82C83H

March 1997

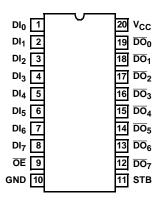
CMOS Octal Latching Inverting Bus Driver

Features

- Full 8-Bit Parallel Latching Buffer
- Bipolar 8283 Compatible
- Three-State Inverting Outputs
- Propagation Delay25ns Max
- Gated Inputs
 - Reduce Operating Power
 - Eliminate the Need for Pull-Up Resistors
- Single 5V Power Supply
- Low Power Operation
- Operating Temperature Ranges

 - I82C83H.....-40°C to +85°C
 - M82C83H......55°C to +125°C

Description


The Intersil 82C83H is a high performance CMOS Octal Latching Buffer manufactured using a self-aligned silicon gate CMOS process (Scaled SAJI IV). The 82C83H provides an 8bit parallel latch/buffer in a 20 lead pin package. The active high strobe (STB) input allows transparent transfer of data and latches data on the negative transition of this signal. The active low output enable (OE) permits simple interface to microprocessor systems. The 82C83H provides inverted data at the outputs.

Ordering Information

PART NO.	PACKAGE	TEMP RANGE	PKG. NO
CP82C83H	20 Ld PDIP	0°C to +70°C	E20.3
IP82C83H		-40°C to +85°C	E20.3
CS82C83H	20 Ld PLCC	0°C to +70°C	N20.35
IS82C83H		-40°C to +85°C	N20.35
CD82C83H	20 Ld CERDIP	0°C to +70°C	F20.3
ID82C83H		-40°C to +85°C	F20.3
MD82C83H/B		0°C to +70°C	F20.3
8406702RA	SMD#	-55°C to +125°C	F20.3
MR82C83H/B	20 Pad CLCC	-55°C to +125°C	J20.A
84067022A	SMD#	-55°C to +125°C	J20.A

Pinouts

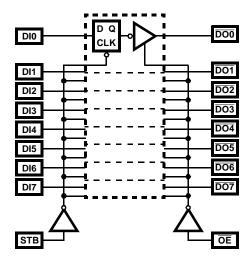
82C83H (PDIP, CERDIP) **TOP VIEW**

TRUTH TABLE

STB	OE	DI	DO
X	Н	X	HI-Z
Н	L	L	Н
Н	L	Н	L
\downarrow	L	Х	†

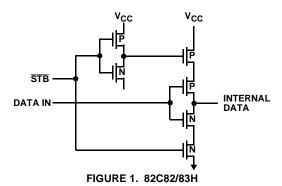
H = Logic One = Logic Zero X = Don't Care HI-Z = High Impedance Negative Transition

Latched to Value of Last


82C83H (PLCC, CLCC) **TOP VIEW**

PIN NAMES

PIN	DESCRIPTION	
DI ₀ - DI ₇	Data Input Pins	
DO ₀ - DO ₇	Data Output Pins	
STB	Active High Strobe	
OE	Active Low Output Enable	


Functional Diagram

Gated Inputs

During normal system operation of a latch, signals on the bus at the device inputs will become high impedance or make transitions unrelated to the operation of the latch. These unrelated input transitions switch the input circuitry and typically cause an increase in power dissipation in CMOS devices by creating a low resistance path between V_{CC} and GND when the signal is at or near the input switching threshold. Additionally, if the driving signal becomes high impedance (``float'' condition), it could create an indeterminate logic state at the inputs and cause a disruption in device operation.

The Intersil 82C8X series of bus drivers eliminates these conditions by turning off data inputs when data is latched (STB = logic zero for the 82C82/83H) and when the device is disabled (\overline{OE} = logic one for the 82C86H/87H). These gated inputs disconnect the input circuitry from the V_{CC} and ground power supply pins by turning off the upper P-channel and lower N-channel (See Figures 1 and 2). No current flow from V_{CC} to GND occurs during input transitions and invalid logic states from floating inputs are not transmitted. The next stage is held to a valid logic level internal to the device.

D.C. input voltage levels can also cause an increase in ICC if these input levels approach the minimum V_{IH} or maximum V_{IL} conditions. This is due to the operation of the input circuitry in its linear operating region (partially conducting

state). The 82C8X series gated inputs mean that this condition will occur only during the time the device is in the transparent mode (STB = logic one). ICC remains below the maximum ICC standby specification of 10μ A during the time inputs are disabled, thereby greatly reducing the average power dissipation of the 82C8X series devices.

