTOR: LIMP SOF_| SR
ds 5
USB_FUNC_VECTOR LJMP FUNC I SR
ds 5
SUS RSM VECTOR LJMP $
ds 25h
TRAP_VECTOR: LIMP $
END_VECTORS:

DEFI NE CODE_SEGVENT, SPACE=CODE, ORG=FF4080H
SEGVENT CODE_SEGVENT
START_EXEC:
CLR LC ; Enabl e high-cl ock node
mov SP, #LOW STACK_DATA)
mov SPH, #HI GH(STACK_DATA)
MOV EPI NDEX, #01h
MOV EPCON, #0Ch
MOV TXCON, #04h ; 256/ 256
MOV RXCON, #94h ; BULK node
MOV P1, #00h
MOV | ENO, #80h ; enable global interrupt
MOV | EN1, #03h ; enable function interrupt & SOF interrupt
SETB FIE. 3 ; enabl e receive interrupt
MOV VRO, #O0OFFh;
MOV WR2, #7000h

10

n
Intel® Bulk Performance Analysis of the 8x930Ax Controller

MOV WR8, #0OFFh

MOV WR10, #6000h

MOV WR12, #O0OFFh

MOV WR14, #6100h

MOV TMOD, #01h

MOV R5, #00h

SETB P1. 2

LIMP $; wait for function interrupt here

R I R T T N I R N I R I T R I A N R R R R R A R R R R N R N A R RN R N N A N N R NN NS R RN N A

; This is the external block nove routine which is called
; to nove data fromFIFOto external. A simlar routine
; exists internal to the 8x930Ax controller.

1: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I NC DRO, #2
2: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I NC DRO, #2
3: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I NC DRO, #2
4: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I NC DRO, #2
5: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I'NC DRO, #2
6: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I NC DRO, #2
7: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I NC DRO, #2
8: MOV R6, RXDAT
MOV R7, RXDAT
MOV @RO, WR6
I NC DRO, #2
9: MOV R6, RXDAT
MOV R7, RXDAT

I 11

Bulk Performance Analysis of the 8x930Ax Controller

_10:

11

_12:

_13:

_14:

_15:

_16:

A7

_18:

_19:

_20:

_21:

_22:

12

MoV
I NC
MoV

I'NC
MoV
MoV
MoV

@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0O, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6

_23:

_24:

_25:

_26:

_27:

_28:

_29:

_30:

_31:

DRO, #2

R6, RXDAT
R7, RXDAT
@R0O, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@RO, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0O, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@RO, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

R6, RXDAT
R7, RXDAT
@R0, WR6
DRO, #2

Bulk Performance Analysis of the 8x930Ax Controller

R R R R R R A R B R B R B R R RN B A N N A R RN R BN B N B B N SRR

; This function serves as the function ISR

R R R R R R R R B R B R B R B R R BN N A N N A R RN R B R B N B B N B RN

FUNC | SR
CLR FRXD1
PUSH R4
JB RXSTAT. 1,

MOV R4, RXFLG

ANL

CINE R4, #00h,

POP
RETI

; clear pending interrupt

_ERRORO
R4, #Q0h

R4

_DATA_RECE! VEDO:

_OKAYO:

_DATA_RECE! VEDO

data

packet received

13

Bulk Performance Analysis of the 8x930Ax Controller

; The

be conment ed.

LCALL on the following line calls either
BLOCK_MOVE routine located in this assenbly file.
LCALL Iine nust

i nt ernal

ROM or
One

R R R R R R R R R R R R R R N R R N R R R R N R R R N N R N R R R N R R N R AR N R NN N N R R R A B BB RN

LCALL _BLOCK_MOVE ;
LCALL 3B83h ; call
SETB RXFFRC

call
i nternal

ext er nal

routi ne

routine
; release data set

R T I N I R R R R R R A I R I R R R R I T R N R R R N N R N R R N N N N R AN A RS LN LN R A}

; Check if a NEW packet was received before | eaving the ISR
; This may save some context-switch tine.

N R T R I T R R R R R N I R I I B R N I I R N R R R N N R N R R N N N N R AN RS NN R N A}

_MORE_DATA:

JB RXSTAT. 1,

MOV R4, RXFLG

ANL R4, #COh
CINE R4, #00h,
POP R4

RETI

_DATA_RECE! VEDL:

_OKAY1:

_ERRORO

_DATA_RECE! VEDL

dat a packet

received

R R R R R R R R R R R R R R R N R R R R N R B R N B R R B N R B R I B R R B R AR B B N R N N B R AN B SRR

; The LCALL on the following line calls either

i nt ernal

; the BLOCK_MOVE routine located in this assenbly file.
; the LCALL |ine nust be comented.

ROM or
One

R T T T R N A R T T I I A I R T B R I T R N R R R R R N R N R R N R R N N R AN A RS BN IR R R A}

SOF_| SR

_ERRORO:

_ERRORL:

_ERRORZ:

_ERRORS:

LCALL _BLOCK_MOVE ;

LCALL 3B83h
SETB RXFFRC

POP R4
RETI

RETI

CLR I ENL. 1
MOV P1, #0OCh
LIMP $

CLR IENL. 1
MOV P1, #ODh
LIMP $

CLR I ENL. 1
MOV P1, #OEh
LIMP $

CLR I ENL. 1
MOV P1, #OFh
LIMP $

; call

; stop

; stop

; stop

; stop

DEFI NE PDATA_SEG, SPACE=PDATA

SEGVENT

STACK_DATA:

14

PDATA_SEG

ds 100h

cal |
i nt ernal

ext er nal

routi ne

routine
; release data set

interrupt

interrupt

interrupt

interrupt

	Bulk Performance Analysis of the 8x930Ax USB Contr...
	1.0 About This Document
	1.1 Additional Information Sources

	2.0 Summary
	Table 1. 8x930Ax Controller Bulk Transfer Rates

	3.0 USB Bulk Packet
	4.0 Test Setup
	4.1 8x930Ax Controller Setup
	4.2 Host PC Setup
	4.3 Monitoring and Measuring USB Transactions

	5.0 Test Descriptions
	5.1 Internal ROM
	5.2 Internal/External ROM Combination
	5.3 External ROM

	6.0 Conclusion
	Appendix A
	Sample Code for Bulk IN Test
	Sample Code for Bulk OUT Test

