
82C235
System Controller

Single CHIP 286 AT

Datasheet

August 1991 Revision 2.0

PRELIMINARY

CHIP5°

Copyright Notice

Manual Copyright © 1991, CHIPS and Technologies, Inc.

All Rights Reserved.

Printed in U.S.A.

Trademarks

SCATTM is a trademark of CHIPS and Technologies, Incorporated.

IBM®, IBM PC®, and IBM PC/AT® are registered trademarks of International Business Machines Corporation.

PS2TM, MicrochannelTM, and Personal System/2TM are trademarks of International Business Machines Corporation.

Intel® is a registered trademark of Intel Corporation.

Lonis® is a registered trademark of Lotus Development Corporation.

MS-DOS® is a registered trademark of Microsoft Corporation.

Motorola@ is a registered trademark of Motorola.

Disclaimer

This manual is copyrighted by CHIPS and Technologies, Inc. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the express written permission of CHIPS and Technologies, Inc.

Every possible effort was made to ensure the accuracy of this manual. However, CHIPS Systems Logic Division cannot accept responsibility for any errors in the manual or consequences resulting therefrom.

The information contained in this document is being issued in advance of the production cycle for the device(s). The parameters for the device(s) may change before final production.

CHIPS and Technologies, Inc. makes no representations or warranties regarding the contents of this manual. We reserve the right to revise the manual or make changes in the specifications of the product described within it at any time without notice and without obligation to notify any person of such revision or change.

The information contained in this manual is provided for general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of CHIPS and Technologies, Inc. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

Restricted Rights and Limitations

Use, duplication, or disclosure by the Government is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252,277-7013.

Chips and Technologies, Inc. 3050 Zanker Road San Jose, California 95134 Phone: 408-434-0600

The 82C235 is a VLSI device that incorporates most of the motherboard logic required to build a low-cost, highly-integrated, IBM PC AT-compatible computer. It is designed to be used in conjunction with other Chips and Technologies controllers such as the 82C45X VGA Controller, the 82C601 Multifunction Controller, the 82C765 Floppy Disk Controller, and the 82C710 Integrated Floppy Disk and Multifunction Controller. When used with these devices, the 82C235 acts as the heart of a highly integrated system that significantly reduces motherboard size, component count, and the need for many I/O channel slots. This manual covers the 82C235 only. Consult the following list of related documentation for information regarding other Chips and Technologies devices.

Related Documentation

The following related documentation is also available:

- The 82C45X VGA Controller Data Sheet
- The 82C601 Multifunction Controller Data Sheet
- The 82C765 Floppy Disk Controller Data Sheet
- The 82C710 Integrated Floppy Disk and Multifunction Controller Data Sheet

The Development Kit Package for each chip which includes:

- The Development Kit User's Guide
- The Development Kit System Board
- The Development Kit Schematics

If you would like to review any of the above noted documentation, contact the Chips and Technologies Sales Office near you.

What You Need to Know

This manual is written with the assumption that you have a basic comprehension of computer concepts, operations, and terminology. Understanding of system organization and operation as well as memory functioning is essential. Finally, familiarity with the Industry Standard Architecture (ISA) is highly recommended.

The scope of the information presented in this manual is limited to this CHIPSet and does not include operation of external components. It is assumed you have a working knowledge of these components. With such knowledge, combined with the information presented here, you can utilize this CHIPSet to enhance the performance and excellence of the final product.

Manual Organization

Here's what you'll find in this manual:

- Section 1: Introduction identifies the features of the 82C235.
- Section 2: Bus Control explains the Bus control functionality of the 82C235.
- Section 3: DMA Controller explains the DMA controller as well as the registers used during DMA functions.
- Section 4: The Interrupt Controller explains the two programmable interrupt controllers incorporated in the 82C235.
- Section 5: Programmable Interval Timer describes the Programmable Timer Control in the 82C235.
- Section 6: System Interface discusses the keyboard, memory, DRAM, and other system interfaces used by the 82C235.
- Section 7: Configuration Registers details the registers within the 82C235.
- Section 8: Pin Description provides tables describing the details of each pin.
- Section 9: System Characteristics reports the range of absolute maximum ratings, operating conditions, capacitive characteristics, and the DC and AC characteristics.
- Section 10: Timing Diagrams details the timings of the 82C235 signals.
- Section 11: Physical Dimensions provides the dimensions of the 82C235.
- Appendix A: Address Mapping provides table of the I/O address and Memory maps..
- Appendix B: 82C235 Revision A Silicon discusses the functionality of the 82C235 Revision A.
- U.S. Sales Representatives and Distributors gives a listing of the current distributors of CHIPS products.

Manual Typography

The following typographical conventions are used throughout this manual:

- REGnH identifies the internal register of index n (hexadecimal notation).
- REGnH <x:y> indicates the bit field from bit x to bit y with index n.
- (xxx) signifies the default value after power-On Reset (xxx are register bits).
- Signal names are identified in UPPER CASE, for example, RAS3.
- A dash before the signal name indicates an active low signal; -RAS3.
- A hyphenated signal name specifies a set of signals. For example, -RAS0-3 indicates four signals: -RAS0, -RAS1, -RAS2, and -RAS3.

The following abbreviations are used throughout this manual:

- ICR = Internal Configuration Register
- Kb = kilobit
- KB = kilobyte
- Mb = megabit
- MB = megabyte
- MHz = megahertz
- ns = nanoseconds
- pF = pico farad

Contents

Section	on 1: Introduction	. 1
1.1	Features	1
~		_
	on 2: Bus Control	
2.1	Clock Generation	
	Reset Strap Option	4
2.2	Bus Control	6
	Bus Controller	6
	Local Bus Arbitration	6
Section	on 3: DMA Controller	. 7
3.1	DMA Operation	-
	Idle Condition	
	Program Condition	
	Active Condition	
	Single Transfer Mode	
	Block Transfer Mode	
	Demand Transfer Mode	
	Cascade Mode	
3.2	DMA Transfers	
	Read Transfer	_
	Write Transfer	
	Verify Transfer	. 12
3.3	Auto-Initialization	-
3.4	DREQ Priority	
3.5	Address Generation	. 13
3.6	Current Address Register	. 16
3.7	Current Word Count Register	. 16
3.8	Base Word Count Register	. 16
3.9	Command Register	. 16
3.10	Mode Register	. 17
3.11	Request Register	18

3.12	Request Mask Register	. 20
3.13	Status Register	. 21
3.14	Special Commands Clear Byte Pointer Flip-Flop Set Byte Pointer Flip-Flop Master Clear Clear Request Mask Register	. 21 . 22 . 22 . 22
Sectio	on 4: The Interrupt Controller	.23
4.1	Controller Operation	. 24
4.2	Interrupt Sequence	
4.3	End of Interrupt	
4.4	Priority Assignment	. 27
	Fixed Priority Mode	. 27
	Specific Rotation Mode	
	Automatic Rotation Mode	
4.5	Programming the Interrupt Controller	. 29
	Initialization Command Words	
	Operational Command Words	. 33
Section	on 5: Programmable Interval Timer	.37
5.1	Counter Description	. 38
5.2	Programming the CTC	
مده ل	Read/Write Counter Command	. 40
	Latch Counter Command	
	Read-Back Command	
5.3	Counter Operation	. 42
J.J	Mode 0 - Interrupt on Terminal Count	
	Mode 1 - Hardware Re-Triggerable One-Shot	43
	Mode 2 - Rate Generator	
	Mode 3 - Square Wave Generator	43
	Mode 4 - Software Triggered Strobe	43
	Mode 5 - Hardware Triggered Strobe	
	GATE2	44
Secti	on 6: System Interface	45
6.1	Keyboard Controller Interface	. 4:
	FAST CPURESET and FAST GATEA20	4
6.2	Memory Interface	
	ROM/Shadow RAM Interface	46
		47

	Mixed Size DRAM Support Expanded/Extended Memory	
6.3	Numeric Processor Interface	
6.4	Real Time Clock Interface	53
	Register Access	
	Address Map	54
	Time Calendar and Alarm Bytes	
	Static RAM	
	Control and Status Registers	
	Power-Up/Down	
6.5	I/O Channel Interface	
6.6	Power Management	66
Secti	ion 7: Configuration Registers	6 9
7.1	Internal Configuration Registers	69
7.2	IBM PC AT-Compatible Registers	80
Section	ion 8: Pin Description	83
8.1	The Input and Output Pin Assignments	83
8.2	Pinouts	90
8.3	Pin Diagram	
Section	ion 9: System Characteristics	93
9.1	Physical Characteristics	93
9.2	DC Characteristics	94
9.3	AC Characteristics (16 MHz 82C235)	95
9.4	Tracking Parameters	96
9.5	AC Characteristics (12 MHz 82C235)	99
Section	ion 10: Timing Diagrams	103
Section	on 11: Physical Dimensions	115
Appe	endix A: Address Mapping	117
A. 1	I/O Address Maps	117
A 2	Mamour Address Man	100

Contents

A	endix B: 82C235 Revision A Silicon	121
Арре В 1	Features	121
B.1	AC Characteristics	
B.3	Timing Diagrams - Revision A Silicon	
U.S.	. Sales Representatives	129
	ributors	

List of Figures

Section 1:	Introduction	1
Figure 1-1	82C235 System Block Diagram	
Section 2:	Bus Control	
Figure 2-1	Clock Generation	3
Figure 2-2	Ezample of Circuit to Drive DACK Lines	5
Section 3:	DMA Controller	7
Figure 3-1	Cascaded DMA Controllers	7
Figure 3-2	Command Register	17
Figure 3-3	Mode Register	18
Figure 3-4	Request Register - Write Operations	19
Figure 3-5	Request Register - Read Operations	19
Figure 3-6	Request Mask Register - Set/Reset Operation	20
Figure 3-7	Request Mask Register- Read Operations	20
Figure 3-8	Status Register - Read Only	21
Section 4:	The Interrupt Controller	23
Figure 4-1	Cascaded Interrupt Controllers	
Figure 4-2	Interrupt Controller Block Diagram	
Figure 4-3	Interrupt Sequence	
Figure 4-4	Initialization Sequence	30
Figure 4-5	ICW1 Address 020H (0A0H) - Write Only	30
Figure 4-6	ICW2 Address 021H (0A1H) - Write Only	31
Figure 4-7	ICW3 Format for INTC1	
	Address 021H - Write Only	31
Figure 4-8	ICW3 Format for INTC2	
	Address 0A1H - Write Only	
Figure 4-9	ICW4 Address 021H (A1H) - Write Only	
Figure 4-10	OCW1 Address 021H (0A1H) - Read/Write	
Figure 4-11	OCW2 Address 020H (0A0H) - Write Only	
Figure 4-12	OCW3 Address 020H (0A0H) - Write Only	35

Section 5:	Programmable Interval Timer	37
Figure 5-1	Programmable Timer Control	
Figure 5-2	Control Word (043H)	
Figure 5-3	Read-Back Command Format	
Figure 5-4	Status Byte	41
Section 6:	System Interface	45
Figure 6-1	Keyboard Controller	
Figure 6-2	Expanded Memory Subsystem	
Figure 6-3	EMS/Extended Memory	
Figure 6-4	Numeric Coprocessor Interface	
Figure 6-5	External Real Time Clock	54
Figure 6-6	Register A (0AH) - Read/Write Except for Update-in-Progress	57
Figure 6-7	Register B (0BH) - Read Only	58
Figure 6-8	Register C (0CH) - Read Only	
Figure 6-9	Register D (0DH) - Read Only	60
Figure 6-10	Update Cycle	61
Figure 6-11	Power Conversion and Reset Circuitry (SCAT Programmed for Internal RTC Mode)	62
Figure 6-12	I/O Channel Relationships BUSCCLK = PROCCLK + 2	
Figure 6-13	I/O Channel Relationships BUSCCLK = PROCCLK +4	64
Figure 6-14	I/O Channel Default Cycle	65
Figure 6-15	Master Mode DRAM Timing	
Figure 6-16	Clock Management	67
Figure 6-17	Sleep Mode	68
Section 8:	Pin Description	83
Figure 8-1	82C235 Pin Diagram	92
Section 10:	Timing Diagrams	103
Figure 10-1	Hardware Reset	103
Figure 10-2	Clock Input	
Figure 10-3	Clock Output	
Figure 10-4	Zero Wait State DRAM	
Figure 10-5	Zero Wait State with Extended RAS DRAM	
Figure 10-6	One Wait State DRAM	
Figure 10-7	16-Bit ROM Cycle	
Figure 10-8	8-Bit ROM Cycle	
Figure 10-9	Memory Refresh Cycle	
Figure 10-10	Numeric Coprocessor	
Figure 10-11	CPU Interface	
Figure 10-12	Software Reset	112

Figure 10-13	Peripheral Control	12
Figure 10-14	I/O Channel	13
Section 11:	Physical Dimensions 1	15
Figure 11-1	160-Pin Plastic Flat Package	15
Appendix B:	82C235 Revision A Silicon	21
Figure B-1	Memory Refresh Cycle - Revision A Silicon 1	26
Figure B-2	Zero Wait State DRAM - Revision A Silicon1	27

■ List of Figures

List of Registers

Section 7:	Configuration Registers	. 69
Index 01H	DMA Wait-State Control Register	
Index 40H	Version Register	70
Index 41H	Clock Control Register	70
Index 42H	Reserved Register	70
Index 43H	Reserved Register	
Index 44H	Peripheral Control Register	71
Index 45H	Miscellaneous Status Register	72
Index 46H	Power Management Register	72
Index 47H	Reserved Register	73
Index 48H	ROM Enable Register	73
Index 49H	RAM Write Protect Register	74
Index 4AH	Shadow RAM Enable 1 Register	75
Index 4BH	Shadow RAM Enable 2 Register	
Index 4CH	Shadow RAM Enable 3 Register	77
Index 4DH	DRAM Configuration Register	78
Index 4EH	Extended Boundary Register	
Index 4FH	EMS Control Register	80
Port 61H	Control Port/Status Register	80
Port 70H	RTC/CMOS Index and NMI Mask Register	81
Port 71H	RTC Data Register	
Port 92H	System Control Register	81
Appendix A:	Address Mapping	117
Port OH-OFH	DMA Controller I	
Port 20H-21H	Interrupt Controller I	
Port 22H-23H	Internal Configuration Registers (ICRs)	
Port 40H-43H	Timer/Counter Registers	
Port 61H-92H	Miscellaneous I/O Registers	
Port 81H-8BH	DMA Page Registers	
Port A0H-A1H		
Port COH-DEH	DMA Controller 2	. 119
Port 0H-1H	Coprocessor Registers	. 120
Dow OTT ATT	EMC Dana Danistana	

List of Tables

Section 2:	Bus Control	
Table 2-1	Reset Strap Options	5
Table 2-2	Bus Control	6
Section 3:	DMA Controller	7
Table 3-1	DMA on the I/O Channel	8
Table 3-2	Rotating Priority Scheme	13
Table 3-3	DMA Address Extension Map	14
Table 3-4	DMA Registers	15
Section 4:	The Interrupt Controller	
Table 4-1	Interrupts on the I/O Channel	
Table 4-2	Format of Interrupt Vector	
Table 4-3	Fixed Priority Mode Interrupt Assignments	27
Table 4-4	Specific Rotation Mode Interrupt Assignments Before Rotation	28
Table 4-5	Specific Rotation Mode Interrupt Assignments After Rotation	28
Table 4-6	Automatic Rotation Mode Interrupt Assignments Before Rotation	
Table 4-7	Automatic Rotation Mode Interrupt Assignments After Rotation	
Table 4-8	End of Interrupt Bit at Unity	
Table 4-9	Specific Bit at Unity	
Table 4-10	Rotate Function Bit at Unity	
Section 5:	Programmable Interval Timer	. 37
Table 5-1	Programming the CTC	
Table 5-2	Read/Write Counter Commands	
Table 5-3	GATE2 Mode	44
Section 6:	System Interface	
Table 6-1	I/O Port 92H	
Table 6-2	Multiplexing the <a20:1> Address Lines</a20:1>	
Table 6-3	RAS Decode	
Table 6-4	Internal Configuration Register 4FH	40

Table 6-5	Internal Configuration Register 4DH	49
Table 6-6	DRAM Memory Organization	50
Table 6-7	I/O Page Registers Defined	51
Table 6-8	Internal/External Real Time Clock Mode	53
Table 6-9	Address Map for the Real Time Clock	55
Table 6-10	Time, Calendar, and Alarm Byte Format	56
Table 6-11	Periodic Interrupt Rate	
Table 6-12	Divider/Prescaler Control Bits	
Table 6-13	I/O Channel BUSCLK Periods	65
Section 7:	Configuration Registers	
Table 7-1	DRAM Configuration	78
Section 8:	Pin Description	83
Table 8-1	Clock Input and Output Signals	
Table 8-2	Local Bus Interface Signals	
Table 8-3	Numeric Processor Interface Signals	
Table 8-4	Memory Interface Signals	
Table 8-5	I/O Channel Interface Signals	
Table 8-6	Miscellaneous Signals	
Table 8-7	Alphabetical Pin Definitions	
Table 8-9	Numerical Pin Definitions	91
Section 9:	System Characteristics	.93
Table 9-1	Absolute Maximum Ratings	
Table 9-2	Operating Conditions	
Table 9-3	Capacitive Characteristics	
Table 9-4	DC Characteristics of the 82C235	
Table 9-5	Reset Timings (16 MHz)	
Table 9-6	Clock Timings (16 MHz)	
Table 9-7	DRAM Control (16 MHz)	
Table 9-8	Tracking Parameters (16 MHz)	
Table 9-9	8-Bit Bus and ROM Cycle (16 MHz)	97
Table 9-10	CPU Interface (16 MHz)	98
Table 9-11	Miscellaneous (16 MHz)	
Table 9-12	Reset Timings (12 MHz)	
Table 9-13	Clock Timings (12 MHz)	99
Table 9-14	DRAM Control (12 MHz)	100
Table 9-15	Tracking Parameters (12 MHz)	
Table 9-16	8-Bit Bus and ROM Cycle (12 MHz)	101
Table 9-17	CPU Interface (12 MHz)	102
Table 9-18	Miscellaneous (12 MHz)	102

	Address Mapping Memory Address Map	
•	82C235 Revision A Silicon	
Table B-1	Feature Differences Between	121
Tanic D-1	82C235 A and 82C235 D	122
Table B-2	Reset Timing (12 MHz)	
Table B-3	Clock Timing (12 MHz)	
Table B-4	DRAM Control	
Table B-5	8-Bit and ROM Cycle	
Table B-6	DMA Timing	125
Table B-7	CPU Interface	
Table B-8	Miscellaneous Timing	

List of Tables

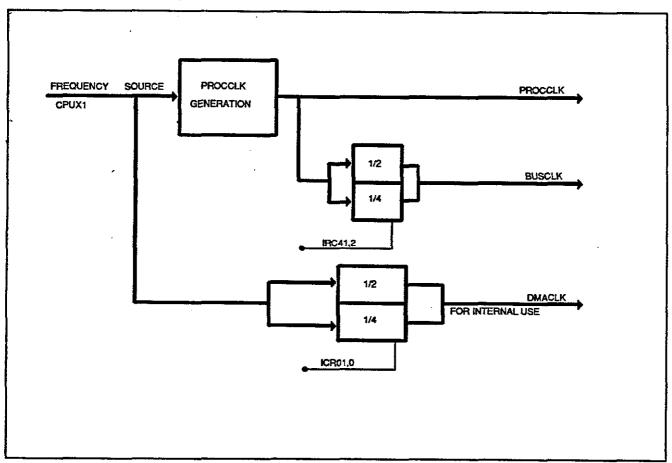
1.1 Features

The 82C235 provides the following features:

- 80286 control logic and clocks that support CPU speeds of up to 16 MHz with zero (or one) wait-states
- A 146818-compatible real time clock with 114 bytes of CMOS RAM
- Two 8237-compatible DMA controllers
- Two 8259-compatible interrupt controllers
- An 8254-compatible programmable interval timer
- An 82284-compatible clock generation and READY interface
- An 82288-compatible bus controller
- A DRAM controller that supports up to 8 MB of DRAM
- A memory controller that provides shadow RAM and support for either 8-bit or 16-bit BIOS ROM
- A DRAM refresh controller
- 32 EMS page registers (LIM EMS 4.0-compatible)
- Interface logic for an 80287 numeric coprocessor
- Interface logic for an 8042 keyboard controller
- Fast Gate A20 and Fast CPU Reset logic
- Power management features
- Compact packaging in a single 160-pin plastic flat pack (160 PFP)

Figure 1-1 shows a block diagram of the 82C235.

Figure 1-1. 82C235 System Block Diagram



2.1 Clock Generation

An 82C235 clock generator produces the following signals:

Figure 2-1.

Clock Generation

- PROCCLK (processor clock) is an output clock for the 80286 processor.
 PROCCLK can be set (with internal configuration register 46H, bits 3-2) for the following values:
 - PROCCLK = CPUX1 (DMA or Refresh PROCCLK = CPUX1)
 - o PROCCLK = CPUX1/2
 - o PROCCLK = CPUX1/4
 - o PROCCLK = CPUX1/8

During a DMA ore Refresh cycle, PROCCLK switches to PROCCLK = CPUX1 for the duration of HLDA active, it switches back to the set value when normal operation is resumed.