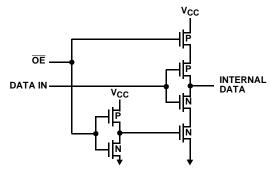


FIGURE 2. 82C86H/87H GATED INPUTS

Decoupling Capacitors

The transient current required to charge and discharge the 300pF load capacitance specified in the 82C83H data sheet is determined by

$$I = C_L (dv/dt)$$

Assuming that all outputs change state at the same time and that dv/dt is constant;

$$I = C_L \frac{(V_{CC} \times 80 \text{ percent})}{t_R/t_F}$$
 (EQ. 1)

where t_R = 20ns, V_{CC} = 5.0V, C_L = 300pF on each eight outputs.

$$I = (8 \times 300 \times 10^{-12}) \times (5.0 \times 0.8)/(20 \times 10^{-9}) = 480 \text{mA}$$

This current spike may cause a large negative voltage spike on V_{CC} which could cause improper operation of the device. To filter out this noise, it is recommended that a $0.1\mu F$ ceramic disc capacitor be placed between V_{CC} and GND at each device, with placement being as near to the device as possible.

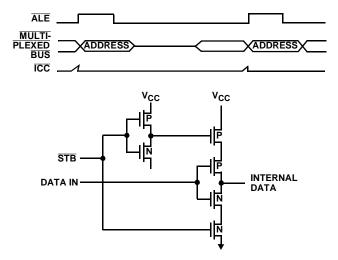


FIGURE 3. SYSTEM EFFECTS OF GATED INPUTS

82C83H

Absolute Maximum Ratings

Supply Voltage	+8.0V
Input, Output or I/O Voltage	GND 0.5V to V _{CC} +0.5V
ESD Classification	Class 1

Operating Conditions

Operating Voltage Range	5\
Operating Temperature Range C82C83H	oc
I82C83H	00
M82C83H55 ^o C to +125 ^c	oC

Thermal Information

Thermal Resistance (Typical)	$\theta_{JA}^{\circ}C/W$	θ ^{JC} _C C/W
CERDIP Package	70	16
CLCC Package	80	20
PDIP Package	75	N/A
PLCC Package	75	N/A
Storage Temperature Range	65 ⁰	C to +150°C
Max Junction Temperature Ceramic Package	ge	+175 ⁰ C
Max Junction Temperature Plastic Package		+150 ^o C
Lead Temperature (Soldering 10s) (PLCC -	Lead Tips On	ly) +300°C

Die Characteristics

Gate Count	 265 Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Electrical Specifications $V_{CC} = 5.0V \pm 10\%$; $T_A = 0^{\circ}C$ to +70°C (C82C83H);

 $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C (182C83H)};$ $T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C (M82C83H)}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V _{IH}	Logical One Input Voltage	2.0 2.2	-	V	C82C83H, I82C83H, M82C83H, (Note 1)
V _{IL}	Logical Zero Input Voltage		0.8	V	
V _{OH}	Logical One Output Voltage	3.0 V _{CC} -0.4V	•	V	I_{OH} = -8mA, I_{OH} = -100mA, \overline{OE} = GND
V _{OL}	Logical Zero Output Voltage		0.45	V	$I_{OL} = 20$ mA, $\overline{OE} = GND$
lı	Input Leakage Current	-10	10	μΑ	V _{IN} = GND or V _{CC} , DIP Pins 1-9,11
Io	Output Leakage Current	-10	10	μΑ	$V_O = GND \text{ or } \overline{OE} \ge V_{CC} -0.5V$ DIP Pins 12-19
ICCSB	Standby Power Supply Current	-	10	μΑ	V _{IN} = V _{CC} or GND V _{CC} = 5.5V Outputs Open
IC COP	Operating Power Supply Current	-	1	mA/ MHz	T _A = +25°C, V _{CC} = 5V, Typical (See Note 2)

NOTES:

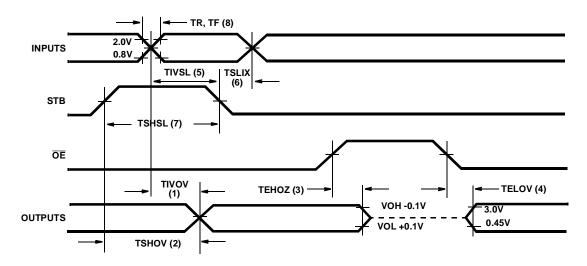
Capacitance $T_A = +25$ °C

l	SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
Ī	C _{IN}	Input Capacitance	13	pF	FREQ = 1MHz, all measure- ments are referenced to device GND
	C _{OUT}	Output Capacitance	20	pF	

^{1.} V_{IH} is measured by applying a pulse of magnitude = V_{IHMIN} to one data Input at a time and checking the corresponding device output for a valid logical 1 - during valid input high time. Control pins (STB, $\overline{\text{CE}}$) are tested separately with all device data input pins at V_{CC} -0.4V.

^{2.} Typical ICCOP = 1 mA/MHz of STB cycle time. (Example: 5MHz μ P, ALE = 1.25MHz, ICCOP = 1.25mA).

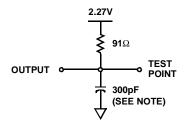
AC Electrical Specifications $\begin{array}{ll} V_{CC}=5.0V\pm10\%;\ C_L=300pF\ (Note\ 1),\ FREQ=1MHz\\ &T_A=0^{o}C\ to\ +70^{o}C\ (C82C83H);\\ &T_A=-40^{o}C\ to\ +85^{o}C\ (I82C83H); \end{array}$


 $T_A = -55^{\circ}C \text{ to } +125^{\circ}C \text{ (M82C83H)}$

		LII	LIMITS		
SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TIVOV	Propagation Delay Input to Output	5	25	ns	See Notes 2, 3
(2) TSHOV	Propagation Delay STB to Output	10	50	ns	See Notes 2, 3
(3) TEHOZ	Output Disable Time	5	22	ns	See Notes 2, 3
(4) TELOV	Output Enable Time	10	45	ns	See Notes 2, 3
(5) TIVSL	Input to STB Set Up Time	0	-	ns	See Notes 2, 3
(6) TSLIX	Input to STB Hold Time	30	-	ns	See Notes 2, 3
(7) TSHSL	STB High Time	15	-	ns	See Notes 2, 3
(8) TR, TF	Input Rise/Fall Times	-	20	ns	See Notes 2, 3

NOTES:

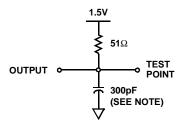
- 1. Output load capacitance is rated 300pF for both ceramic and plastic packages.
- 2. All AC Parameters tested as per test load circuits. Input rise and tall times are driven at 1ns/V.
- 3. Input test signals must switch between V_{IL} -0.4V and V_{IH} +0.4V.

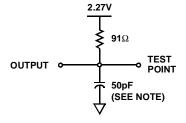

Timing Waveforms

All Timing measurements are made at 1.5V unless otherwise noted.

FIGURE 4. TIMING WAVEFORMS

Test Load Circuits

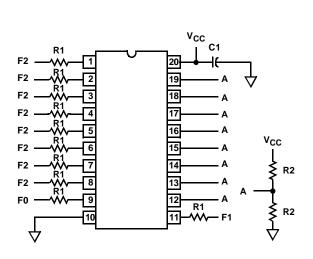



OUTPUT O TEST POINT

300pF
(SEE NOTE)

FIGURE 5. TIVOV, TSHOV

FIGURE 6. TELOV OUTPUT HIGH ENABLE



NOTE: Includes jig and stray capacitance.

FIGURE 7. TELOV OUTPUT LOW ENABLE

FIGURE 8. TEHOZ OUTPUT LOW/HIGH DISABLE

Burn-In Circuits

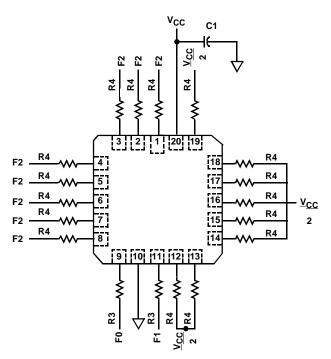


FIGURE 9. MD82C83H CERDIP

FIGURE 10. MR82C83H CLCC

Burn-In Circuits (Continued)

NOTES:

- 1. $V_{CC} = 5.5V \pm 0.5V \text{ GND} = 0V$
- 2. $V_{IH} = 4.5V \pm 10\%$
- 3. $V_{IL} = -0.2 \text{ to } 0.4V$
- 4. R1 = $47kW \pm 5\%$
- 5. $R2 = 2.0 \text{kW} \pm 5\%$
- 6. R3 = 1.0kW ± 5 %
- 7. $R4 = 5.0 \text{kW} \pm 5\%$
- 8. $C1 = 0.01 \mu F$ Minimum
- 9. $F0 = 100kHz \pm 10\%$
- 10. F1 = F0/2, F2 = F1/2, F3 = F2/2

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time withou notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

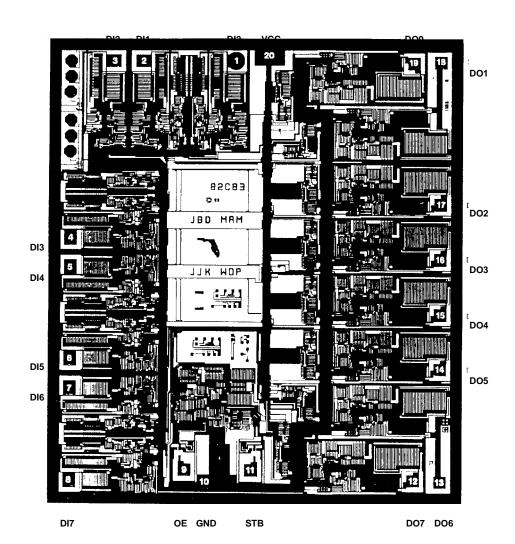
Die Characteristics

DIE DIMENSIONS:

 $138.6 \times 155.5 \times 19 \pm 1 \text{ mils}$

METALLIZATION:

Type: Silicon - Aluminum Thickness: $11k\mathring{A} \pm 2k\mathring{A}$


GLASSIVATION:

Type: SiO_2 Thickness: $8k\mathring{A} \pm 1k\mathring{A}$

WORST CASE CURRENT DENSITY: $2.0 \times 10^5 \text{ A/cm}^2$

Metallization Mask Layout

82C83H