PROCCLK can also be halted in order to implement power management techniques (refer to Section 6.6 Power Management for further information). The frequency chosen for PROCCLK must be twice the frequency of the 80286 processor; e.g., for an 80286 with a speed of 16 MHz, PROCCLK must equal 32 MHz. PROCCLK is derived in one of two ways:

- From an external oscillator connected to CPUX1 (in which case CPUX2
 is left unconnected), or
- 2. From an external crystal connected across CPUX1 and CPUX2.
- BUSCLK (bus clock) is an output clock for the I/O channel. BUSCLK
 can be set (with internal configuration register 41H, bit 2) for the following
 values:
 - o BUSCLK≈PROCCLK/2
 - BUSCLK ≈ PROCCLK/4

If PROCCLK is set to CPUX1/2, CPUX1/4, or CPUX1/8, a DMA or Refresh cycle switches to PROCCLK = CPUX1 and the resulting BUSCLK changes as well.

- OSC (oscillator) is a 14.31818 MHz output signal used by the I/O channel. The oscillator can be derived either from an external crystal connected to pins OSCX1 and OSCX2, or from an external oscillator connected to OSCX1 (OSCX2 is left unconnected).
- DMACLK (DMA clock) is an internal clock used by DMA controllers to time DMA operations. DMACLK can be set (with internal configuration register 01H, bit 0) to the following values:
 - o DMACLK = CPUX1/2
 - o DMACLK = CPUX1/4

Reset Strap Option

The 82C235 features a reset strap option. This option is employed to provide strap options without having to use dedicated input pins. The 82C235 uses -DACK lines to implement this feature. The -DACK lines are normally outputs, but during power-on situations they are used as input signals. Later, they convert to outputs for normal functions. A TTL device drives the signals low for strap option sampling, while a TTL device drives the signal levels high for the same purpose (see Figure 2-2). DACK5 and DACK7 must be driven to their respective strapping options. DACK6 is designated as reserved and should be pulled up with a 10K resistor. Table 2-1 describes the pins that are used in the reset strap option.

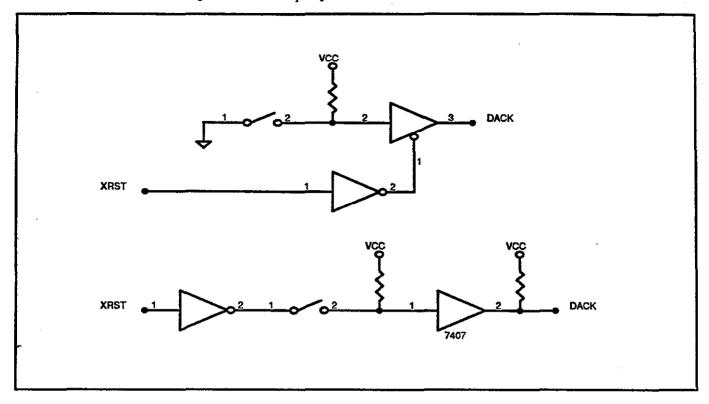


Table 2-1. Reset Strap Options

Pin#	Normal Pin	Strap Pin	Comments
89	-DACK0	SENSE0	Reflects at ICR 45-0
47	-DACK1	SENSE1	Reflects at ICR 45-1
45	-DACK2	SENSE2	Reflects at ICR 45-2
43	-DACK3	Reserved	Must be pulled up to Vcc w/10K resistor
91	-DACK5	-EXRTC	Internal RTC (H) or external RTC (L)
93	-DACK6	Reserved	Must be pulled up to Vcc w/10K resistor
95	-DACK7	-16BITROM	8-bit ROM (H) or 16-bit ROM (L)

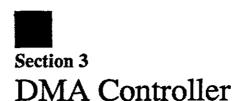
The sense lines (0-2) are general purpose and can be used as per the specific system requirements.

2.2 Bus Control

Table 2-2 describes the data and address buses as shown in Figure 1-1 displayed earlier.

Table 2-2.

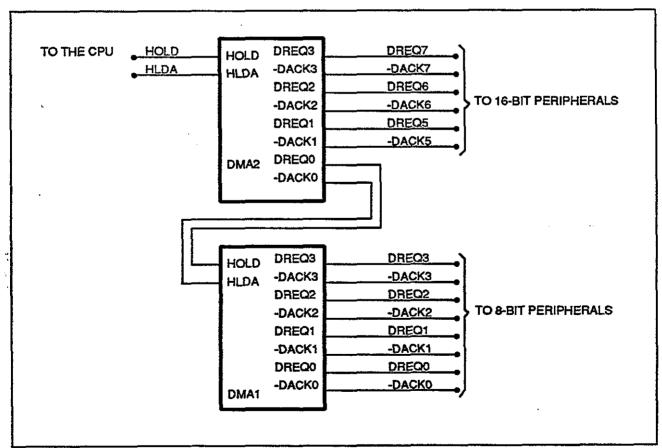
Bus Control


82C235 Pins	Bus Name	Description		
D15-D0	Local Data	A 16-bit bidirectional bus connecting the 82C235, the 80286, and the optional 80287 to local memory or to the memory data (MD) buffers.		
MD15-MD0	Memory Data	A 16-bit bidirectional bus connecting local DRAM and the memory data (MD) buffers.		
XD15-XD0 X-Data		A 16-bit bidirectional bus connecting the 82C235 ROM, XD-bus peripherals, and S-Data (SD) buffers.		
SD15-SD0	S-Data	A 16-bit bidirectional bus connecting the I/O channel and the S-Data (SD) buffers.		
A23-A00 Local Address		A 24-bit address bus, driven by either the 80286 or the 82C235.		
SA19-SA0 S-Address		A latched, local address bus connecting the I/O channel to the XD-bus peripherals.		
UA23-UA17	Unlatched Address	An unlatched address bus connected to the I/O channel. This bus must be latched except during quick mode.		
MA9-MA0	Multiplexed Address	A multiplexed address bus that is driven by the 82C235 to address DRAM.		

Bus Controller

The internal bus controller, which is functionally similar to an 82288 bus controller, provides command generation and timing control for the AT-compatible I/O channel. To allow the processor to run faster than the I/O channel, DMA commands, timing, and accesses to the I/O channel can be programmed to run slower than local bus cycles.

Local Bus Arbitration


Although the local bus is normally controlled by the 80286, the 82C235's internal DMA controller or refresh controller can request control by issuing a HOLD request to the 80286. When this occurs, the 80286 relinquishes control and issues HLDA (hold acknowledgement) to the 82C235.

Memory refresh and DMA functions are implemented within the 82C235 as independent bus masters. The 82C235 arbitrates these functions with internal logic and gains control of the local bus via the HOLD/HLDA protocol of the 80286. The 82C235 contains two DMA controllers that are compatible with the Intel 8237. Each controller is a four-channel DMA device that can generate the memory addresses and control signals necessary to transfer information between a peripheral device and memory directly. This allows high-speed information transfer with little CPU intervention.

The two DMA controllers are internally cascaded to provide four DMA channels for transfers to 8-bit peripherals (DMA1) and three channels for transfers to 16-bit peripherals (DMA2). DMA2 Channel 0 provides the cascade interconnection for the two DMA devices, thereby maintaining IBM PC AT-compatibility. Figure 3-1 shows how the two controllers are cascaded.

Figure 3-1. Cascaded DMA Controllers

DMA channels 0-3 are used for 8-bit transfers, while channels 5-7 are used for 16-bit transfers. DMA operations are allowed within the full range of 16 MB memory through the use of DMA page registers.

The DMA clock, which controls DMA transfer rate and timing, is programmable. Its frequency is selectable for a rate equal to CPUX1/2 or CPUX1/4. (This is under control of internal configuration register 01H, bit 0). Wait-states during DMA operations are programmed with internal configuration Register 01H, bits 5-2.

Refresh, which occurs at 15us intervals (nominally), is determined by counting down on the 1.19 MHz (OSCX1/12) clock. The refresh period is set by programming timer channel 1 of the 8254 timer/counter. Table 2-3 shows the use of DMA levels on the I/O channel. The DMA requests are shown by priority, starting with the highest level.

Table 3-1. DMA on the I/O Channel

DMA Levei	System Board	I/O Channel	
DRQ0	Not Used	Available	
DRQ1	Not Used	Available	
DRQ2	Not Used	Diskette Drive	
DRQ3	Not Used	Available	
DRQ5	Not Used	Available	
DRQ6	Not Used	Available	
DRQ7	Not Used	Available	

DMA cycle length control is provided internally in the 82C235 allowing independent control for both 8-bit and 16-bit cycles. This is done through the programmable registers, which can extend command signals or insert wait states.

Each DMA channel has a pair of 16-bit counters and a reload register for each counter. The 16-bit counters allow the DMA to transfer blocks as large as 65,536 words. The register associated with each counter allows the channel to re-initialize without reprogramming. The following description of the DMA subsystem pertains to both DMA1 and DMA2 unless otherwise noted.

3.1 DMA Operation

During normal operation of the 82C235, the DMA subsystem is in either an Idle condition, a Program condition, or an Active condition. In the Idle condition, the DMA controller executes cycles consisting of only one state. The Idle state, SI, is the default condition, and the DMA remains in this condition unless the device has been initialized and one of the DMA requests is active; or the CPU attempts to access one of the internal registers.

When a DMA request becomes active, the device enters the Active condition and issues a hold request to the system. Once in the Active condition, the 82C235 generates the necessary memory addresses and command signals to accomplish a memory-to-I/O or an I/O-to-memory. Memory-to-I/O and I/O-to-memory transfers take place in one cycle. During transfers between

memory and I/O, data is presented on the system bus by either memory or the requesting device, and the transfer is completed in one cycle.

During transfers between memory and I/O, two commands are activated during the same cycle. In the case of a memory-to-I/O transfer, the 82C235 asserts both -MEMR and -IOW allowing data to be transferred directly to the requesting device from memory. Note that the 82C235 neither latches data from or drives data out on this type of cycle. The number of clock cycles required to transfer a word of data may be varied by programming the DMA, or optionally extended by the peripheral device. During an Active cycle, the DMA sequences through a series of states. Each state is one DMA clock cycle length, the number of states in a cycle varies depending on how the device is programmed and the type of cycle being performed. The states are labeled S0-S4. They are explained in detail in the section titled Active Condition.

Idle Condition

When no device is requesting service, the DMA is in an Idle condition that maintains the state machine in the SI state. During this time, the 82C235 samples the DREQ input pins every clock cycle. The internal select from the top level decoder and HLDA are also sampled at the same time to determine if the CPU is attempting to access the internal registers. When either of these situations occurs, the DMA exits the Idle condition. Note that the Program condition has priority over the Active condition since a CPU cycle has already started.

Program Condition

The Program condition is entered whenever HLDA is inactive and internal select is active. During this time, address lines A0-A3 become inputs if DMA1 is selected, or A1-A4 become inputs if DMA2 is selected.

Note When DMA2 is selected, A0 is ignored.

These address inputs are used to select the DMA controller registers that are to be read or written to. Due to the large number of internal registers in the DMA subsystem, an internal flip-flop is used to supplement the addressing of the count and address registers. This bit is used to select between the high and low bytes of these registers. The flop-flop toggles each time a read or write occurs to any of the word count or address registers in the DMA. The internal flop-flop is cleared by a hardware RESET or a Master Clear command and may be set or cleared by the CPU issuing the appropriate command.

Special commands are supported by the DMA subsystem in the Program condition to control the device. These commands do not make use of the data bus but are derived from a set of addresses, the internal select, and -IOW or -IOR. These commands are Master Clear, Clear Register, Clear Mode Register Counter, Set, and Clear Byte Pointer Flip-Flop.

The 82C235 enables programming whenever HLDA has been inactive for one DMA clock cycle. It is the responsibility of the system to ensure that programming and HLDA are mutually exclusive. Erratic operation of the 82C235 can occur if a request for service occurs on an unmasked channel that is being programmed. The channel should be masked or the DMA disabled to prevent the 82C235 attempting to service a device with a channel which is partially programmed.

Active Condition

The 82C235 DMA subsystem enters the Active condition whenever a software request occurs or a DMA request on an unmasked channel occurs and the device is not in the Program condition. The 82C235 then begins a DMA transfer cycle. In a Read cycle for example, after receiving a DREQ, the 82C235 issues an HOLD to the system. Until an HLDA is returned, the DMA remains in an Idle condition. On the next clock cycle, the DMA exits Idle and enters state S0. During S0, the device resolves priority and issues DACK on the highest priority channel requesting service. The DMA then proceeds to state S1, where the multiplexed addresses are output and latched. State S2 is then entered, at which time the 82C235 asserts -MEMR. The device then transitions into S3, where the -IOW command is asserted. The 82C235 remains in \$3 until the wait-state counter has decremented to zero and IOCHRDY is true. Note that at least one additional S3 occurs. Once a Ready condition is detected, the DMA enters S4, where both commands are de-asserted. In Burst Mode and Demand Mode, subsequent cycles begin in S2 unless the intermediate addresses require updating. In these subsequent cycles, the lower addresses are changed in S2. The DMA can be programmed on a channel-by-channel basis to operate in one of four modes. The four modes are described as follows.

Single Transfer Mode

This mode directs the DMA to execute only one transfer cycle at a time. DREQ must be held active until DACK becomes active. If DREQ is held active throughout the cycle, the 82C235 de-asserts HOLD and releases the bus after the transfer is complete. After HLDA is inactive, the 82C235 again asserts HOLD and executes another cycle on the same channel unless a request from a higher priority channel is received. In this mode, the CPU is allowed to execute at least one bus cycle between transfers.

Following each transfer, the word count is decremented and the address is incremented or decremented. When the word count decrements from 0000H to FFFFH, the terminal count bit in the status register is set and a TC pulse is generated. If the auto-initialization option is enabled, the channel re-initializes itself. If auto-initialize is not selected, the DMA sets the DMA request bit mask and suspends transferring on the channel.

Block Transfer Mode

When Block Transfer Mode is selected, the 82C235 begins transfers in response to either a DREQ or a software request. This continues until a terminal count (FFFFH) is reached, at which time TC is pulsed and the status register terminal count bit is set. In this mode DREQ need only be held active until -DACK is asserted. Auto-initialization is operational in this mode also.

Demand Transfer Mode

In Demand Transfer Mode, the DMA begins transfers in response to the assertion of DREQ and continues until either terminal count is reached or DREQ becomes inactive. This mode is normally used for peripherals that have limited buffering availability. The peripheral can initiate a transfer and continue until its buffer capacity is exhausted. The peripheral may re-establish service by again asserting DREQ. During idle periods between transfers, the CPU is released to operate and can monitor the operation by reading intermediate values from the address and word count registers. Once DREQ is de-asserted, higher priority channels are allowed to intervene. Reaching terminal count results in the generation of a TC pulse, the setting of the terminal count bit in the status register, and auto-initialization (if enabled).

Cascade Mode

This mode is used to interconnect more than one DMA controller, to extend the number of DMA channels while preserving the priority chain. In Cascade mode, the master DMA controller does not generate address or control signals. The DREQ and DACK signals of the master are used to interface the HOLD and HLDA signals of the slave DMA devices. Once the master has received an HLDA from the CPU in response to a DREQ caused by the HOLD from a slave DMA Controller, the master DMA controller ignores all inputs except HLDA from the CPU and DREQ on the active channel. This prevents conflicts between the DMA devices.

Figure 2-2 (shown earlier) displays the cascade interconnection between the two levels of DMA devices. Note that Channel 0 of DMA2 is internally connected for Cascade mode to DMA1. Additional devices can be cascaded to the available channels in either DMA1 or DMA2 since cascade is not limited to two levels for DMA controllers.

When programming cascaded controllers, begin with the device which is actually generating HOLD to the system (first level device) and then proceed to the second level devices. RESET causes the -DACK outputs to become active low and are placed into an inactive state. To allow the internal cascade between DMA1 and DMA2 to function correctly, the active low state of -DACK0 should not be modified. This is because the 82C235 has an inverter between -DACK0 of DMA2 and HLDA of DMA1. The first level device's DMA request mask bit

3.2 DMA Transfers

Three types of transfer modes are provided in the 82C235 DMA subsystem. These transfer types are as follows:

Read Transfer

Read transfers move data from memory to an I/O device by generating the memory address and asserting -MEMR and -IOW during the same cycle.

Write Transfer

Write transfers move data from an I/O device to memory by generating the memory address and asserting -IOR and MEMW.

Verify Transfer

The verify transfer is a pseudo-transfer that is useful for diagnostics. In this type of transfer, the DMA operates as if it is performing a Read or Write Transfer by generating HOLD, addresses, and -DACK, but does so without asserting a command signal. Since no transfer actually takes place, IOCHRDY is ignored during Verify transfer cycles.

3.3 Auto-Initialization

Each of the four DMA channel Mode Registers contain a bit that causes the channel to re-initialize after reaching terminal count. During this process, referred to as Auto-Initialization, the Base Address and Base Word Count Registers, which were originally written by the CPU, are reloaded into the Current Address and Current Word Count Registers (both the base and current registers are loaded during a CPU write cycle). The base register remains unchanged during DMA Active cycles and can only be changed by the CPU. If the channel is programmed to auto-initialize, the request mask bit is not set upon reaching terminal count. This allows the DMA to continue operation without CPU intervention.

3.4 DREQ Priority

The 82C235 supports two schemes for establishing DREQ priority. The first is fixed priority, which assigns priority based on channel position. In this method, Channel 0 is assigned the highest priority. Priority assignment then progresses in order down through the channels, with Channel 3 receiving the lowest priority.

The second type of priority assignment is rotating priority (see Table 2-4). In this scheme the ordering of priority from Channel 0 to Channel 3 is maintained but the actual assignment of priority changes. The channel most recently serviced is assigned the lowest priority and, since the order of priority assignment remains fixed, the remaining three channels rotate accordingly.

Table 3-2. Rotating Priority Scheme

First Arbitration		Second Arbitration		Third Arbitration	Priority
Channel 0	Cycle Grant	Channel 2	Cycle Grant	Channel 3	Highest
Channel 1	Cycle Grant	Channel 3]	Channel 0	
Channel 2		Channel 0		Channel 1	
Channel 3		Channel 1		Channel 2	Lowest

Note A box around a channel number indicates a requested channel.

In instances where multiple requests occur at the same time, the 82C235 issues an HOLD but does not freeze the priority logic until HLDA is returned. Once HLDA becomes active, the priority logic is frozen and DACK is asserted on the highest requesting channel. Priority is not reevaluated until HLDA is deactivated.

3.5 Address Generation

The DMA Page Register is a set of 16 8-bit registers in the 82C235 that are used to generate the high order addresses during DMA cycles. Only eight of the registers are actually used, but all 16 are included to maintain IBM PC/AT compatibility. Each DMA channel has a register associated with it with the exception of Channel 0 of DMA2, which is used for internal cascading to DMA1. Assignment of each of these registers is shown in Table 2-5 along with its Read/Write address.

During Demand and Block Transfers, the 82C235 generates multiple sequential transfers. For most of these transfers the information in the external address latches remains the same, eliminating the need to be re-latched. Since the need to update the latches occurs only when a carry or borrow from the lower 8-bits of the Address Counter exists, the 82C235 updates the latch contents only when necessary. The 82C235 therefore executes S1 cycles only when necessary, resulting in an overall through-put improvement.

Table 3-3. DMA Address Extension Map

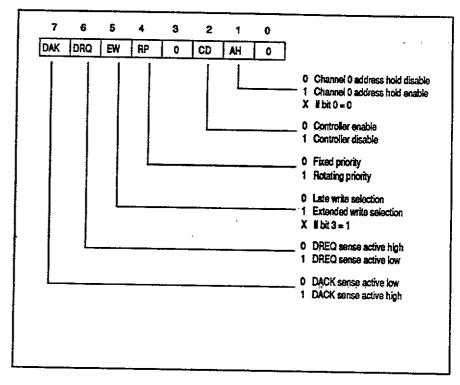
Address	Register Function Unused	
080H		
081H	8-bit DMA Channel 2 (-DACK2)	
082H	8-bit DMA Channel 3 (-DACK3)	
083H	8-bit DMA Channel 1 (-DACK1)	
084H	Unused	
085H	Unused	
086Н	Unused	
087H	8-bit DMA Channel 0 (-DACK0)	
088H	Unused	
089H	16-bit DMA Channel 2 (-DACK6)	
C8AH	16-bit DMA Channel 3 (-DACK7)	
08BH	16-bit DMA Channel 1 (-DACK5)	
08CH	Unused	
08DH	Unused	
08EH	Unused	
08FH	Refresh Cycle	

DMA1	DMA2	-XIOR	-XIOW	Flip-Flop	Register Function
000H	0C0H	0	1	0 .	Read Channel 0 Current Address Low Byte
		0	1	1	Read Channel 0 Current Address High Byte
<u>.</u> ~		1	0	0	Write Channel 0 Base and Current Address Low Byte
		1	0	1	Write Channel 0 Base and Current Address High Byte
0 01H	OC2H	0	1	0	Read Channel 0 Current Word Count Low Byte
		0	1	1	Read Channel 0 Current Word Count High Byte
		1	0	0	Write Channel 0 Base and Current Word Count Low Byte
		1	0	1	Write Channel 0 Base and Current Word Count High Byte
002H	OC4H	0	1	0	Read Channel 1 Current Address Low Byte
		0	1	1	Read Channel 1 Current Address High Byte
		1	0	0	Write Channel 1 Base and Current Address Low Byte
		<u> </u>	0	1	Write Channel I Base and Current Address High Byte
003H	0C6H	Ó	1	0	Read Channel 1 Current Word Count Low Byte
		0	1	1	Read Channel 1 Current Word Count High Byte
		1	0	0	Write Channel 1 Base and Current Word Count Low Byte
		1	0	1	Write Channel I Base and Current Word Count High Byte
004H	0C8H	0	1	0	Read Channel 2 Current Address Low Byte
		0	1	1	Read Channel 2 Current Address High Byte
		1	0	0	Write Channel 2 Base and Current Address Low Byte
		1	0	1	Write Channel 2 Base and Current Address High Byte
005H	0CAH	0	1	0	Read Channel 2 Current Word Count Low Byte
		0	1	1	Read Channel 2 Current Word Count High Byte
		1	Ō	Ō	Write Channel 2 Base and Current Word Count Low Byte
		1	o '	1	Write Channel 2 Base and Current Word Count High Byte
006H	0CCH	0	1	0	Read Channel 3 Current Address Low Byte
• •		0	1	1	Read Channel 3 Current Address High Byte
		1	. 0	Ö	Write Channel 3 Base and Current Address Low Byte
		1	0	1	Write Channel 3 Base and Current Address High Byte
007H	0CEH	0	1	0	Read Channel 3 Current Word Count Low Byte
		0	1	1	Read Channel 3 Current Word Count High Byte
		1	0	0	Write Channel 3 Base and Current Word Count Low Byte
		1	0	1	Write Channel 3 Base and Current Word Count High Byte
008H	0D0H	0	1	X	Read Status Register
		1	O	X	Write Command Register
009H	0D2H	0	1	Х	Read DMA Request Register
		1	0	x	Write DMA Request Register
00AH	0D4H	0	1	X	Read Command Register
₹		1	0	x	Write Single Bit DMA Request Mask Register
00BH	0D6H	0	1	X	Read Mode Register
		1	0		Write Mode Register
00CH	0D8H	0	1	X	Set Byte Pointer Flip-Flop
		. 1	0		Clear Byte Pointer Flip-Flop
00DH	0DAH	0	1		Read Temporary Register
		1.	0		Master Clear
DOEH	0DCH	0	1		Clear Mode Register Counter
		1	0		Clear All DMA Request Mask Register Bits
00FH	0DEH	0	1		Read All DMA Request Mask Register Bits
		_	0		Write All DMA Request Mask Register Bits

3.6 Current Address Register

Each DMA channel has a 16-bit Current Address Register that holds the address used during transfers. Each channel can be programmed to increment or decrement this register whenever a transfer is completed. This register can be read or written by the CPU in consecutive 8-bit. If Auto-Initialization is selected, this register is reloaded from the Base Address Register upon reaching terminal count in the Current Word Count Register. Channel 0 can be prevented from incrementing or decrementing by setting the Address Hold Bit in the Command Register.

3.7 Current Word Count Register


Each channel has a Current Word Count Register that determines the number of transfers to perform. The actual number of transfers performed is one greater than the value programmed into the register. The register is decremented after each transfer until it goes from zero to FFFFH. When this roll-over occurs, the 82C235 generates TC, suspends operation on that channel, sets the appropriate Request Mask Bit or Auto-Initialize, and continues.

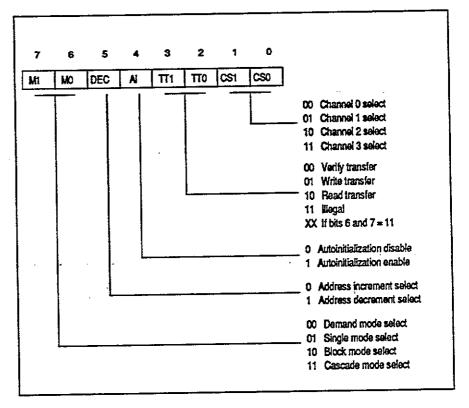
3.8 Base Word Count Register

This register preserves the initial value of the Current Word Count Register. It is also a write-only register that is loaded by writing to the Current Word Count Register. This register is loaded in the Current Word Count Register during Auto-Initialization.

3.9 Command Register

This register controls the overall operation of a DMA subsystem. The register can be read or written to by the CPU and is cleared by either a system RESET or a Master Clear command.

- AH: Writing a one to bit I enables the address hold feature in Channel 0 when performing memory-to-memory transfers.
- CD: Bit 2 is the master disable for the DMA controller. Writing a one to this location disables the DMA subsystem (DMA1 or DMA2). This function is normally used whenever the CPU needs to reprogram one of the channels to prevent DMA cycles from occurring.
- RP: Writing a one to bit 4 causes the 82C235 to utilize a rotating priority scheme for honoring DMA requests. The default condition is fixed priority.
- EW: Extended Write is enabled by writing a one to bit 5, causing the write commands to be asserted one DMA cycle earlier during a transfer. The read and write commands both begin in state S2 when enabled.
- DRQ: DREQ active level is determined by bit 6. Writing a one in this bit position causes DREQ to become active low.
- DAK: DACK active level is determined by bit 7. Programming a one in this bit position makes DACK an active high signal.


3.10 Mode Register

Each DMA channel has a Mode Register associated with it. All four Mode Registers reside at the same I/O address. Bits 0 and 1 of the Write Mode Register command determine which Mode Register is written to the channel. The remaining six bits control the mode of the selected channel. Each channel's Mode Register can be read by sequentially reading the Mode Register location.

A Clear Mode Register Counter command is provided to allow the CPU to restart the mode read process at a known point. During mode read operation, bits 0 and 1 are one.

Figure 3-3.

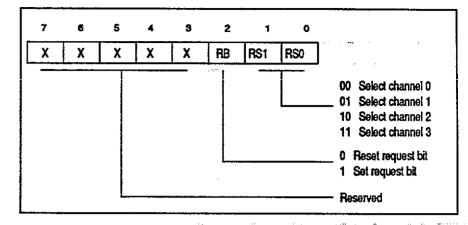
Mode Register

CS<0:1>: Channel Select bits 0 and 1 determine which channel's Mode Register is written to. Read back of a mode register results in bits 0 and 1 both being ones.

TT: Bits 2 and 3 control the type of transfer that is to be performed.

Al: The Auto-Initialization function is enabled by writing a one in bit 4 of the Mode Register.

DEC: Determines direction of the address counter. A one in bit 5 decrements the address after each transfer.

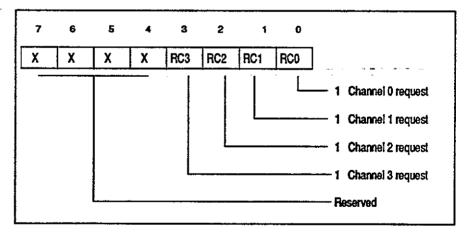

M0: Mode selection for each channel is accomplished by bits 6 and 7.

3.11 Request Register

This is a four bit register used to generate software requests (DMA service can be requested either externally or under software control). Request Register bits can be set or reset independently by the CPU. The Request Mask has no effect on software generated requests. All four bits are read in one operation and appear in the lower four bits of the byte. Bits 4 through 7 are read as ones. All

four request bits are cleared to zero by a system RESET. The format for Request Register Write Operations is shown as follows:

Figure 3-4. Request Register - Write Operations

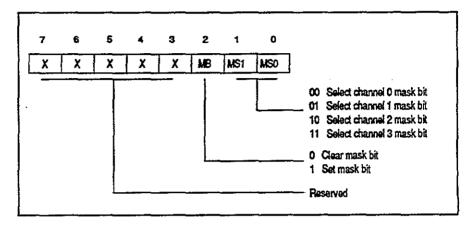


RS<0:1>: Channel Select 0 and 1 determine which channel's Mode Register is written to. Read back for the mode register results in bits zero and one both being ones.

RB: The request bit is set by writing a one to bit 2. RS<0:1> select which bit (channel) is to be manipulated.

The format for Request Register Read Operations is shown as follows.

Figure 3-5. Request Register - Read Operations


RC<0:3>: During a Request Register read, the state of the request bit associated with each channel is returned in bits 0 through 3 of the byte. The bit position corresponds to the channel number.

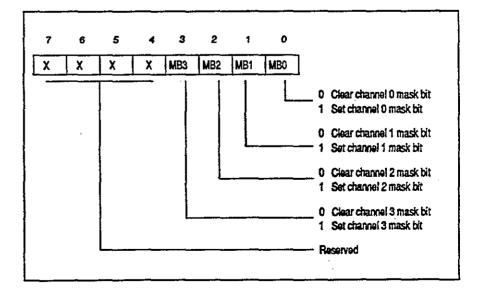
3.12 Request Mask Register

The Request Mask Register is a set of four bits that are used to inhibit external DMA requests from generating transfer cycles. This register can be programmed in two ways. Each channel can be independently masked by writing to the Write Single Mask Bit location. The data format for this operation is shown as follows.

Figure 3-6.

Request Mask Register - Set/Reset Operation

MS<0:1>: These two bits select the specific mask bit that is to be set or reset.


MB:

Bit 2 sets or resets the request mask bit for the channel selected by MS1 and MS0. Writing a one in this bit position sets the mask, inhibiting external requests.

Alternatively, all four mask bits can be programmed in one operation by writing to the Write All Mask Bits address. The data format for this function and the Read All Mask Bits function is shown as follows.

Figure 3-7.

Request Mask Register - Read Operations

MB<0:3>: Each bit position in the field represents the mask bit of a channel. The mask bit number corresponds to the channel number associated with the mask bit. All four mask bits are set following a system RESET or a Master Clear command. Individual channel mask bits are set as a result of terminal count being reached, if Auto-Initialize is disabled. The entire register can be cleared, enabling all four channels, by performing a Clear Mask Register operation.

3.13 Status Register

The status of all four channels can be determined by reading the Status Register. Information is available to determine if a channel has reached terminal count and whether an external service request is pending. Bit 0-3 of this register are cleared by a system RESET, a Master Clear, or each time a Status Read takes place. Bits 4-7 are cleared by a systemRESET, a Master Clear, or the pending request being de-asserted. Bits 4-7 are not affected by the state of the Mask Register Bits. The channel number corresponds to the bit position.

Figure 3-8.

Status Register - Read Only

3.14 Special Commands

Five special commands are provided to make the task of programming the device easier. These commands are activated as a result of a specific address and assertion of either an -IOR or -IOW. Information on the data lines is ignored by the 82C235 whenever an -IOW activated command is issued. Also, data returned on -IOR activated commands is invalid. Descriptions of the five special commands follow:

Clear Byte Pointer Flip-Flop

This command is normally executed prior to reading or writing to the address or word count register. This initializes the flop-flop to point to the low byte of the register and allows the CPU to read or write the register bytes in correct sequence.

Set Byte Pointer Flip-Flop

Setting the Byte Pointer Flip-Flop allows the CPU to adjust the pointer to the high byte of an address or word count register.

Master Clear

This command has the same effect as a hardware RESET. The Command Register, Status Register, Request Register, Temporary Register, Mode Register Counter, and Byte Pointer Flip-Flop are cleared and the Request Mask Register is set. Immediately following Master Clear or RESET, the DMA is in the Idle Condition.

Clear Request Mask Register

This command enables all four DMA channels to accept requests by clearing the mask bits in the register.

Section 4

The Interrupt Controller

The 82C235 incorporates two programmable interrupt controllers that are compatible with the Intel 8259A. The controllers accept requests from peripherals, resolve priority on pending interrupts and interrupts in service, issue an interrupt request to the CPU, and provide a vector that is used as an index by the CPU to determine which interrupt service routine to execute.

A variety of priority assignment modes are provided, which can be reconfigured at any time during system operation, allowing the complete interrupt subsystem to be restructured, based on the system requirements.

The controllers are cascaded in a fashion compatible with the IBM PC AT (refer to Figure 4-1).

Figure 4-1. Cascaded Interrupt Controllers

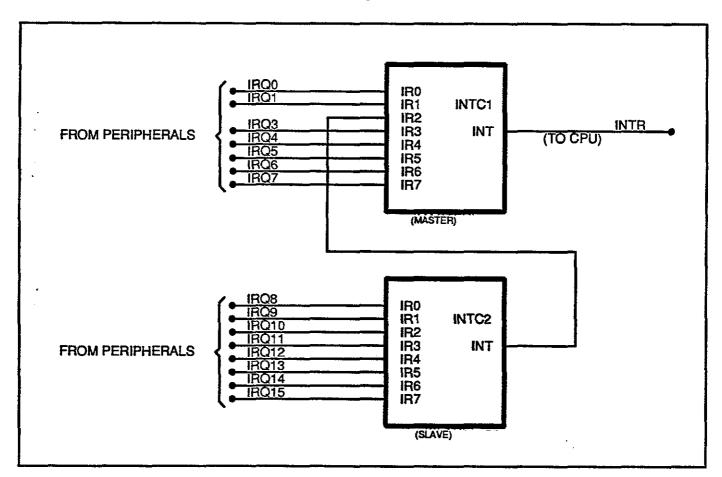
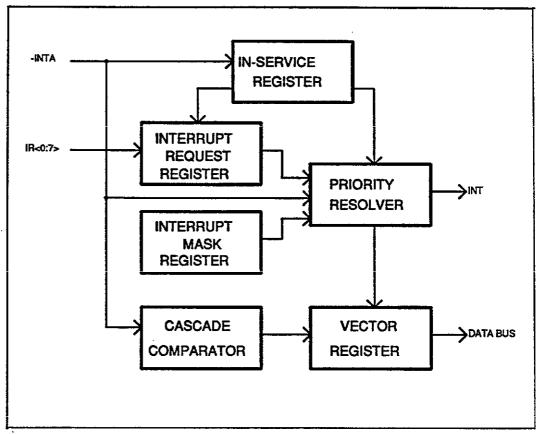


Table 4-1. Interrupts on the I/O Channel

Interrupt	System Board	VO Channel
NMI	Parity Check	-IOCHCK
IRQ0	Timer	Not Available
IRQ1	Keyboard	Not Available
IRQ8†	Real-Time Clock	Not Available
IRQ9	Not Used	Available
IRQ10	Not Used	Available
IRQ11	Not Used	Available
IRQ12	Not Used	Available
IRQ13	Coprocessor	Not Avzilable
IRQ14	Not Used	Available
IRQ15	Not Used	Available
IRQ3	Serial Port 2	Available
IRQ4	Serial Port 1	Available
IRQ5	Parallel Port 2	Available
IRQ6	Hard Disk and Diskette Drives	Available
IRQ7	Parrel Port 1	Available

†In internal RTC mode, IRQ8 is an internal signal.

The two devices are interconnected and must be programmed to operate in Cascade Mode (see Figure 4-1) for proper operation of all 16 interrupt channels. INTC1 is located at I/O Ports 020H-021H and is configured for Master operation in Cascade Mode. INTC2 is a slave device, and is located at I/O Addresses 0A0H-0A1H. The Interrupt Request output signal from INTC2 (INT) is internally connected to the interrupt request input Channel 2 IR2 of INTC1. The address decoding and Cascade interconnection matches that of the IBM PC AT.

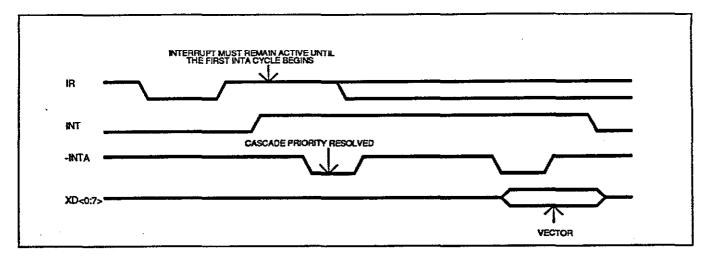

Two additional interconnections are made to the interrupt request inputs of the interrupt controllers. The output of Timer 0 in the Counter/Timer subsystem is connected to Channel 0 (IR0) of INTC1. An Interrupt request from the Real Time Clock is connected to Channel 0 (IR0) of INTC2. Table 4-1 lists the 16 interrupt channels and their interrupt request sources.

The following description of the Interrupt Subsystem pertains to both INTC1 and INTC2 unless otherwise noted. Wherever register addresses are used, the address for the INTC1 register is listed first, and the address for the INTC2 register follows in parenthesis, e.g., 020H (0A0H).

4.1 Controller Operation

Figure 4-2 shows a block diagram of the major elements in the interrupt controller:

 The Interrupt Request Register (IRR) is used to store requests from all the channels that are requesting service. Interrupt Request Register bits are labeled using the Channel Name IR<0:7>.


- The In-Service register (ISR) contains all the channels that are currently being serviced (more than one channel can be in service at a time).
 In-Service Register bits are labeled IS<0:7>.
- The Interrupt Mask Register (IMR) allows the CPU to disable any or all of the interrupt channels.
- The Priority Resolver evaluates inputs from the above three registers, issues an interrupt request, and latches the corresponding bit into the In-Service Register.

During interrupt acknowledge cycles, a master controller outputs a code to the slave device that is compared in the Cascade Buffer/Comparator with a three bit ID code previously written. If a match occurs in the slave controller, it generates an interrupt vector. The contents of the Vector Register are used to provide the CPU with an interrupt vector during Interrupt Acknowledge (INTA) cycles.

4.2 Interrupt Sequence

The 82C235 allows the CPU to perform an indirect jump to a service routine in response to a request for service from a peripheral device (see Figure 4-3). The indirect jump is based on a vector provided by the 82C235 on the second of two CPU generated INTA cycles (the first INTA cycle is used for resolving priority; the second cycle is used for transferring the vector to the CPU).

Figure 4-3. Interrupt Sequence

The events occurring during an interrupt sequence are as follows:

- 1. One or more of the interrupt requests (IR7-IR0) becomes active, setting the corresponding IRR bit(s).
- 2. The interrupt controller resolves priority based on the state of IRR, IMR, and ISR and asserts the INTR output if appropriate.
- 3. The CPU accepts the interrupt and responds with an INTA cycle.
- During the first INTA cycle, the highest priority ISR bit is set and the corresponding IRR bit is reset. The internal Cascade address is generated and LD<0:7> outputs remain tri-stated.
- 5. The CPU executes a second INTA cycle, during which the 82C235 drives an 8-bit vector onto the data pins LD<0:7>, which is in turn latched by the CPU. The format of this vector is shown in Table 4-2. Note that V<3:7> in the table are programmable by writing to Initialization Control Word 2 (see Section 4.5 Programming the Interrupt Controller and Figure 4-4).

Table 4-2. Format of Interrupt Vector

D7	D 6	D5	D4	D 3	D 2	D1	D0
V7	V6	V 5	V4	V3	1	1	1
V7	V6	V5	V4	V 3	1	1	0
V7	V6	V5	V4	V3	1	0	1
V7	V6	V 5	V4	V 3	1	0	0
V7	V 6	V5	V4	V 3	0	1	1
V7	V 6	V5	V4	V 3	0	1	0
V7	V6	V 5	V4	V3	0	0	1
V7	V6	V5	V4	V3	0	0	0
	V7 V7 V7 V7 V7 V7 V7	V7 V6 V7 V6 V7 V6 V7 V6 V7 V6 V7 V6 V7 V6 V7 V6	V7 V6 V5 V7 V6 V5	V7 V6 V5 V4 V7 V6 V5 V4	V7 V6 V5 V4 V3 V7 V6 V5 V4 V3	V7 V6 V5 V4 V3 1 V7 V6 V5 V4 V3 0 V7 V6 V5 V4 V3 0 V7 V6 V5 V4 V3 0 V7 V6 V5 V4 V3 0	V7 V6 V5 V4 V3 1 1 V7 V6 V5 V4 V3 1 1 V7 V6 V5 V4 V3 1 0 V7 V6 V5 V4 V3 1 0 V7 V6 V5 V4 V3 0 1 V7 V6 V5 V4 V3 0 1 V7 V6 V5 V4 V3 0 0

6. At the end of the second INTA cycle, the ISR bit is cleared if the Automatic End-of-Interrupt mode is selected (see Section 4.3 End of Interrupt).
Otherwise, the ISR bit must be cleared by an End-of-Interrupt (EOI) command from the CPU at the end of the interrupt service routine.

If no interrupt request is present at the beginning of the first INTA cycle (i.e., a spurious interrupt), INTC1 issues an interrupt level 7 vector during the second INTA cycle.

4.3 End of Interrupt

End-of-Interrupt (EOI) is defined as the condition that causes an ISR bit to be reset. Determination of which ISR bit is to be reset can be done by a CPU command (specific EOI); or the Priority Resolver can be instructed to clear the highest priority IST bit (non-specific EOI). The 82C235 can determine the correct ISR bit to reset when operated in modes that do not alter the fully nested structure, since the current highest priority ISR bit is necessarily the last level acknowledged and serviced. In conditions where the fully nested structure is not preserved, a specific EOI must be generated at the end of the interrupt service routine. An ISR bit that is masked, in Special Mask Mode by an IMR bit, is not cleared by a non-specific EOI command. Optionally, the interrupt controller can generate an Automatic End-of-Interrupt (AEOI) on the trailing edge of the second INTA cycle.

4.4 Priority Assignment

Assignment of priority is based on an interrupt channel's position relative to the other channels in the interrupt controller. After the initialization sequence, IRO has the highest priority, IR7 has the lowest, and priority assignment is fixed (Fixed Priority Mode). Priority assignment can be rotated either manually (Specific Rotation Mode) or automatically (Automatic Rotation Mode) by programming Operational Command Word 2 (OCW2).

Fixed Priority Mode

This is the default condition that exists unless rotation (either manual or automatic) is enabled, or the controller is programmed for Polled Mode. In Fixed Priority Mode, interrupts are fully nested with priority assigned as shown in Table 4-3.

Table 4-3. Fixed Priority Mode Interrupt Assignments

Priority Status	Lov	vest					Hig	hest
	IR7	IR6	IR5	IR4	IR3	IR2	IR1	IR0

Nesting allows interrupts with higher priorities to generate interrupt requests prior to the completion of the interrupt in service. When an interrupt is acknowledged, priority is resolved, the highest priority request's vector is placed on the bus, and the ISR bit for that channel is set. This bit remains set until an EOI (automatic or CPU generated) is issued to that channel. While the ISR bit is set, all interrupts of equal or lower priority are inhibited. Note that a higher priority interrupt that occurs during an interrupt service routine, is acknowledged only if the CPU has internally re-enabled interrupts.

Specific Rotation Mode

Specific Rotation allows the system software to re-assign priority levels by issuing a command that redefines the highest priority channel. Interrupt assignments, before rotation, are shown in Table 4-4; interrupt assignments, after rotation, are shown in Table 4-5. Specific rotation command issued with Channel 5 specified.

Table 4-4.

Specific Rotation Mode Interrupt Assignments - Before Rotation

Priority Status	Lov	yast					Hig	hest
	IR7	IR6	IR5	IR4	IR3	IR2	IR1	IR0

Table 4-5.

Specific Rotation Mode Interrupt Assignments - After Rotation

Priority Status	Lov	vest					Hig	hest
	IR5	IR4	IR3	IR2	IR1	IR0	IR7	IR6

Automatic Rotation Mode

In applications in which a number of equal priority peripherals are requesting interrupts, Automatic Rotation may be used to equalize the priority assignment. In this mode a peripheral, after being serviced, is assigned the lowest priority. All peripherals connected to the controller are serviced at least once in eight interrupt requests to the CPU from the controller. Automatic rotation occurs, if enabled, due to the occurrence of EOI (automatic or CPU generated). Interrupt assignments, before rotation are shown in Table 4-6, and IR4 is the highest priority request serviced. Interrupt assignments, after rotation, are shown in Table 4-7, and IR4 service is completed.

Table 4-6.

Automatic Rotation Mode Interrupt Assignments - Before Rotation

ISR Status Bit	IS7	IS6	1 S5	154	153	IS2	IS1	ISO
	0	1	0	1	0	0	0	0
Priority Status	Lov	west					Hig	hest
	IR7	IR6	IR5	IR4	IR3	IR2	_IR1	IR0

Table 4-7.

Automatic Rotation Mode Interrupt Assignments - After Rotation

ISR Status Bit	IS7	IS6	IS5	IS4	IS3	IS2	IS1	ISO
	0	1	0	0	0	0	0	0
Priority Status	ĹO	west					Hig	hest
	IR4	IR3	IR2	IR1	IR0	IR7	IR6	IR5

4.5 Programming the Interrupt Controller

Two types of commands are used to control the 82C235 interrupt controllers: Initialization Command Words (ICWs) and Operational Command Words (OCWs).

Initialization Command Words

The initialization process consists of writing a sequence of four bytes to each interrupt controller. The initialization sequence is started by writing the first Initialization Command Word (ICW1) to address 020H (0A0H) with a one on bit 4 of the data byte. The interrupt controller interprets this as the start of the initialization sequence and does the following:

- 1. The Initialization Command Word Counter is reset to zero.
- 2. ICW1 is latched into the device.
- 3. Fixed Priority Mode is selected.
- 4. IR7 is assigned the highest priority.
- 5. The Interrupt Mask Register is cleared.
- The Slave Mode Address is set to seven.
- 7. Special Mask Mode is disabled.
- 8. The IRR is selected for Status Read operations.

The next three I/Os write to address 021H (0A1H) will load ICW2-ICW4. Figure 4-4 shows a flow chart of the initialization sequence. The initialization sequence can be terminated at any point (all four bytes must be written for the controller to be properly initialized) by writing to address 020H (0A0H) with a zero in data bit 4. Note, this causes OCW2 or OCW3 to be written.

Figure 4-4. Initialization Sequence

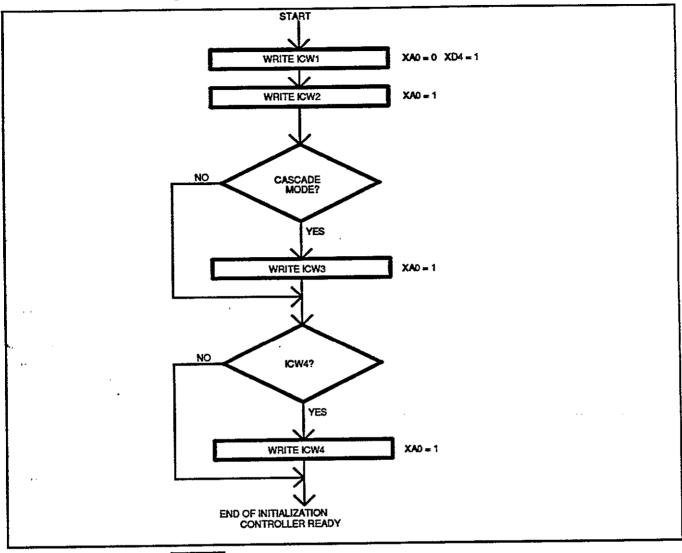
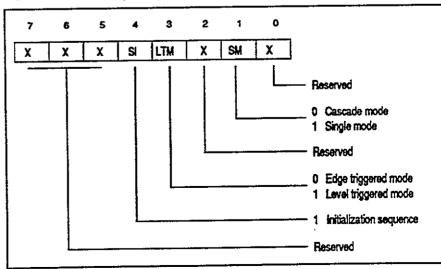
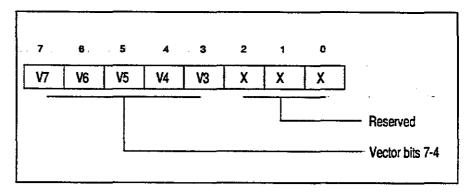



Figure 4-5.

ICW1 Address 020H (0A0H) - Write Only



Bit 1 selects between Single Mode and Cascade Mode. Single Mode is used whenever only one interrupt controller (INTC1) is used and is not recommended for this device. Cascade Mode allows the two interrupt controllers to be connected through IR2 of INTC1. INTC1 allows INTC2 to generate its own interrupt vectors if Cascade Mode is selected and the highest priority IR pending is from an INTC2 input. INTC1 and INTC2 must be programmed for Cascade Mode for both devices to operate.

LTM: Bit 3 selects level or edge triggered inputs to the IRR. If a one is written to LTM, a high-level on the IRR input generates an interrupt request. The IR must be active until the first INTA cycle is started to generate the proper interrupt vector (an IR7 vector is generated if the IRR input is de-asserted early), and the IR must be removed prior to EOI to prevent a second interrupt from occurring.

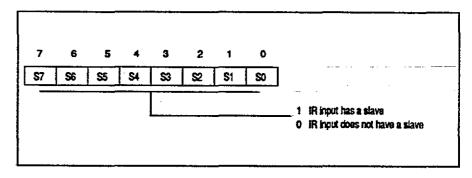
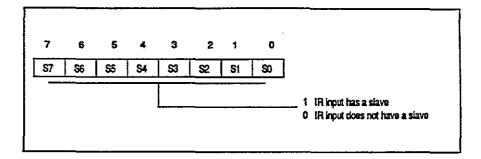

Si: Bit 4 indicates to the interrupt controller that an Initialization Sequence is starting and must be a one to write ICW1.

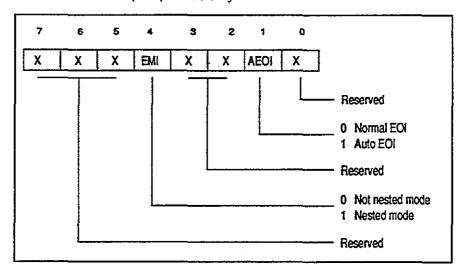
Figure 4-6. ICW2 Address 021H (0A1H) - Write Only

V<3:7>: These bits are the upper five bits of the interrupt vector and are programmable by the CPU. The lower three bits of the vector are generated by the Priority Resolver during INTA. INTC1 and INTC2 need not be programmed with the same value in ICW2.


Figure 4-7. ICW3 Format for INTC1 Address 021H - Write Only

S<0:7>: Select which IR inputs have Slave Mode controllers connected. ICW3 in INTC1 must be written with 04H for INTC2 to function.

Figure 4-8.

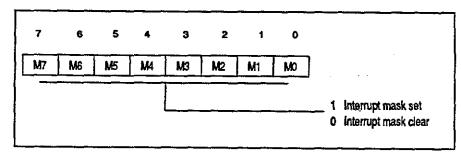

ICW3 Format for INTC2 Address 0A1H - Write Only

ID<0:2>: Determine the Slave Mode address the controllers will respond to during the cascaded INTA sequence. ICW3 in INTC2 should be written with 02H for cascade Mode operation. Note that b<3:7> should be zero.

Figure 4-9.

ICW4 Address 021H (A1H) - Write Only

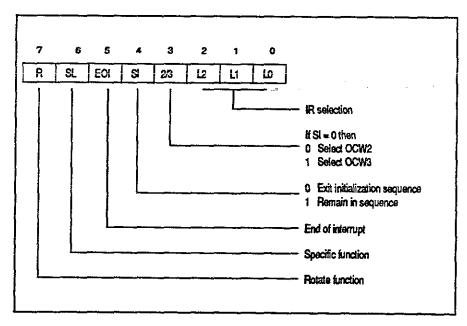
AEOI: Auto End-of-Interrupt is enabled when ICW4 is written with a zero in both. The interrupt controller performs a non-specific EOI on the trailing edge of the second INTA cycle. Note that this function should not be used in a device with fully nested interrupts unless the device is a cascade Master.


EMI: Bit 4 enables multiple interrupts from the same channel in Fixed Priority Mode. This allows INTC2 to fully nest interrupts, when Cascade Mode with Fixed Priority Mode are both selected, without being blocked by INTC1. Correct handling of this mode requires that the CPU to issue a non-specific EOI command to INTC2 and to check its In-Service Register for zero when exiting an interrupt service routine. If zero, a non-specific EOI command should be sent to INTC1. If non-zero, no command is issued.

Operational Command Words

Operational Command Word 1 (OCW1) is located at address 021H (0A1H) and may be written any time the controller is in Initialization Mode. Operational Command Words 2 and 3 (OCW2 and OCW3) are located at address 020H (0A0H). Writing to address 020H (0A0H) with a zero in bit 4 places the controller in operational mode and loads OCW2 (if data bit 3=0) or OCW3 (if data bit 3=1).

Figure 4-10.


OCW1 Address 021H (0A1H) - Read/Write

M<0:7>: These bits control the state of the Interrupt Mask Register. Each Interrupt Request can be masked by writing a one in the appropriate bit position (M0 controls IR0 etc.). Setting an IMR bit has no affect on lower priority requests. All IMR bits are cleared by writing ICW1.

Figure 4-11.

OCW2 Address 020H (0A0H) - Write Only

L <0:2>: These three bits are internally decoded to select which interrupt channel is to be affected by the specific command. L <0:2> must be valid during three of the four specific cycles (see SL).

The interrupt Controller

2/3: If the I/O write places a 0 in bit 4 (Initialization Sequence), then writing a 0 in bit 3 (2/3) selects OCW2 and writing a 1 will select OCW3.

SI: Writing a zero in bit 4 takes the interrupt controller out of initialize mode and writes OCW2 or OCW3.

EOI: This bit, in conjunction with Rotate Function and Specific Function, selects operational function. Writing a one in bit 5 causes a function related to End-of-Interrupt to occur.

Table 4-8. End of Interrupt Bit at Unity

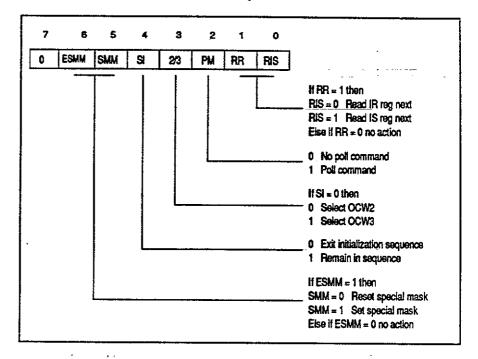
R	SL	EOI	Function
 0	0	1	Non-specific End-of-Interrupt Command
0	1	1	Specific End-of-Interrupt Command
1	0	1	Rotate on non-specific End-of-Interrupt
1	1	1	Rotate on specific End-of-Interrupt

SL: This bit in conjunction with Rotate Function and End-of-Interrupt selects operational function. Writing a one in bit 6 causes a specific or immediate function to occur. All specific commands require L2-L0 to be valid except no operation.

Table 4-9. Specific Bit at Unity

R	SL	EOI	Function
0	1	0	No Operation
0	1	1	Specific End-of-Inetrupt Command
1 _	1	0	Specific Rotate Command
1	1	1	Rotate on specific End-of-Interrupt

R: This bit, in conjunction with Specific Function and End-of-Interrupt, selects operational function. Writing a one in bit 7 causes one of the rotate functions to be selected.


Table 4-10. Rotate Function Bit at Unity

R	SL	EOI	Function
1	0	0	Rotate on auto EOI enable †
1	0	1	Rotate on non-specific EOI
1	1	0	Specific Rotate Command
1	1	1	Rotate on specific EOI

† This function is disabled by writing a zero to all three bit positions.

Figure 4-12.

OCW3 Address 020H (0A0H) - Write Only

RIS: This bit selects between the IRR and the ISR during Status Read operations if RR = 1. IRR is selected if this bit is set to one. ISR is selected if this bit is set to zero.

RR: When the RR bit (bit 1) is one, reading the Status Port at address 020H (0A0H) causes the contents of IRR or ISR (determined by RIS) to be placed on XD7-XD0 and LD0-LD7. Asserting PM forces RR reset.

PM: Polled Mode is enabled by writing a one to bit 2 of OCW3 causing the 82C235 to perform the equivalent of an INTA cycle during the next I/O read operation to the controller. The byte read during this cycle sets bit 7 if an interrupt is pending. If bit 7 of the byte is set, the level of the highest pending request is encoded on bits 2-0. The IRR remains frozen until the read cycle is completed, at which time the PM bit is reset.

Sl: See Initialization Sequence above.

SMM: If ESMM and SMM both are written with a one, the Special Mask Mode is enabled. Writing a one to ESMM and a zero to SMM disables Special Mask Mode. During Special Mask Mode, writing a one to any bit position inhibits interrupts and a zero enables interrupts on the associated channel by causing the Priority Resolver to ignore the condition for the ISR.

ESMM: Writing a one in this bit position enables the Set/Reset Special Mask Mode function controlled by bit 5 (SMM). ESMM allows the other functions in OCW3 to be accessed and manipulated without affecting the Special Mask Mode state.

The interrupt Controller


This page is intentionally left blank.

Programmable Interval Timer

The programmable interval timer, which is equivalent to the Intel 8254 Programmable Interval Timer/Counter, is programmable through internal I/O Ports 040H through 043H. A block diagram of the subsystem is provided in Figure 5-1.

Programmable Timer Control

The inputs of the three channels are connected to a 1.19 MHz clock. The 1.19 MHz clock is internally generated by dividing OSCX1 (14.31818 MHz) by 12. The output of the three channels are as follows:

- Channel 0 is a general purpose and software interrupt timer. The output of this channel is connected directly to the IRQ0 pin of the internal programmable interrupt controller.
- The output of Channel 1 is used internally by the 82C235 to generate refresh requests.
- The output of Channel 2 supports tone generation for the audio speaker.

The Counter/Timer (CTC) in the 82C235 is general purpose, and can be used to generate accurate time delays under software control. The CTC contains three 16-bit counters (Counter 0-3) that can be programmed to count in binary or binary coded decimal (BCD). Each counter operates independently of the other two and can be programmed for operation as a timer or a counter.

All three of the counters are controlled from a common set of control logic. The control logic decodes control information written to the CTC and provides the controls necessary to load, read, configure, and control each counter. Counter 0 and Counter 1 can be programmed for all six modes, but Mode 1 and Mode 5 have limited usefulness due to the lack of an external hardware trigger signal. Counter 2 can be operated in any of the following six modes:

- Mode 0 interrupt on terminal count
- Mode 1 hardware re-triggerable one-shot
- Mode 2 rate generator
- Mode 3 square wave generator
- Mode 4 software triggered strobe
- Mode 5 hardware re-triggerable strobe

All three counters in the CTC are driven from a common clock input pin (TMRCLK) that is derived by dividing OSCX1 (14.31818 MHz) by 12. Counter zeros output (Out 0) is connected to IRQ0 of INTC1 (see Section 4.1 Controller Operation) and may be used as an interrupt to the system for time keeping and task switching. Counter 1 is programmed to generate pulses for use by the refresh generator. The third counter (Counter 2) is a full function Counter/Timer. This channel can be used as an interval timer, a counter, or as a gated rate/pulse generator (which is normally used as a speaker tone generator).

5.1 Counter Description

Each counter in the CTC contains a Control Register, a Status Register, a 16-bit Counting Element (CE), a pair of 8-bit Counter Input Latches (CIL and CIH), and a pair of 8-bit Counter Output Latches (COL and COH). Each counter also has a clock input for loading and decrementing the CE, a mode defined GATE input for controlling the counter (only GATE2 is controlled by I/O Port 61, bit 0), and an OUT signal. The OUT signal's state and function are controlled by the Counter Mode and condition of the CE (see Mode Definitions).

The Control Register stores the mode and command information used to control the counter. The Control Register may be loaded by writing a byte, containing a pointer to the desired counter, to the Write Control Word address (043H). The remaining bits in the byte contain the mode, the type of command, and count format information.

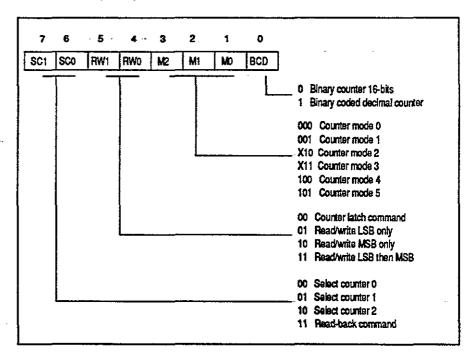
The Status register allows the software to monitor counter condition and read back the contents of the Control Register.

The Counting Element is a loadable 16-bit synchronous down-counter. The CE is loaded or decremented on the falling edge of TMRCLK. The CE contains the maximum count when a zero is loaded; this is equivalent to 655536 in binary operation or 10000 in BCD. The CE does not stop when it reaches zero. In Modes 2 and 3, the CE is reloaded and in all other modes it wraps around to FFFFH in binary operation or 9999 in BCD.

The CE is indirectly loaded by writing one or two bytes (optional) to the counter input latches, which are in turn loaded into the CE. This allows the CE to be loaded or reloaded in one TMRCLK cycle.

The CE is also read indirectly by reading the contents of the counter output latches. COL and COH are transparent latches that can be read while transparent or latched (see Latch Counter Command).

5.2 Programming the CTC


After power-up, the condition of CTC control registers, counter registers, CE, and the output of all counters is undefined. Each counter must be programmed before it can be used.

Counters are programmed by writing a control word and then an initial count. The control register of a counter is written to by writing to the control word address (see Tables 5-1 and Figure 5-2). The control word is a write-only location.

Table 5-1. Programming the CTC

 Address	Function
 0 40H	Counter 0 Read/Write
 041H	Counter 1 Read/Write
 042H	Counter 2 Read/Write
 043H	Counter Register Write Only

Figure 5-2. Control Word (043H)

BCD: Bit 0 selects binary coded decimal counting format during Read/Write Counter Commands. When bit 0 is set to zero, the count is binary; when bit 0 is set to one, the count is BCD. Note that during Read-Back Command this bit must be zero.

M-0:2>: Bits 1-3 determine the counter's mode during Read/Write Counter Commands (see Read/Write Counter Command) or select the counter during a Read-Back Command (see Read-Back command). Bits 1-3 become "don't care" during Latch Counter Commands.

Read/Write Counter Command

When writing to a counter, two conventions must be observed:

- Each counter's control word must be written before the initial count is written.
- Writing the initial count must follow the format specified in the control word (least significant byte only, most significant byte only, or least significant byte, then most significant byte).

Table 5-2.

Read/Write Counter Commands

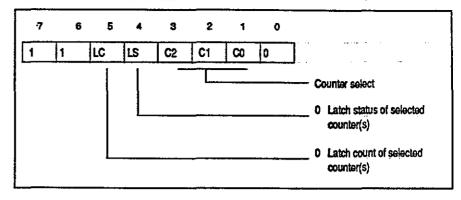
SC1	SCO	RW1	RWC	Command
0	0	0	0	Latch Counter 0 (see Counter Latch Command)
0	0	0	1	Read/Write Counter 0 LSB Only
0	0	1	0	Read/Write Counter 0 MSB Only
0	0	1	1_	Read/Write Counter 0 LSN then MSB
0	1	0	0	Latch Counter 1 (see Counter Latch Command)
0	1	0	1	Read/Write Counter 1 LSB Only
0	1	1	0	Read/Write Counter 1 MSB Only
0	1	1	1	Read/Write Counter 1 LSN then MSB
1	0	0	0	Latch Counter 2 (see Latch Counter Command)
1	0	0	1	Read/Write Counter 2 LSB Only
1	G	1	0	Read/Write Counter 2 MSB Only
1	0	1	1	Read/Write Counter 2 LSN then MSB
1	1	X	X	Read-Back Command (see Latch Counter Command

A new initial count can be written into the counter any time after programming without rewriting the Control Word, as long as the programmed format is observed.

Latch Counter Command

When a Latch Counter Command is issued, the counter's output latches (COL and COH) latch the current state of the CE. COL and COH remain latched until read by the CPU, or the counter is reprogrammed. The output latches then return to a "transparent" condition. In this condition, the latches are enabled and the contents of the CE may be read directly.

Latch Counter Commands may be issued to more than one counter before reading the first counter to which the command was issued. Also, multiple Latch Counter Commands issued to the same counter without reading the counter cause all but the first command to be ignored.

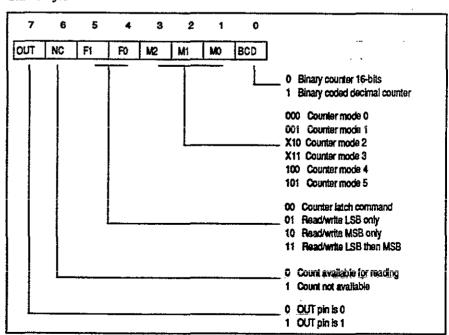

Read-Back Command

The Read-Back Command allows the user to check the count value, mode, and state of the OUT signal and Null Count Flag of the selected counter(s).

The format of the Read-Back Command is as follows:

Figure 5-3.

Read-Back Command Format


- C<0:2>: Writing a one in bit 3 causes Counter 3 to latch one or both of the registers specified by the Latch Counter and the Latch Status. The same is true for bits 2 and 1 except that they enable Counters 1 and 0 respectively.
- LS: Writing a zero in bit 4 causes the selected counter(s) to latch the current condition of its Control Register, Null Count, and Output into the Status Register. The next read of the Counter results in the contents of the Status Register being read (see Status Read).
- LC: Writing a zero in bit 5 causes the selected counter(s) to latch the state of the CE in COL and COH.

Each counter's latches remain latched until either the latch is read or the counter is reprogrammed.

If LS = LC = 0, status is returned on the next read from the counter. The next one or two reads (depending on whether the counter is programmed to transfer one or two bytes) from the counter result in the count being returned.

Figure 5-4.

Status Byte

Programmable Interval Timer

BCD: Bit 0 indicates the CE is operating in BCD format.

M<0:2>: These bits reflect the mode of the counter and are interpreted in the same manner as in Write Command operations.

F<0:1>: Bits 4-5 contain the F0 and F1 Command bits, which were written to the Command Register of the counter during initialization. This information is useful when determining whether the high byte, the low byte, or both must be transferred during counter read/write operations.

NC: Bit 6 contains the condition of the Null count Flag. This flag is used to indicate that the contents of the CE are valid. Null Count is set to a one during a write to the Control Register or the counter. Null Count is cleared to a zero whenever the counter is loaded from the counter input registers.

OUT: Bit 7 contains the state of the OUT signal of the counter.

5.3 Counter Operation

Due to the previously stated restrictions in Counter 0 and Counter 1, Counter 2 is used as the example in describing counter operation, but the description of Mode 0, 2, 3, and 4 is relevant to all counters. The following terms are defined for describing CTC operation.

TMRCLK pulse — an internal clock equivalent to OSCX1 (14.31818MHz) divided by 12

Trigger — the rising edge of the GATE2 input.

Counter Load — the transfer of the 16-bit value in CIL and CIH to the CE.

Initialized — indicates that a control word has been written and the Counter Input Latches have been loaded.

Counter 2 operates in one of the following modes:

Mode 0 - Interrupt on Terminal Count

Writing the Control Word causes OUT2 to go low and remain low until the CE reaches zero, at which time it returns to high and remains high until a new count or Control Word is written. Counting is enabled when GATE2 = 1. Disabling the count has no effect on OUT2. The CE is loaded with the first TMRCLK pulse after the Control Word and initial count are loaded. When both CIL and CIH are written, the CE is loaded after CIH is written (see Write Operations). This TMRCLK pulse does not decrement the count (for an initial count of N, OUT2 does not go high until N+1 TMRCLK pulses after initialization). Writing a new initial count to the counter reloads the CE on the TMRCLK pulse and counting continues from the new count.

If an initial count is written with GATE2 = 0, it is still loaded on the next TMRCLK pulse but counting does not begin until GATE2 = 1. Therefore, Out2 goes high N TMRCLK pulses after GATE2 = 1.

Mode 1 - Hardware Re-Triggerable One-Shot

Writing the Control Word causes OUT2 to go high initially. Once initialized, the counter is armed and a trigger causes OUT2 to go low on the next TMRCLK pulse. OUT2 then remains low until the counter reaches zero. An initial count of N results in a one-shot pulse N TMRCLK cycles long.

Any subsequent triggers while OUT2 is low causes the CE to be reloaded, extending the length of the pulse. Writing a new count to CIL and CIH does not affect the current one-shot unless the counter is re-triggered.

Mode 2 - Rate Generator

Mode 2 functions as a divide-by-N counter, with OUT2 as the carry. Writing the Control Word during initialization sets OUT2 high.

When the initial count is decremented to one, OUT2 goes low on the next TMRCLK pulse. The following TMRCLK pulse returns OUT2 high, reloads the CE, and the process is repeated. In Mode 2, the counter continues counting (if GATE2 = 1) and generates an OUT2 pulse every N TMRCLK cycles. Note that a count of one is illegal in Mode 2.

GATE2 = 0 disables counting and forces OUT2 high immediately. A trigger reloads the CE on the TMRCLK pulse. Thus GATE2 can be used to synchronize the counter to external events.

Writing a new count while counting does not affect current operation unless a trigger is received. Otherwise, the new count is loaded at the end of the current counting cycle.

Mode 3 - Square Wave Generator

Mode 3 is similar to Mode 2 in every respect except for the duty cycle of OUT2. OUT2 is set high initially and remains high for the first half of the count. When the first half of the initial count expires, OUT2 goes low for the remainder of the count.

If the counter is loaded with an even count, the duty cycle of OUT2 is 50% (high = low = N/2). For odd count values, OUT2 is high one TMRCLK cycle longer than it is low. Therefore, high = (N+1)/2 and low = (N-1)/2.

Mode 4 - Software Triggered Strobe

Writing the Control Word causes OUT2 to go initially. Expiration of the initial count causes OUT2 to go low for one TMRCLK cycle. GATE2 = 0 disables counting but has no effect on OUT2. Also, a trigger does not reload the CE.

The counting sequence is started by writing the initial count. The CE is loaded on the TMRCLK pulse after initialization. The CE begins decrementing one TMRCLK pulse later. OUT2 goes low for one TMRCLK cycle, (N+1) cycles after the initial count is written. If a new initial count is written during a counting sequence, it is loaded into the CE on the next TMRCLK pulse and the sequence continues from the new count. This allows the sequence to be re-triggerable by software.

Mode 5 - Hardware Triggered Strobe

Writing the Control Word causes OUT2 to go high initially. Counting is started by trigger. The expiration of the initial count causes OUT2 to go low for one TMRCLK cycle. GATEA20 = 0 disables counting.

The CE is loaded during counting, the current counting sequence is not affected unless a trigger occurs. A trigger causes the counter to be reloaded from CIL and CIH, making the counter re-triggerable.

GATE2

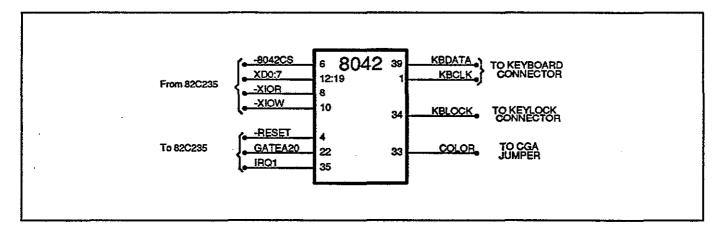
In Modes 0, 2, 3, and 4 GATE2 is level sensitive and is sampled on the rising edge of TMRCLK. In Modes 1, 2, 3, and 5 the GATE2 input is rising-edge sensitive. This rising edge sets an internal flip-flop whose output is sampled on the next rising edge of TMRCLK. The flip-flop resets immediately after being sampled. Note that in Modes 2 and 3 the GATE2 input is both edge- and level-sensitive.

Table 5-3.

GATE2 Mode

Mode	Condition							
	Low	Rising	High					
0	Disables Counting		Enables Counting					
1	—	a. Initiates Counting						
		b. Resets OUT Pin						
2	a. Disables Counting	Initiates Counting	Enables Counting					
	b. Forces OUT Pin High							
3	a. Disables Counting	Initiates Counting	Enables Counting					
	b. Forces OUT Pin High							
4	Disables Counting		Enables Counting					
5	***	Initiates Counting						

In an AT (and SCAT) GATE0 and GATE1 and tied high. GATE2 is controlled by Port 61H bit 0.


System Interface

6.1 Keyboard Controller Interface

The 82C235 uses an external 8042 to handle keyboard operations (see Figure 6-1). The clock for the 8042 may be derived from BUSCLK or OSCX1 and should have a frequency between 6 MHz and 10 MHz, when used with standard keyboard controllers. The 8042 interfaces with the 82C235 through IRQ1 and a chip select line (-8042CS Pin 130, MFP2). The 8042 also provides two output signals: GATEA20 and CPURESET. These signals are brought into the 82C235 and combined internally with the FAST GATEA20 and FAST CPU RESET functions. The keyboard controller also supports the keylock and CGA strap functions.

Figure 6-1.

Keyboard Controller

FAST CPURESET and FAST GATEA20

These functions perform the same functions as the signals CPURESET and GATEA20 from the keyboard controller. They are a faster alternative to using the keyboard controller, and can be invoked by writing to Port 92H.

Table 6-1.

IIO Port 92H

Port	Blt	Desctiption/Bit State
92H	1	FASTGATEA20
		0 = MODA20 is low
		1 = Address bit A20 (from CPU) on directly reflected on MODA20 pin.
	0	FAST CPURESET
		0 to 1 transition pulses the CPURESET pin to reset the CPU. This bit maintains its state so the BIOS can determine if the reset was caused by a FAST CPURESET.

The FAST GATEA20 is logically OR'd with the keyboard GATEA20 function.

6.2 Memory Interface

This section discusses three types of memory interface:

- ROM/shadow RAM interface
- DRAM interface
- Extended/expanded memory interface

ROM/Shadow RAM Interface

The 82C235 contains a programmable ROM chip select (-ROMCS) that becomes active when an access is made to the address range programmed by internal configuration register 48H or accesses between FF0000 and FFFFFFH. The programmable range, which may be as large as 256KB (in 32KB blocks), is between 0C0000H and 0FFFFFFH.

ROMs, which may be configured for either 8- or 16-bit mode, must be connected to the XD-bus. To select 16-bit mode, the DACK7 line must be driven low with a TTL device; to select 8-bit mode, the line must be driven high with a TTL device. The 82C235 asserts -MEMCS16 during all ROM cycles if 16-bit mode is selected.

The 82C235 supports a feature called shadow RAM. This feature is invoked by copying an image of the BIOS (which is in ROM) into an area of RAM. The purpose of this feature is to allow operating systems and software applications to make faster accesses to the shadowed BIOS (rather than ROM which is much slower).

The degree of performance improvement derived from the use of shadow RAM depends primarily on the difference in access times between ROM and DRAM cycles. At higher system speeds, the difference can be significant. Additionally, shadow RAM allows use of a single 8-bit ROM (thus reducing circuit board size and component count) without sacrificing system performance.

Shadow RAM can be implemented using internal configuration registers 48H - 4CH. Refer to the following procedure for the programming sequence that enables shadow RAM.

Note

The program that transfers the BIOS from ROM to RAM should reside in low RAM.

- 1. Disable the interrupts.
- 2. Copy the ROM BIOS into low memory (address CKB).
- 3. Disable -ROMCS using internal configuration register 48H.
- 4. Enable the shadow RAM using internal configuration registers 4AH-4CH.
- Copy the BIOS from low memory into the area of memory reserved for shadow RAM.
- 6. Make the shadow RAM read only using internal configuration register 49H.
- 7. Re-enable the interrupts.

DRAM Interface

The 82C235 includes a DRAM controller that directly supports up to 8MB of memory in four 18-bit (including two bits of parity) banks. The 82C235 supports different memory configurations, which can be programmed using internal configuration register 4DH in conjunction with 4EH, bit 4. To access any one of the four banks, the 82C235 asserts one of the four RAS signals (-RAS0 through -RAS3) that corresponds to a particular bank, plus -CASL or -CASH to specify the low or high byte of that bank. For write operations, the -MWE signal is asserted. The 82C235 multiplexes the A01-20 address lines for DRAM accesses during assertion of -RAS and -CAS according to Table 6-2.

Table 6-2.

Multiplexing the <A20:1>Address Lines

	MA9‡	MAS	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MAO
-RAS	A19†	A17	A8	A7	A 6	A5	A 4	A 3	A2	A1
-CAS	A20†	A18	A16	A15	A14	A13	A12	A 11	A10	A 9

[†] A19 and A20 are used for RAS generation on 512KB banks.

The upper addresses (A23-A19) are used to generate the -RAS signals for each bank. Table 6-3 shows the address that are used to generate the RAS signals for each bank of DRAM. Each DRAM configuration will have its own unique RAS decode scheme. The A00 address line, in conjunction with -BHE signal, are used for -CAS generation for high byte, or low byte, or word accesses.

The address lines can be from one of the following sources: the CPU, the DMA controller inside the 82C235, the EMS page registers in the 82C235, or by a Bus Master on the I/O Channel.

[‡] MA9 is only used in 2MB banks.

المحريماني

Table 6-3. RAS Decode

Memory	Bank	Bank	Address Bits			
Configuration	Select	Size	A22	A 21	A20	A19
512K Banks	RAS0	512K	0	0	0	0
up to	RAS1	512K	0	0	0	1
2M total memory	RAS2	512K	0	0	1	6
	RAS3	512K	0	0	1	1
2M Banks	RAS0	2M	0	0	X	X
trp to	RAS1	2M	0	1	X	X
8M total memory	RAS2	2M	1	0	X	X
	RAS3	<u>2M</u>	1	1	X	X
512K and 2M Bank	RAS0	512K	0	1	0	0
2.5M total memory	RAS1	2M	0	0	X	X
512K and 2M Banks	RAS0	512K	1	0	0	0
4.5M total memory	RAS1	2M	0	0	X	X
	RAS2	2M	0	1	X	X
512K and 2M Banks	RAS0	512K	1	1	0	0
6.5M total memory	RAS1	2M	0	0	X	X
	RAS2	2M	0	1	X	X
	RAS3	<u>2M</u>	1	0	X	X
512K and 2M Banks	RAS0	512K	0	1	0	0
3M total memory	RAS1	512K	0	1	0	1
•	RAS2	2M	0	0	X	X
512K and 2M Banks	RAS0	512K	1	0	0	0
5M total memory	RAS1	512K	1	0	0	1
•	RAS2	2M	0	0	X	X
	RAS3	2M	0	1	x	X

The 82C235 supports odd parity for each byte. Each time a byte or a word is written, an odd parity bit is generated and written along with the byte. When a read occurs, the written parity bit is compared against calculated parity from the read byte. If a mismatch occurs during this read operation, a parity error is reported and an NMI is generated indicating a problem with memory. The NMI generation for parity errors can be disabled using bit 6 of internal configuration register 46H or bit 2 of I/O port 61H. If the system designer decides to not implement the parity bit (because of cost or other reasons), NMI generation due to parity errors should be disabled as described.

Memory is accessed on the MD-bus (local bus) except when the address exceeds the installed memory size or the address references a range disabled by the RAM DISABLE bit using bit 5 of internal configuration register 4EH. When either of these conditions exist, the bus cycle is performed on the I/O channel. Additional memory can be configured on the I/O channel.

Local DRAM timing can be programmed using bits 6-4 of internal configuration register 4BH. Local DRAM timing can be run at zero wait-states, one wait-state, or -RAS delayed by PROCCLK/2 and one wait-state. As stated earlier...the.8203353100820255,10.disable pagnory in the IMPROCCLS, or uy a bus Master on the I/O Channel.

Mixed Size DRAM Support

Mixed size DRAM support allows the intermixing of 256Kx1 (256Kx4) and 1Mx1 (1Mx4) DRAM types. In order to instruct the DRAM controller that mixed types of DRAMs are present, one programs Internal Configuration Register (ICR) 4EH, Bit 6 to a logic 1 value. This instructs the DRAM controller to decode memory accesses as per the values shown in Table 6-4 If a logic 0 is written to this bit, the 82C235 DRAM controller operates in the same fashion as the earlier revision of 82C235 (82C235 A) silicon. Note that this bit defaults to a logic 0 value, instructing the 82C235 to operate as previous revisions of the silicon operated. Once this bit has been set, the appropriate table selection is programmed via ICR 4DH, Bits 3:0.

The following is a brief description of the operation of ICR 4EH, Bit 6 and ICR 4DH, Bits 3:0.

Table 6-4. Internal Configuration Register 4EH

Index	Bit	Desctiption/Bit State
4EH	6	MIX DRAM CFG - When this bit is set to a logic 1, intermixing of 256K and iM DRAMs is supported. When this bit is set to a logic 0 level, only memory configurations which do not support 256K and 1M DRAM types are allowed (see Table 5-3 DRAM Memory Organization). This bit defaults to a logic 0 after reset.
		0 = No intermixing (default)
		1 = 256K/1M intermixing supported

Note

This bit was previously designated "Reserved" in 82C235 A silicon.

Table 6-5. Internal Configuration Register 4DH

index	Bit	Desctiption/Bit State
4DH	3:0	CFG3:0 - This 4-bit field, in conjunction with the MIX DRAM CFG bit described above, specified the system board memory configuration as detailed by Table 6-6. The default value of these bits is a hex value of 1 (0010 binary) at reset.

Table 6-6. DRAM Memory Organization

MIX DRAM CFG	CFG3:0 (hex)	Bank 0	Bank 1	Bank 2	Bank 3	Total Memory	Extended/EMS Memory
0	O	0	0	0	0	0	0
0	1	512K	0	0	0	512K	0
0	2	512K	128K	0	0	640K	0
0	3	512K	512K	0	0	<u>1M</u>	384K
0	4	512K	512K	0	0	1M	0
0	5	512K	512K	512K	0	1.5M	512K
0	6	512K	512K	512K	512K	2M	1 <u>M</u>
0	7			Res	erved		
0	8	2M	0	0	0	2M	1M
0	9	2M	2M	0	0	4M	3M
0	Α	2M	2M	2M	0	6M	5M
0	В	2M	2M	2M	2M	8M	7M
0	c			Res	erved		
0	D			Res	erved		
0	E			Res	erved		
0	F			Res	erved		
1.	1+	512K	2M	0	0	2.5M	1.5M
1	2†	512K	2M	2M	0	4.5M	3.5M
1	3†	512K	2M_	2M	2M	6.5M	5.5M
1	4†	512K	512K	2M	0	3M	2M
1	5†	512K	512K	2M	2M	5M	4M

[†] In these configurations, the physical mapping order of the banks has been changed so that the starting address begins with the first 2M bank. The first 512K bank is after the last 2M bank.

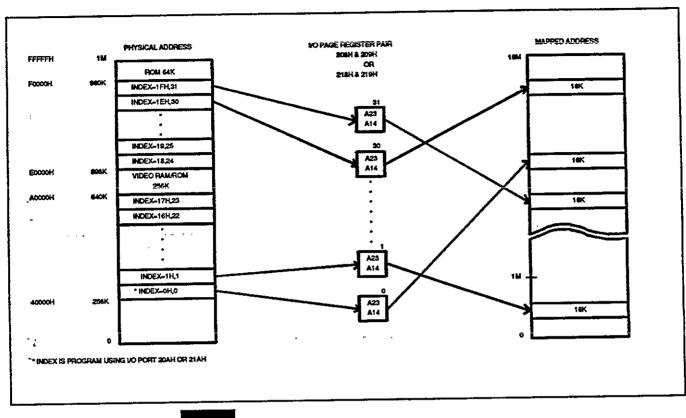
Expanded/Extended Memory

The 82C235 supports the LIM EMS 4.0 specification. This specification allows operating systems and software applications to access memory above the DOS (1MB) limitation through implementation of a page mapping scheme that is managed by an EMS driver. Using I/O page registers, the 82C235 is able to re-map memory using 32 16KB pages.

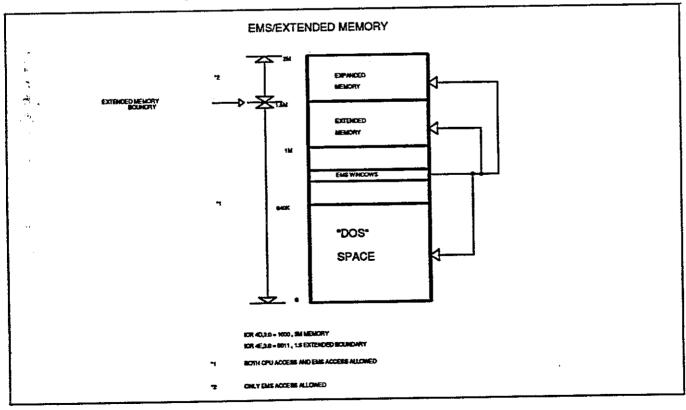
The internal configuration register 4FH, bit 0, selects an I/O base for the I/O page registers to use for EMS implementation. To access the I/O page registers, enable internal configuration register 4FH, bit 6; to enable EMS memory mapping, enable internal configuration register 4FH, bit 7. Table 6-7 describes how I/O page registers are defined.

EMS Page Register	Bit	Name	Description
I/O Base + 0 (Read/Write)	7-0	A21-A14	Addresses to be used instead of CPU addresses. See Note below.
I/O Base + 1 (Read/Write)	7	Page Enable	1 = page addressed as EMS; 0 = page not addressed as EMS (default).
	6-2	Reserved	
	0-1	A23-A22	Addresses to be used instead of CPU addresses. See Note below.
I/O Base + 2 (Read/Write)	7	Al Enable	This bit enables automatic incrementing of the EMS page index value upon an I/O base + 1 register access. Thus, all 32 I/O page register pairs (words) can be written without having to rewrite index values. 1 = automatic incrementing enabled; 0 = automatic incrementing disabled (default).
	6-5	Reserved	
	4-0	Index 4-0	These bits determine which of the 32 EMS page registers sets are accessed at the I/O base and I/O base + 1 locations.

Note


The values written to registers I/O Base + 0 and I/O Base + 1 become the absolute values on the memory address lines to which they correspond. Therefore, the EMS address may point anywhere to the available system memory. No hardware checking is performed for conflicts with low (DOS) or other memory areas. It is the responsibility of the EMS driver to select appropriate values for the page register contents.

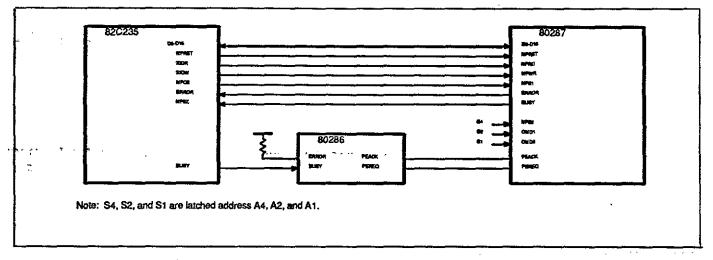
The 82C235 has 32 16KB EMS page registers. The first 24 EMS page frames are physically mapped into the area from 256KB to 640KB (040000H-09FFFFH). The remaining eight pages are mapped into the range 0D0000H-0EFFFFH. These are the physical addresses at which the EMS page frames appear. Logically mapped addresses are those addresses in extended memory that are pointed to by the I/O page registers. Figure 6-2, which shows how EMS is implemented, indicates that the physical addresses (A23-14) for each page frame are changed to the logical addresses specified by the I/O page register pairs. The converted addresses are then able to point to any location in RAM.


The EMS paging and I/O page registers are normally managed by application software or an EMS driver that allows applications to access more RAM than that allowed by DOS. More information on software implementation can be obtained from various Intel and Microsoft publications.

The 82C235 supports a combination of expanded and extended memory (see Figure 6-3). Extended memory is memory from physical address 1MB up to the extended boundary. Internal configuration register 4EH, bits 3:0, defines the extended boundary. Expanded memory is memory from the extended boundary to the end of local installed RAM. Additional RAM can be added on the AT bus which will be extended or expanded as defined by its specification.

Figure 6-2. Expanded Memory Subsystem

.. Figure 6-3. .. EMS/Extended Memory ...

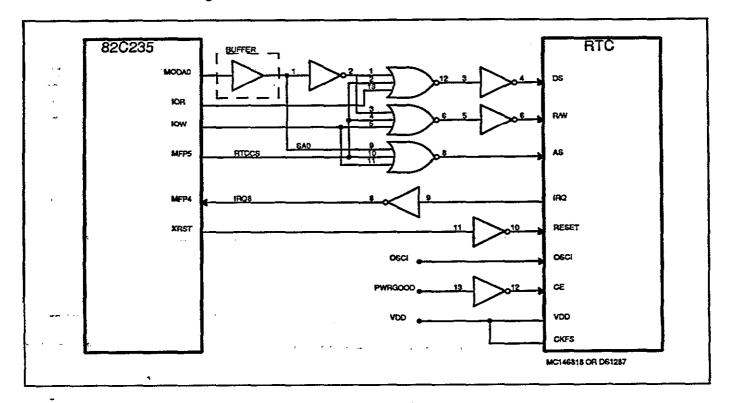

6.3 Numeric Processor Interface

The 82C235 contains interface logic that supports use of an 80287 numeric coprocessor. The logic provides the following features:

- Decodes chip select to the 80287 (-NPCS)
- Generates a dedicated reset (NPRST)
- Detects and latches coprocessor error status
- Generates an interrupt (IRQ13) to the system when an error occurs

The clock for the 80287 can be derived externally from the BUSCLK or PROCCLK outputs.

Figure 6-4. Numeric Coprocessor Interface


6.4 Real Time Clock Interface

The 82C235 contains an internal, MC146818-compatible, real-time clock (RTC) with a total of 128 bytes of CMOS RAM. The internal RTC may be disabled so that an external RTC can be used. Internal/external RTC mode is selected by the state of the -EXRTC signal (-DACK5, pin 91) during power-up. If this pin is driven low with a TTL device, the external RTC mode is selected. A TTL logic high puts the 82C235 into internal RTC mode.

The definition of two 82C235 signal pins change when selecting RTC mode. Table 6-8 lists the differences between internal and external mode.

Table 6-8. Internal/External Real Time Clock Mode

Item	Internal RTC Mode	External RTC Mode
-EXRTC (-DACK5)	TTL logic high	TTL logic low
82C235 V _{cc} pins	Connect to the battery circuit.	Connect to the power supply.
MFP4 (pin 140)	32KHz input from an external oscillator.	IRQ08 is input from the RTC.
MFP5 (pin 141)	Power Sense input.	-RTCCS output to the RTC.

Register Access

Reading and writing to the 128 locations in the Real Time Clock is accomplished by first placing the Index Address of the location you wish to access by writing the index to I/O port 70H. The address is then latched into the Index Address Register. The Index Address Register is then used as a pointer to the specific byte in the Real Time Clock, which may be read or written using I/O port 71H.

Address Map

Table 6-9 shows the internal register/RAM organization of the Real Time Clock portion of the 82C235. The 128 addressable locations in the Real Time Clock are divided into ten bytes that normally contain the time, calendar and alarm data, four control and status bytes, and 114 general purpose RAM bytes. All 128 bytes are readable by the CPU. The CPU may also write to all locations except Registers C, D, Bit 7 of Register A, and Bit 7 of the Seconds Byte which is always zero.

Table 6-9.

Address Map for the Real Time Clock

Index	Function
00	Seconds
01 -	Seconds Alarm
02	Minutes
03	Minutes Alarm
04	Hours
05	Hours Alarm
06	Day of the Week
07	Date of the Month
08	Month
09	Year
0A	Register A
0B	Register B
0C	Register C
0D	Register D
0E	User RAM
0F - 7F	User RAM

Time Calendar and Alarm Bytes

The CPU can obtain the time and calendar information by reading the appropriate locations in the Real Time Clock. Initialization of the time, calendar, and alarm information is accomplished by writing to these locations. Information is stored in these locations in binary-coded decimal (BCD) format.

Before initialization of the internal registers can be performed, the SET bit in Register B should be set to a one to prevent Real Time Clock updates from occurring. The CPU then initializes the first ten locations in BCD format. The SET bit should then be cleared to allow updates. Once initialized, enabled, and programmed in an AT mode, the Real Time Clock performs clock/calendar updates.

Table 6-10 shows the format for the ten clock, calendar, and alarm locations. The 24/12 bit in Register B determines whether the hour locations are updated using a 1-12 or 0-23 format. In 12 hour format, the high order bit of the hours byte in both the time and alarm bytes indicates PM when it is a one.

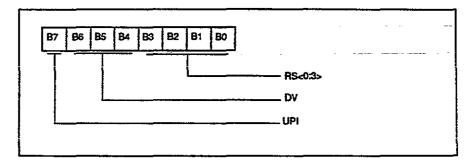
Table 6-10. Time, Calendar, and Alarm Bata Format

ndex Register Address	Function	BCD Range
0	Seconds	00-59
1	Seconds Alarm	00-59
2	Minutes	00-59
3	Minutes Alarm	00-59
4	Hours (12 hour mode) Hours (12 hour mode) Hours (24 hour mode)	01-12 (AM) 81-92 (PM) 00-23
5	Hours Alarm (12 hour mode) Hours Alarm (12 hour mode) Hours Alarm (24 hour mode)	01-12 (AM) 81-92 (PM) 00-23
6	Day of the Week	01-07
7	Day of the Month	01-31
. 8	Month	01-12
9	Year	00-99

During updates, which occur once per second, the ten bytes of time, calendar, and alarm information are unavailable to be read or written by the CPU for a period of 2ms. These ten locations cannot be written to during this time. Information read while the Real Time Clock is performing update is undefined. The Update Cycle section describes how Update Cycle/PCU contention problems can be avoided.

The alarm bytes an be programmed to generate an interrupt at a specific time or they can be programmed to generate a periodic interrupt.

Static RAM


The 114 bytes of RAM from Index Address 0EH to 7FH are not affected by the Real Time Clock. These bytes are accessible during the update cycle and may be used for whatever the designer wishes. Typical applications use this as non-volatile storage for configuration and calibration parameters since this device is normally battery powered when the system is turned off.

Control and Status Registers

The 82C235 contains four registers used to control the operation and monitor the status of the Real Time Clock. These registers are located at Index Address 0AH-0DH and are accessible by the CPU at all times.

Figure 6-6.

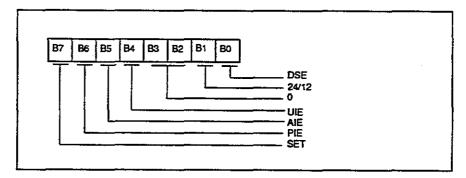
Register A (0AH) - Read/Write Except for Update-in-Progress

RS<0:3>: These four bits control the Periodic Interrupt rate. The Periodic Interrupt is derived from the Divider/Prescaler in the Real Time Clock and is separate from the Alarm Interrupt. Both the alarm and periodic interrupts do use the same interrupt channel in the Interrupt Controller. Useing the Periodic Interrupt allows the generation of interrupts at rates higher than once per second. Table 6-11 shows the interrupt rates for which the Real Time Clock can be programmed.

Table 6-11. Periodic Interrupt Rate

	Rate Se	election		Time Base		
RS3	RS2	RS1	RS0	4.194304 MHz/ 1.048576 MHz	32.7 68 KHz	
0	0	0	0	None	None	
0	0	0	1	30.517 μs	3.90526 ms	
0	0	1	0	61.035 µs	7.8125 ms	
0	0	1	1	122.070 μs	- 122.070 μs	
0	1	0	0	244.141 µs	244.141 μs	
0	1	G	1	488.281 µs	488.281 μs	
0	1	1	0	976.562 µs	976.562 µs	
0	1	1	1	1.953125 ms	1.953125 ms	
1	0	0	0	3.90625 ms	3.90625 ms	
1	. 0	0	1	7.8125 ms	7.8125 ms	
1	0	1	0	15.625 ms	15.625 ms	
1	0	1	1	31.25 ms	31.25 ms	
1	1	0	0	62.5 ms	62.5 ms	
1	1	0	1	125 ms	125 ms	
1	1	1	0	250 ms	250 ms	
1	1	1	1	500 ms	500 ms	

DV: These three bits are used to control the Divider/Prescaler on the Real Time Clock. While the 82C235 RTC can operate at frequencies higher than 32.768KHz, this is not recommended for battery powered operation due to the increased power consumption at these higher frequencies.


Table 6-12. Divider/Prescaler Control Bits

UPI:

Divider/Prescaler 2	Divider/Prescaler 1	Divider/Prescaler 0	Oscillator Frequency	Mode
0	0	0	4.194304 MHz	Operate
0	0	1	1.048576 MHz	Operate
0	1	0	32.768 KHz	Operate
1	1	X	Reset Divider	

Update in progress flag is a status bit used to indicate when an update cycle is about to take place. A one indicates that an update cycle is taking place or is imminent. UIP goes active (High) 244us prior to the start of an update cycle and remains active for an additional 2ms while the update is taking place. The UIP bit is read only and is not affected by a system reset. Writing a one to the SET bit in Register B inhibits any update cycle and then clears the UIP status bit.

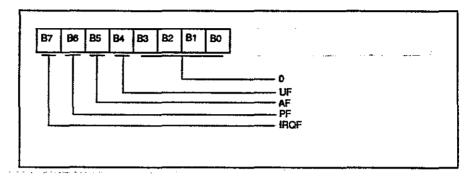
Figure 6-7. Register B (0BH) - Read Only

DSE: The Real Time Clock can be instructed to handle daylight savings time changes by setting this bit to a one. This enables two exceptions to the normal time-keeping sequence to occur. Setting this bit to a zero disables the execution of these two exceptions.

24/12: 24/12 control bit is used to establish the format of both the Hours and Hours Alarm bytes. If this bit is a one, the Real Time Clock interprets and updates the information in these two bytes using the 24-hour mode. This bit can be read or written by the CPU and is not affected by a system reset.

UE: Update-ended interrupt enable bit enables the UF (update end flag) bit in Register C to assert interrupt request. This bit is cleared upon a system reset.

AlE: The generation of alarm interrupts is enabled by setting this bit to a one. Once this bit is enabled the Real Time Clock generates an alarm whenever a match occurs between the programmed alarm and clock information. If the "don't care" condition is programmed into one or more of the Alarm Registers, this enables the generation of periodic interrupts at rates of one second or greater. This bit is cleared by a system reset.


5

2

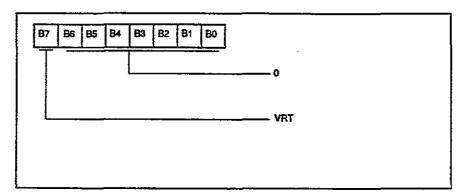
PIE: The Periodic Interrupt Enable Bit controls the generation of interrupts based on the value programmed into the RS3-RS0 bits of Register A. This allows the user to disable this function without affecting the programmed rate. Writing a one to this bit enables the generation of periodic interrupts. This bit is cleared to a zero by a system reset.

SET: Writing a zero to this bit enables the Update Cycle and allows the Real Time Clock to function normally. When set to a one, the Update Cycle is inhibited and any cycle in progress is aborted. The SET bit is not affected by a system reset.

Figure 6-8. Register C (OCH) Read Only

UF: The update-ended flag bit is set after each cycle. When the UIE bit is a one, the one in UF causes the IRQF bit to be a one, asserting IRQ. UF is cleared by a Register C read or by a system reset.

AF: A one appears in the AF bit when ever a match has occurred between the time register and alarm register during an update cycle. This flag is also independent of its enable (AIE) and generates an interrupt if AIE is true.

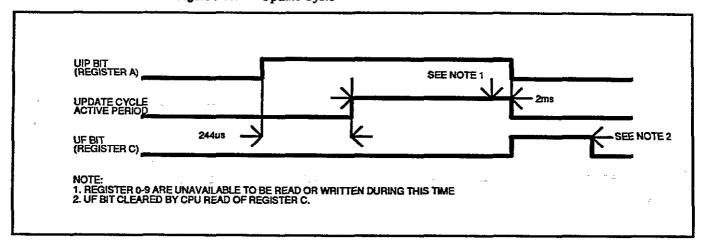

PF: The Period Interrupt Flag is set to a one when a transition, which is selected by RS3-RS0, occurs in the divider chain. This bit becomes active, independent of the condition of the PIE control bit. The PF bit then generates an interrupt and sets IRQF if PIE is a one.

IRQF: The Interrupt Request Flag is set to a one when any of the conditions that can cause an interrupt is true and the interrupt enable for that condition is true. The condition that causes this bit to be set also generates an interrupt. The logic expressions for this flag are:

IRQF = (PF & PIE) + (AF & AIE) + (UF & UIE)

This bit and all other active bits in this register are cleared by reading this register or by a system reset. Writing to this register has no affect on the contents.

Figure 6-9. Register D (0DH) Read Only



VRT: The Valid RAM and Time Bit indicates the condition of the contents of the Real Time Clock. This bit is cleared to a zero whenever the PS input pin is low. This pin is normally derived from the power supply, which supplies Vcc to the device and allows the user to determine whether the registers have been initialized since power was applied to the device. -PS has no effect on this bit and it can only be set by reading Register D. All unused register bits will be zero when read and are not writable.

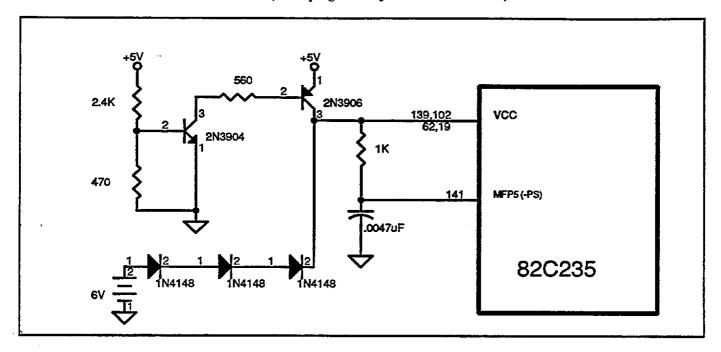
Update Cycle

During normal operation, the Real Time Clock performs an update cycle once every second. The performance of an update cycle is contingent upon the divider bits DV<0:2> not being cleared, and the SET bit in Register B being cleared. The function of the update cycle is to increment the clock/calendar registers and compare them to the Alarm Registers. If a match occurs between the two sets of registers, an alarm is issued and an interrupt is issued if the alarm and interrupt control bits are enabled. During the time that an update is taking place, the lower ten registers are unavailable to the CPU. This is done to prevent the possible corruption of data in the registers or the reading of incorrect data. To avoid contention problems between the Real Time Clock and the CPU. a flag is provided in Register A to alert the user of an impending update cycle. This Update In Process Bit (UIP) is asserted 244us before the actual start of the cycle and is maintained until the cycle is complete. Once the cycle is complete, the UIP bit is cleared and the Update Flag (UF) in Register C is set. Figure 5-8 illustrates the update cycle. CPU access is always allowed to Register A through D during update cycles.

1

Two methods for reading and writing to the Real Time Clock are recommended. Both of these methods allow the user to avoid contention between the CPU and the Real Time Clock for access to the time and date information.

The first method is to read Register A, determine the state of the UIP bit. If the UIP is zero, perform the read or write operation. For this method to work successfully, the entire read or write operation (including any interrupt service routines which might occur) must not require more that 244us to complete from the beginning of the read of Register A to the completion of the last read or write operation to the Clock Calendar Registers.


The second method of accessing the lower ten registers is to read Register C once and disregard the contents. Continue reading this register until the UF bit is a one. This bit becomes true immediately after an update is completed. The user then has until the start of the next update cycle to complete a read or write operation.

Power-Up/Down

Most applications require the Real Time Clock to remain active whenever the system power is turned off. To accomplish this the user must provide an alternate source of power to the 82C235. This alternate source of power is normally provided by connecting a battery to the Vcc supply pin of the device. A means should be provided for switching between the system power supply and the battery. A circuit such as the one shown in Figure 6-11 may be used to eliminate power drain on the battery when the entire 82C235 is active. The circuit shown here allows for reliable transitions between system and battery power without undue battery power drain.

Figure 6-11.

Power Conversion and Reset Circuitry (SCAT programmed for internal RTC Mode)

The user should also ensure that the Vin maximum specification is never exceeded when powering the system up or down. Failure to observe this specification may result in damage to the device.

A pin is provided on the device to protect the contents of the Real Time Clock and reduce power consumption whenever the system is powered down. This pin (PWRGOOD) should be low whenever the system power supply is not within specifications for proper operation of the system. This signal may be generated by circuitry in either the power supply or on the system board. The PWRGOOD input disables all unnecessary inputs during the time the system is powered down to prevent noise on the inactive pins from causing increased Icc current. This pin must therefore be inactive for the remainder of the device to operate properly when system power is applied.

Another pin is provided to initialize the device whenever power is applied to the 82C235. This pin (-PS) does not alter the CMOS RAM or Clock/Calendar contents but it does initialize the necessary control register bits. Assertion of -PS disables the generation of interrupts and sets a flag indicting that the contents of the device may not be valid. A recommended circuit for controlling the -PS input is also shown in Figure 6-11.

6.5 I/O Channel Interface

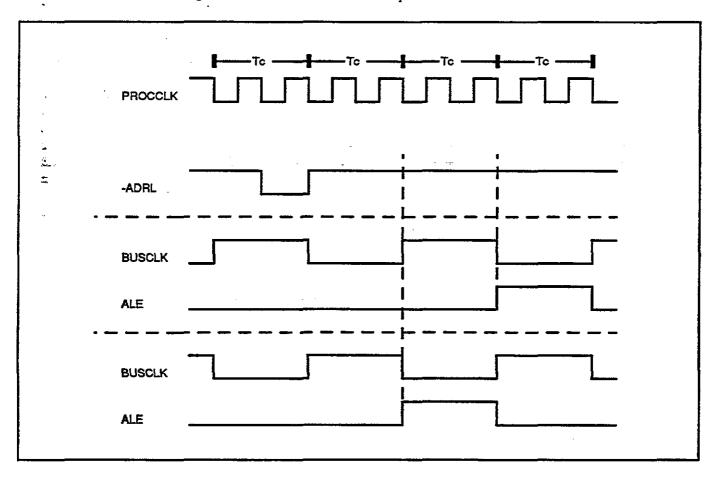
The 82C235 supports an IBM PC AT-compatible I/O channel. It incorporates a state machine that produces I/O channel bus cycles for all CPU cycles not claimed by internal I/O or memory address decode logic.

The state machine synthesizes the address strobe signal (ALE), the bus command signals (-XIOR, -XIOW, -XMEMR, and -XMEMW), and MODA0

and MODA20. It monitors the state of the -IOCS16 and -MEMCS16 signals to determine if the device on the bus is capable of 16-bit operations for I/O and memory respectively. If a 16-bit operation is attempted with an 8-bit device, the 82C235 performs conversions of 16-bit CPU operations to paired 8-bit bus cycles.

The 82C235 supports XD-bus peripherals. Internal configuration resistor 44H controls the SDIRH and SDIRL signals for different peripherals.

Basic I/O channel cycle operation occurs as follows:


- 1. During processor state T_S, internal decodes are examined to determine if a bus cycle should be performed.
- During the following T_S state, the 82C235 bus controller initiates the bus
 cycle by generating ALE. The bus controller then times out the
 COMMAND DELAY interval and asserts the appropriate command output.
- 3. In response to the asserted command, the internal wait-state logic times out for the number of processor BUSCLK's before beginning to monitor the IOCHRDY input. When the IOCHRDY input sampling is active, the bus controller deactivates the command. If the cycle in progress does not require conversion cycles, the 82C235 generates processor READY, and the CPU cycle terminates.
- 4. If the cycle in progress is a conversion cycle, the conversion logic sets MODA0 to logic one and begins to time out the ALE DELAY interval. At the end of this interval, the bus controller is re-triggered to produce another cycle as described in (2) and (3). Note that another ALE is not generated for the second cycle.
 - 5. At the end of the second cycle, the 82C235 generates processor READY, and the CPU cycle terminates.

The I/O channel clock signal, BUSCLK, may be programmed to have a frequency of either PROCCLK/2 or PROCCLK/4 under control of bit 2 of internal configuration register 41H. All bus timings are with respect to BUSCLK. See Figure 6-12 and 6-13 for the relationship between PROCCLK, ADRL, BUSCLK, and ALE for different modes. Also see Figure 6-11 for the I/O cycle relationship with the programmed bus clock. Detailed timing diagrams of typical I/O channel cycles are included in Section 10: Timing Diagrams.

Figure 6-12. I/O Channel Relationships BUSCCLK = PROCCLK+2

Figure 6-13. I/O Channel Relationships BUSCCLK= PROCCLK+4

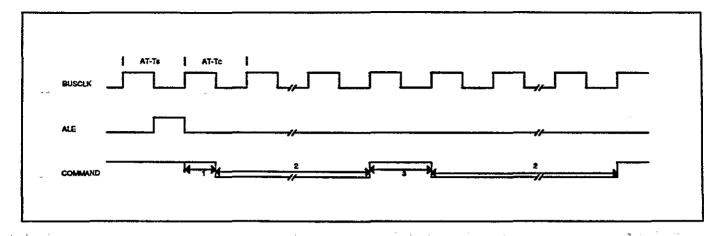
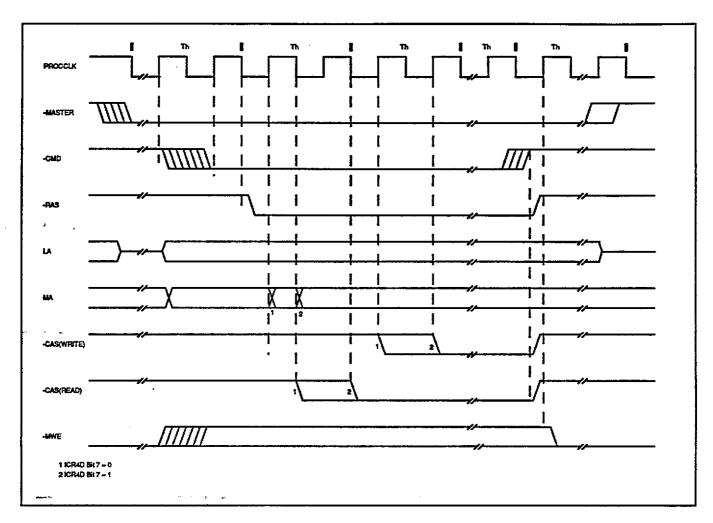



Table 6-13. IIO Channel BUSCLK Periods

	16-bit Memory	16-bit I/O	8-bit Memory	8-bit I/O	
1 Command delay from ALE	. 0	1/2	1/2	1/2	
² Command width	2	1 1/2	4 1/2	4 1/2	
Command delay from first command during conversion	Х	Х	1 1/2	1 1/2	

Note: Numbers are in BUSCLK periods.

The 82C235 supports DMA masters on the I/O channel. A device on an I/O channel can become master and control I/O channel operations. The -MASTER line is sampled during DMA to determine if an external bus master wishes to control the I/O channel. If the line is active, the 82C235 expects that the external address buffers have reversed direction. The 82C235 address lines also reverse direction (they normally drive out during DMA), so the internal DRAM controller can obtain the address. The memory and I/O control signals also reverse while -MASTER is active. X-Bus peripherals (other than 82C235 controlled ROM) must emit -MEMCS16 or -IOCS16 themselves. The following diagram shows a function DRAM timing when 82C235 is in Master Mode.

The -REFRESH line is also bi-directional in the master environment. If the master holds the I/O channel more than 15us, it should initiate a refresh cycle. It accomplishes this by holding the -REFRESH line active until the 82C235 refresh state machine asserts -XMEMR.

6.6 Power Management

Power management circuitry reduces system power consumption by slowing or stopping the processor clock (PROCCLK) during idle periods. A non-static CPU design allows the processor clock to be slowed down, while a static CPU design allows the processor to be stopped completely.

Internal configuration register 46H, bits 3-2, are used to reduce the frequency of PROCCLK by dividing the CPUX1 input clock signal by two, four, or eight. Note, however, that PROCCLK returns to its normal frequency (CPUX1) during DMA or refresh operations (see Figure 6-16). During Sleep Mode, PROCCLK reflects the frequency programmed into internal configuration register 46H, bits 1-0. The default value of bits 1-0 halts PROCCLK.

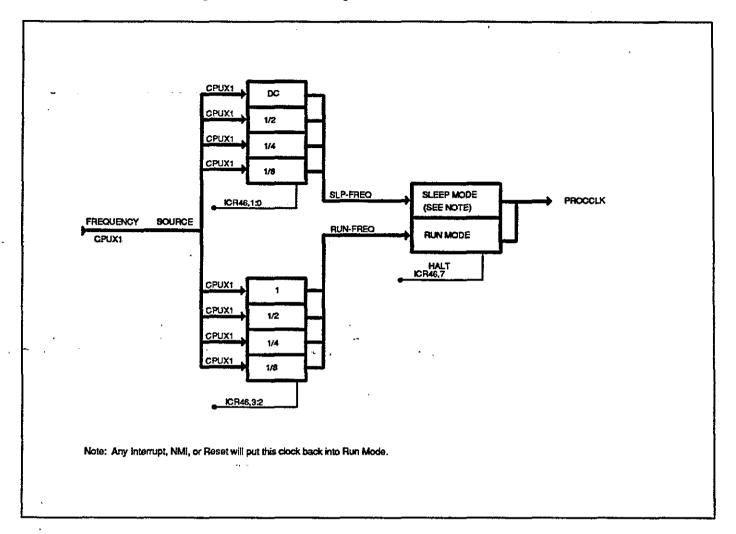
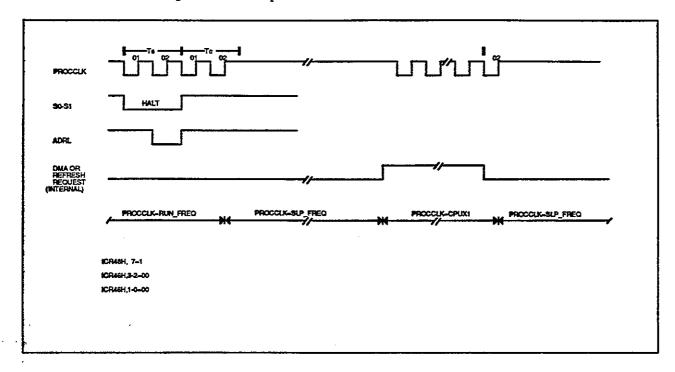



Figure 6-17 indicates how PROCCLK behaves during sleep mode implementation.

If a static CMOS processor is used in the system, PROCCLK can be halted completely using internal configuration register 46H, bit 7, to enable sleep mode. If sleep mode is enabled, a HALT instruction will put the 82C235 into sleep mode and CPU power consumption will be reduced to standby levels. Sleep mode is aborted by all interrupts, maskable or not, and reset conditions.

Figure 6-17. Sleep Mode

Configuration Registers

7.1 Internal Configuration Registers

Internal configuration registers (ICRs) control the enhanced options of the 82C235. ICRs are accessed by addressing an index register at Port 22H, and by immediately writing or reading data to or from Port 23H. The 82C235 contains ICRs at index values 40H through 4FH. In the following definitions, power-on default states of the registers are given. All ICRs are read/write except as noted. All reserved bits must be written as zero unless noted (the results are unpredictable). The value read from a reserved bit is not defined.

Index 01H DMA Wait-State Control Register

index	Bit	Description/Bit State
01H		The clock and wait-state control subsystem performs two functions: control of the DMA command width and selection of the DMA clock rate.
	7-6	Reserved.
	5-4	16-bit DMA WAIT-STATE 1:0. These bits control the number of wait-states inserted during 16-bit DMA transfers. The following table describes the settings and operation. 00 = One wait-state (default) 01 = Two wait-states 10 = Three wait-states
<u> </u>		11 = Four wait-states
	3-2	8-bit DMA WAIT-STATE 1:0. These bits control the number of wait-states inserted during 8-bit DMA transfers. The following table describes the settings and operation. 00 = One wait-state (default) 01 = Two wait-states 10 = Three wait-states 11 = Four wait-states
	1	DMA XMEMR EXT DIS. The assertion of -XMEMR is delayed by one DMA clock cycle later than -XIOR in the IBM PC AT. This may not be desirable in some systems. 0 = Enables extended -XMEMR function (default). 1 = Disables extended -XMEMR function (starts -XMEMR at the same time as -XIOR).
	0	DMA CLOCK SEL. This bit allows the user to program the DMA clock to operate at either CPUX1/4 or CPUX1/2. 0 = CPUX1/4. Drives both 8 and 16-bit operations (default). 1 = CPUX1/2.

Note

If bit 0 is changed during operation, an internal synchronizer controls the actual switching of the clock to prevent a short clock pulse from causing a DMA malfunction.

Index 40H Version Register

Index	Bit	Description/Bit State
40H		Read Only.
	7-4	Family type 3-0 identifies the specific part within a pin-compatible family. The family type of the 82C235 is zero.
	3-0	Device revision code 3-0 identifies the revision level of the 82C235 silicon.

Index 41H Clock Control Register

Index	Bit	Description/Bit State
41H	7-3	Reserved.
-	2	BUSCLK SEL. 0 = selects BUSCLK as PROCCLK/4 (default). 1 = selects BUSCLK as PROCCLK/2.
	1-0	RFSH CMDW 1-0. These bits specify the command pulse width during a refresh cycle. These pulse widths are derived from OSC. 00 = 140ns 01 = 210ns 10 = 280ns (default) 11 = 350ns

Index 42H Reserved Register

Index	Bit	Description/Bit State
42H		Reserved.

Indox 43H Reserved Register

Index	Bit	Description/Bit State
· 43H	·	Reserved.

Index 44H Peripheral Control Register

index	Bit	Description/Bit State
44H		This register controls whether peripherals are on the XD-bus or the SD-bus. The SDIRH and SDIRL SD-bus controls are affected by bits in this register.
	7	Reserved.
es es	6	CHIPS VIDEO ON THE XD-BUS. When this bit is high, a CHIPS video controller is resident on the XD-bus. The I/O address ranges covered for the video controller are 0102H-0104H, 03B0H-03DFH, and 46E8H. Memory address ranges are between A0000H and BFFFFFH. 0 = CHIPS video controller is on the SD-bus (default). 1 = CHIPS video controller is on the XD-bus.
	5	GAME PORT ON THE XD-BUS. When this bit is high, game port is residen on the XD-bus. The I/O address range covered for the game port is 0200H-0207H. 0 = game port on the SD-bus (default). 1 = game port on the XD-bus.
	4	SERIAL PORT CHANNEL 2 ON THE XD-BUS. When this bit is high, serial port 2 is resident on the XD-bus. The I/O address range covered for serial port 2 is 02F8H-02FFH. 0 = serial port 2 on the SD-bus (default). 1 = serial port 2 on the XD-bus.
	3	SERIAL PORT CHANNEL 1 ON THE XD-BUS. When this bit is high, series port 1 is resident on the XD-bus. The I/O address range covered for serial port 1 is 03F8H-03FFH. 0 = serial port 1 on the SD-bus (default). 1 = serial port 1 on the XD-bus.
	2	PARALLEL PORT ON THE XD-BUS. When this bit is high, a parallel port resident on the XD-bus. The address range covered for the parallel port is 0378H-037FH. 0 = parallel port on the SD-bus (default). 1 = parallel port on the XD-bus.
	1	HDC/FDC ON THE XD-BUS. When this bit is high, the hard drive and diskette drive controllers are resident on the XD-bus. The I/O address range covered for HDC/FDC is 01F0H-01F7H and 03F0H-03F7H. 0 = HDC/FDC on the SD-bus (default). 1 = HDC/FDC on the XD-bus.
	0	Reserved.

Index 45H Miscellaneous Status Register

Index	Bit	Description/Bit State
45H		Read Only.
	7	NMI DISABLE. This bit indicates the current state of the NMI disable bit of I/O port 70, bit 7. Bit 7 of I/O port 70 is write only. 0 = NMI enabled. 1 = NMI disabled.
	6	GATEA20 FROM 8042. This bit indicates the current state of the GATEA20 input from the 8042 keyboard controller. 0 = GATEA20 is low. 1 = GATEA20 is high.
	5	BUSY TO 80286. This bit indicates the current state of the latched coprocessor busy status. 0 = coprocessor busy. 1 = coprocessor not busy.
	4	INTERNAL RTC INSTALLED. This bit indicates the state of the -EXRTC (-DACK5) pin during reset. 0 = external RTC used. 1 = internal RTC used.
	3	Reserved.
	2-0	SENSE LINES 2-0. These lines (2-0) sense the power-up state of DACK line (2-0), respectively. A logic zero is latched if a TTL logic low is used. A logic one is latched if a TTL logic high is used. These lines can be used for user defined power-On setup parameters. 0 = corresponding -DACK line pulled low. 1 = corresponding -DACK line pulled high.

Index 46H Power Management Register

Index	Bit	Description/Bit State
46H		This register controls power management features. It controls sleep mode functions and PROCCLK frequency under software control. The PROCCLK frequency can be reduced when CPU speed is not critical. This results in power savings.
r	7	SLEEP ENABLE. This bit enables sleep mode. If this bit is set, sleep mode will be entered upon execution of a HALT instruction. 0 = sleep mode disabled (default). 1 = sleep mode enabled.
-	6	AUX PARITY DISABLE (read/write). This bit, in conjunction with the parity disable bit (PARITY DISABLE) of I/O port 61H, is used to disable parity error contributions to the NMI. The bit is logically ORed with the PARITY DISABLE bit. Thus, system parity is disabled if either this bit (AUX PARITY DIS) or the PARITY DISABLE bit is set to a logical one. 0 = auxiliary parity check is enabled (default). 1 = auxiliary parity check is disabled.
	5-4	Reserved.
	3-2	RUN FREQ. These bits select the frequency of the PROCCLK signal to the 80286 CPU when in normal run mode. 00 = CPUX1 (default) 01 = CPUX1/2 10 = CPUX1/4 11 = CPUX1/8
	1-0	SLEEP FREQ. These bits select the frequency of the PROCCLK signal to the 80286 CPU when in sleep mode. 00 = high-level DC (default) 01 = CPUX1/2 10 = CPUX1/4 11 = CPUX1/8

Index 47H Reserved Register

index	Bit	Description/Bit State		
47H		Do not write to this register.		

Index 48H ROM Enable Register

Index	Bit	Description/Bit State
48H		This register is used to select the address ranges to be included in the -ROMCS output. The power-on default address range is 0F0000H-0FFFFFH. The range from FE0000H to FFFFFFH is always enabled.
	7	OF8000H-OFFFFFH ROM ENABLE. This bit asserts ROMCS* for accesses to these ranges.
		0 = disables -ROMCS for the above range. 1 = enables -ROMCS for the above range (default).
	6	OF0000H-0F7FFFH ROM ENABLE. This bit asserts -ROMCS for accesses to these ranges.
		0 = disables -ROMCS for the above range. 1 = enables -ROMCS for the above range (default).
	5	0E8000H-0EFFFFH ROM ENABLE. This bit asserts -ROMCS for accesses to these ranges.
		0 = disables -ROMCS for the above range (default). 1 = enables -ROMCS for the above range.
	4	0E0000H-0E7FFFH ROM ENABLE. This bit asserts -ROMCS for accesses to these ranges.
		0 = disables -ROMCS for the above range (default). 1 = enables -ROMCS for the above range.
•	3	0D8000H-0D8FFFFH ROM ENABLE. This bit asserts -ROMCS for accesses to these ranges. 0 = disables -ROMCS for the above range (default).
		1 = enables -ROMCS for the above range.
	2	0D0000H-0D7FFFH ROM ENABLE. This bit asserts -ROMCS for accesses to these ranges.
		0 = disables -ROMCS for the above range (default). 1 = enables -ROMCS for the above range.
	1	OC8000H-OCFFFFH ROM ENABLE. This bit asserts -ROMCS for accesses to these ranges.
		0 = disables -ROMCS for the above range (default). 1 = enables -ROMCS for the above range.
	0	OC0000H-OC7FFFH ROM ENABLE. This bit asserts -ROMCS for accesses to these ranges.
		0 = disables -ROMCS for the above range (default). 1 = enables -ROMCS for the above range.

Index 49H RAM Write Protect Register

index	Bit	Description/Bit State
49H	=.	This register is used to write protect portions of RAM addresses.
	7	0F8000H-0FFFFFH RAM READ ONLY. This bit makes this address range read only. 0 = enables read/write operations for the above range (default). 1 = enables read only operations for the above range.
	6	0F0000H-0F7FFFH RAM READ ONLY. This bit makes this address range read only. 0 = enables read/write operations for the above range (default). 1 = enables read only operations for the above range.
	5	0E8000H-0EFFFFH RAM READ ONLY. This bit makes this address range read only. 0 = enables read/write operations for the above range (default). 1 = enables read only operations for the above range.
	4	0E0000H-0E7FFFH RAM READ ONLY. This bit makes this address range read only. 0 = enables read/write operations for the above range (default). 1 = enables read only operations for the above range.
	3	0D8000H-0DFFFFH RAM READ ONLY. This bit makes this address range read only. 0 = enables read/write operations for the above range (default). 1 = enables read only operations for the above range.
·	2 .	
	1	OC8000H-OCFFFFH RAM READ ONLY. This bit makes this address range read only. 0 = enables read/write operations for the above range (default). 1 = enables read only operations for the above range.
	0	0C0000H-0C7FFFH RAM READ ONLY. This bit makes this address range read only. 0 = enables read/write operations for the above range (default). 1 = enables read only operations for the above range.

Index 4AH Shadow RAM Enable I Register.

index	Bit	Description/Bit State
4AH		This register controls whether shadow RAM is enabled or disabled for
		individual 16KB segments of the address range from 0A0000H to 0BFFFFH.
	7	0BC000H:0BFFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	6	0B8000H:0BBFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	5	0B4000H:0B7FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	4	0B0000H:0B3FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	3	0AC000H:0AFFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	2	0A8000H:0ABFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	1	0A4000H:0A7FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	0	0A0000H:0A3FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.

Index 4BH Shadow RAM Enable 2 Register

Index	Bit	Description/Bit State
4BH		This register controls whether shadow RAM is enabled or disabled for individual 16KB segments of the address range from 0C0000H to 0DFFFFH.
	7	0DC000H:0DFFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	6	0D8000H:0DBFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	5	0D4000H:0D7FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	4	0D0000H:0D3FFFH SHADOW RAM.
		0 = disables this 16KB segment (default). 1 = enables shadow RAM in this 16KB segment.
	3	OCCOOOH:OCFFFFH SHADOW RAM.
	3	0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	2	OC8000H:0CBFFFH SHADOW RAM.
	2	0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	1	0C4000H:0C7FFFH SHADOW RAM.
	-	0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	0	0C0000H:0C3FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.

Index 4CH Shadow RAM Enable 3 Register

Index	Bit	Description/Bit State
4CH		This register controls whether shadow RAM is enabled or disabled
		for individual 16KB segments of the address range from 0E0000H to 0FFFFFH.
	7	0FC000H:0FFFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	6	0F8000H:0FBFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	5	0F4000H:0F7FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	4	0F0000H:0F3FFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	3	0EC000H:0EFFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	2	0E8000H:0EBFFFH SHADOW RAM.
		0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	1	0E4000H:0E7FFFH SHADOW RAM.
	=	0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.
	0	0E0000H-0E3FFFH SHADOW RAM.
	-	0 = disables this 16KB segment (default).
		1 = enables shadow RAM in this 16KB segment.

Index 4DH DRAM Configuration Register

index	Bit	Desc	ription	Bit Sta	te
4DH					
	7	DRA 0 - P	M timi	ings an LK = 2	TIMING: This bit specifies whether 12 MHz or 16 MHz executed during bus master cycles. 4 MHz (default) 2 MHz (default)
	6-4	LOC	AL DE	T MA	IMING 2-0. These bits define the local DRAM timing.
		B 6 0 0 0	B 5 0 0 1	B4 0 1 0	Timing zero wait-state with extended RAS† one processor wait-state one processor wait-state default (with RAS delay) (-RAS signals are delayed by one half of a PROCCLK cycle in this mode) zero wait-state
		_	•	•	s are RESERVED.
·	3-0				ts specify the planar DRAM configuration. The default 0001 (512KB total DRAM).

[†] DO NOT use for 16 MHz, zero wait state operation

Table 7-1. DRAM Configuration

Mix DRAM CFG Index 4EH, Bit 6	CFG3:0 (hex) Index 4D, Bits <0:3>	Bank 0	Bank 1	Bank 2	Bank 3	Total Memory	Extended/EMS Memory
0	0	0	0	0	0	0	0
0	1	512K	0	0	0	512K	0
0	2	512K	128K	0	0	640K	0
0	3	512K	512K	0	0	1M	384K
0	4	512K	512K	0	0	1M	0 "
0	5	512K	512K	512K	0	1.5M	512K
0	6	512K	512K	512K	512K	2M	1M
0	7			Rese	erved		
0	8	2M	0	0	0	2M	1M
0	9	2M	2M	0	O	4M	3M
0	A	2M	2M	2M	0	6M	5M
0	В	2M	2M	2M	2M	8M	7M
0	С			Res	erved		
0	D			Rese	erved		
0	E			Rese	erved		
0	F			Res	erved		
1	1†	512K	2M	0	0	2.5M	1.5M
1	2†	512K	2M	2M	0	4.5M	3.5M
1	3†	512K	2M	2M	2M	6.5M	5.5M
1	4†	512K	512K	2M	0	3M	2M
1	5†	512K	512K	2M	2M	5M	4M

[†] In these configurations, the physical mapping order of the banks has been changed so that the starting address begins with the first 2M bank. The first 512K bank is after the last 2M bank.

Index 4EH Extended Boundary Register

index	Bit	Description/Bit Sta	ata .
4EH			
	7	Reserved	
	6	configuration is en memory configura 0 = no intermixing	
	5	DRAM controller accesses are direct 0 = enables 04000	040000H-09FFFFH. This bit disables the 82C235's internal for accesses in the range 040000H-09FFFFH. These ted to the I/O channel. 00H-09FFFFH DRAM range (default). 00H-09FFFFH DRAM range.
	4	Special Reserved	
	3-0	extended memory	UNDARY. These bits specify the upper boundary of the within the total memory defined by the internal ster 4DH (see Figure 6-3)
د الله الله الله الله الله الله الله الل	الريو عاملا يراي	Bit 3 2 1 0"	Extended Memory Boundary
		0 0 0 0	No Boundary (default)
		0 0 0 1	1MB
		0 0 1 0	1.25MB
		0 0 1 1	1.5MB
		0 1 0 0	2MB
		0 1 0 1	3MB
		0 1 1 0	4MB
		0 1 1 1	6MB
		1 0 0 0	8MB
		1 0 0 1	10MB
		1 0 1 0	12MB
		1 0 1 1	14MB
		1 1 0 0	No Boundary
		1 1 0 1	No Boundary
		1 1 1 0	No Boundary

Index 4FH EMS Control Register

Index	Bit	Description/Bit State
4FH		
	7	GLOBAL EMS ENABLE. This bit enables the EMS memory. 0 = EMS is disabled (default). 1 = EMS is enabled.
	6	EMS I/O ENABLE. This bit enables access to the EMS I/O ports. 0 = EMS I/O port access is disabled (default). 1 = EMS I/O port access is enabled.
	5-1	Reserved.
	0	I/O BASE. This bit specifies which I/O page registers are used to read or write EMS page register contents. 0 = EMS page registers are 0208H, 0209H, and 020AH (default) 1 = EMS page registers are 0218H, 0219H, and 021AH.

7.2 IBM PC AT-Compatible Registers

Port 61H Control Port/Status Register

Index	Bit	Description/Bit State
61H		This port controls several system-level functions. The port can be accessed through any odd I/O port address between (and including) 61H and 6FH.
	7	PARITY CHECK (read only). This bit indicates an error has occurred on the planar memory. 0 = no error occurred. 1 = an error occurred.
	5	TMR 2 OUT (read only). This bit returns the condition of the timer 2 output.
	3	CHCK DIS (read/write). This bit disables NMI generation for channel check errors. 0 = enables NMI (default). 1 = disables NMI.
	2	PARITY DISABLE (read/write). This bit, in conjunction with the auxiliary parity disable bit (AUX PARITY DISABLE) of internal configuration register 46H, is used to disable parity error contributions to the NMI. This bit is logically ORed with AUX PARITY DISABLE. Thus, system parity is disabled if either this bit (PARITY DISABLE) or the AUX PARITY DISABLE bit is set to a logical one. 0 = parity is enabled (default). 1 = parity is disabled.
	1	SPKR DATA (read/write). This bit gates the output of channel 2 of the timer/counter. 0 = output is disabled (default). 1 = output is enabled.
	0	TMR 2 GATE (read/write). This bit gates the output of channel 2 of the timer/counter. 0 = output is disabled (default). 1 = output is enabled.

RTC/CMOS Index and NMI Mask Register

index	Bit	Description/Bit State
70H		This register is used to access to the RTC and its CMOS RAM. It also masks NMIs from accessing the CPU. Bits 6-0 are not used when the external RTC option is selected.
١.	7	NMI DISABLE (write only). This bit disables the generation of NMIs. 0 = enables generation of NMIs (default). 1 = disables the generation of NMIs.
	6-0	RTCINDX 6:0. These bits are used as index pointers to the 128 locations (11 user RAM, 14 RTC registers) contained in the internal real-time clock.

Port 71H RTC Data Register

Index	Bit	Description/Bit State
71H		This register is used to transfer data to and from the internal real-time clock. The RTC register is selected by bit 6:0 of I/O port 70H as described above. If an external RTC is used, this register must be provided externally.
	7-0	RTCDATA 7:0.

System Control Register .

index	Bit	Description/Bit State
92H		This register is used as a faster alternative for gating A20 and resetting the CPU rather than using the 8042 keyboard controller. This register is compatible with IBM PS/2 architecture.
	7-2	Reserved.
	1	FASTGATE A20. 0 = MODA20 is forced low. 1 = Address bit A20 (on the CPU) goes directly to the MODA20 pin.
	0	FAST CPU RESET.
		If a zero to one transition occurs, a reset pulse is provided on the CPURST pin to reset the CPU. After setting, the state is maintained after a CPU reset so the BIOS can determine if the reset was caused by a FAST CPU RESET condition.

■ Configuration Registers

This page is intentionally left blank.

8.1 The Input and Output Pin Assignments

This section contains a complete listing of all 82C235 signal names, descriptions of the signals, and the pins on which the signals are found.

Table 8-1. Clock Input and Output Signals

Pin	Type	Name	Description
122	Input	OSCX1	Crystal Oscillator Input is a 14.318MHz input either from an external crystal oscillator or from a parallel resonance, fundamental mode crystal that is also tied to OSCX1.
121	Output	OSCX2	Crystal Oscillator Output is the output from the internal crystal oscillator. If an external crystal oscillator is used, leave OSCX2 unconnected.
3	Input	CPUX1	CPU Clock Oscillator Input is an input used to derive PROCCLK. CPUX1 is either from an external crystal oscillator or from a parallel resonance, fundamental mode crystal that is also tied to CPUX2.
4	Output	CPUX2	CPU Clock Oscillator Output is an output from the internal crystal oscillator. If an external crystal oscillator is used, leave CPUX2 unconnected.
2	Output	PROCCLK	Processor Clock is the clock output to the 80286 processor. The frequency of PROCCLK is twice the processor's internal clock frequency.
56	Output	BUSCLK	Bus Clock is the bus clock output, programmable to one-half or one-fourth the frequency of PROCCLK.

Table 8-2. Local Bus Interface Signals

Pin	Туре	Name	Description
5-18	Bi-directional	A00-A13	Address Bus Bits 00 to 23 are generated by the 80286 during processor cycles. During HLDA (bus hold acknowledge), the 82C235 drives the address bus. During I/O channel master operations, a DMA controller or a microprocessor drives the address bus. A00 and A20 are driven by the 82C235 during I/O channel master operation.
20-21	Bi-directional	A14-A15	-
23-30	Bi-directional	A16-A23	
58	Bi-directional	MODA0	Modified A00 is the internally latched state of address bit A00 routed to the XD-bus interface instead of A00. The 82C235 toggles this bit during conversion cycles. MODA0 is an input signal during master operation from the I/O channel.
160	Bi-directional	D00	Local Data Bus Bits 00 to 15 compose the local data bus connected directly to the processor.

Table 8-2. Local Bus Interface Signals (continued)

Pin	Туре	Name	Description
158	Bi-directional	D01	
156	Bi-directional	D02	
154	Bi-directional	D03	
152	Bi-directional	D04	
150	Bi-directional	D05	
148	Bi-directional	D06	
146	Bi-directional	D07	
159	Bi-directional	D08	
157	Bi-directional	D09	
155	Bi-directional	D10	
153	Bi-directional	D11	
151	Bi-directional	D12	
149	Bi-directional	D13	
147	Bi-directional	D14	
145	Bi-directional	D15	
32, 31	Input	-\$1, -\$0	Processor Status Signals 1 and 2 are active-low inputs from the 80286 that, along with -M/IO, define the type of cycleS1 and -S0 are tri-stated during a hold acknowledge state.
34	Input	-M/IO	Memory/IO select is the input from 80286 that distinguishes between memory accesses and I/O accesses. If -M/IO is high during Ts, a memory cycle is in progress. If low, an I/O cycle is in progress.
33	Bi-directional	-ВНЕ	Byte High Enable is an input from the 80286 during processor cycles and an output during DMA cyclesBHE and A00 indicate the type of bus transferBHE is pulled high internally. BHE A00 Function 0 Word Transfer 0 1 Odd Byte Transfer 1 0 Even Byte Transfer 1 Reserved
37	Output	-READY	READY is an active-low signal that indicates the end of a cycle to the 80286READY is driven by the 82C235 and should be connected to the 80286's -READY lineREADY is a tri-stated signal and a pull-up resister is required.
36	Output	HOLD	Hold Request is an active-high output to the 80286 processor that requests bus access for a DMA or a refresh cycle. HOLD should be connected to the 80286 processor's HOLD pin.
35 .	Input	HLDA	Hold Acknowledge is an active-high input from the 80286 processor that indicates when the bus has been given up by the processor. HLDA should be connected to the 80286 processor's HDLA pin.
143	Output	NMI	Non-Maskable Interrupt is generated as a result of a parity error or an I/O channel error. A low-to-high transition on NMI causes a non-maskable interrupt at the end of the current cycle. NMI should be connected to the 80286 processor's NMI pin.
144	Output	INTR	Interrupt Request is an active-high request to the 80286 that it suspend the current process and acknowledge the request. INTR should be connected to the 80286 processor's INTR pin.

3. Numeric Processor Interface Signals

Pin	Туре	Name	Description
133	Output	-BUSY	Numeric Processor Busy Status is an active-low output to the -BUSY input of the 80286 that echoes the state of -BUSY from the 80287.
127	Input	-NPBZ	Busy Status is an active-low input that comes directly from the 80287 numeric processor's -BUSY pin. The signal indicates that the 80287 is currently executing a command.
131	Output	-NPCS	Numeric Processor Chip Select is an active-low output that goes directly to the -NPS1 input of the 80287 numeric processorNPCS is the address decode for the 80287 select, and is active for addresses 0F8H-0FFH.
128	Input	-ERROR	Error is an active-low input from the 80287 numeric processor that indicates an 80287 error.
132	Output	NPRST	Numeric Processor Reset is an active-high output that resets the 80287 numeric processor. NPRST is activated during power-up and write operations to I/O port 0F1H.

Table 8-4. Memory Interface Signals

Pin	Туре	Name	Description
108-117	Output	MA0-9	Multiplexed DRAM Address Bits MA 0 to 9 are outputs to the DRAMs, which must be appropriately buffered and terminated.
107-104	Output	-RAS0-3	Row Address Strobes 0 to 3 are active-low strobes used as RAS inputs to the banks of DRAM. Each bank is 18 bits wide (2 bits for parity). Each byte is addressed with a low or high CAS signal. For further details, refer to the DRAM section of this data book. -RASO-3 perform different functions in an encoded RAS mode. Refer to the DRAM section of this document to see the implementation of this mode.
101	Output	-CASH	Column Address Strobe High is an active-low output to all high byte DRAMs.
100	Output	-CASL	Column Address Strobe Low is an active-low output to all low byte DRAMs.
119	Bi-directional	PARH	Parity High is the parity bit from the high-order bytes of the DRAMs. If the bit is high, it indicates there are an odd number of ones in the high byte, which includes the parity bit itself. Thus, parity is odd.
118	Bi-directional	PARL	Parity Low is the parity bit from the low-order bytes of the DRAMs. If the bit is high, it indicates there are an odd number of ones in the low byte, which includes the parity bit itself. Thus, parity is odd.
103	Output	-MWE	Memory Write Enable is an active-low output connected to all DRAMsMWE is normally low, but is high for read cycles. This signal is also used to control the memory data buffers; it controls the direction of the transceivers that buffer the ROM/DRAM array from the local data bus.
38	Output	-ROMCS	ROM Chip Select is an active-low output to the EPROM(s)ROMCS becomes active for the programmed address range. For further information, refer to Section 6.2 Memory Interface, the Subsection titled ROM/Shadow RAM Interface.

Table 8-5. I/O Channel Interface Signals

Pin	Туре	Name	Description
60-61	Bi-directional	XD00-XD01	16-Bit Data Bus is the 16-bit system data bus. 16-bit CPU cycles are converted to one 16-bit or two 8-bit bus cycles depending on the states of -IOCS16 and -MEMCS16. The I/O channel data bus (SD-bus) is buffered from this bus.
63-76	Bi-directional	XD02-XD15	
79	Bi-directional -XIOR		I/O Read Command is an active-low output used by I/O devices to put their data on the bus. This signal is used by on-board peripherals as well as the I/O channel. During I/O channel master operations -XIOR is an input command to the peripherals and the 82C235.
80	Bi-directional	WOIX-	I/O Write Command is an active-low output used by I/O devices to capture data from the bus. This signal is used by XD-bus peripherals as well as the I/O channel. During I/O channel master operations—XIOW is an input command to the peripherals and the 82C235.
77	Bi-directional	-XMEMR	Memory Read Command is an active-low output used by XD-bus video memory and I/O channel memory. During I/O channel master operations -XMEMR is an input command to the peripherals and the 82C235. During memory refresh cycles -XMEMR is always an output.
78	Bi-directional	-XMEMW	Memory Write Command is an active-low output used by XD-bus video memory and I/O channel memory. During I/O channel master operations -XMEMW is an input command to the peripherals and the 82C235.
124	Bi-directional	-MREF	Memory Refresh Control is an active-low output to the I/O channel that indicates a refresh cycle. During I/O channel master operations -MREF is an input to the peripherals and the 82C235MREF is a tri-state signal and a pull-up resistor is required.
57	Output	ALE	Address Latch Enable is an active-high output used to latch valid addresses on the I/O channel. ALE is forced high during DMA cycles.
41	Input	IOCHRDY	I/O Channel Ready is used by I/O channel or XD-bus devices to lengthen their R/W cycles. Normally, IOCHRDY is high; it is pulled low for extending the cycle time. This input should be driven by an open collector output driver.
42	Input	-IOCHCK	I/O Channel Check is an active-low signal from the I/O channel used to trigger an NMI in the 80286 processor in the event of an unrecoverable I/O channel error.
54-50	Input	IRQ03-07	Interrupt Requests 3-7, 9, 10-12, 14-15 are asynchronous inputs to the 82C235 interrupt controllers. These requests are prioritized with IRQ03 having the highest priority and IRQ15 the lowest. The request line is held active until acknowledged by the processor with an interrupt acknowledge cycle.
49	Input	IRQ09	
84-86	Input	IRQ10-12	
88-87	Input	IRQ14-15	
90	Input	DRQ0	DMA Requests 0-3 and 5-7 are asynchronous requests used by peripherals to request DMA services. These requests are prioritized with DRQ0 having the highest priority and DRQ7 the lowest_DRQ must be held active until the corresponding DMA acknowledge (DACK) line goes active.
48	Input	DRQ1	
46	Input	DRQ2	
44	Input	DRQ3	
92	Input	DRQ5	
94	Input	DRQ6	•
96	Input	DRQ7	

Pin	Type	Name	Description
89	Bi-directional	-DACK0	DMA Acknowledge 0-3 and 5-7 are active-low acknowledge signals issued by the 82C235 after a DMA service request (via a DRQ line) and successful arbitration.
47	Bi-directional	-DACK1	
45	Bi-directional	-DACK2	
43	Bi-directional	-DACK3	
91	Bi-directional	(-EXRTC) -DACK5	External Real Time Clock is an active-low input during power-on reset. When this signal is pulled low, the internal RTC is disabled and an external RTC can be used. When this signal is pulled high, the internal RTC is used. The 82C235 changes the functions of the MFP4 and MFP5 pins accordingly.
93	Bi-directional	-DACK6	Must be pulled up to Vcc with a 10K resistor.
, 95			16-bit ROM is an active-low input during power-on reset. When the signal is pulled low, 16-bit ROM can be used; if this signal is pulled high, 8-bit ROM can be used. The 82C235 converts 16-bit ROM cycles into two 8-bit ROM cycles in 8-bit ROM mode operation.
55	Output	TC	Terminal Count is an active-high output pulse to the I/O channel the indicates the end of a DMA transfer.
81	Output	-LOMEGCS	Low Meg Chip Select is an active-low output that is a decode of memory accesses below IMB. This output is used to generate memory command signals for the lower IMB address range.
9 7	Input	-MASTER	Master is an active-low input from the I/O channel's 16-bit extension—MASTER allows a microprocessor or a DMA controller residing to the I/O channel to control the system address, data, and control line
40	Input	-ows	Zero Wait-state is an active-low input from the I/O channel. This signal allows the present bus cycle to terminate without inserting ar additional wait-states. OWS should be driven with an open collected or a tri-state driver.
83	Bi-directional	-IOCS16	I/O 16-bit Chip Select is an active-low signalIOCS16, an input from the I/O channel and XD-bus peripherals
82	Bi-directional	-MEMCS16	Memory 16-bit Chip Select is an active-low signalMEMCS16, an input from the I/O channel and XD-bus peripherals, indicates that it present cycle is a 16-bit memory cycleMEMCS16 is an output for bus cycles controlled directly by the 82C235MEMCS16 should be driven with an open collector or tri-state driver.
98	Bi-directional	MODA20	Modified (Gated) A20 is gated A20 from the 82C235's gate A20 logic and should be used instead of CPU A20. MODA20 is an inpuduring I/O channel master operations.

Table 8-6. Miscellaneous Signals

	Pin	Туре	Name	Description
•	137	Output	-ADRL	Address Latch is an active-low output strobe that latches the addresses.
	138	Output	CPURST	CPU Reset is an active-high output that resets the 80286 processor. CPURST goes active at power-up, when PWRGOOD goes low, or during a software controlled fast reset.
	134	Output	XRST	Peripheral Reset is an active-high output that resets external peripherals during power-up.
	123	Output	SPKOUT	Speaker Data is a waveform (the output of channel 2 of the timer/counter gated by bit 1 of port 61H) that is routed to a driver circuit, a low-pass filter, and then to the speaker.
go o go o su	136	Output	SDIRH	Channel Data Bus Control are outputs that control the direction of the data buffer between 82C235 and the I/O channel. When the signals are high (the default), data flows from the system to the I/O channel;
and the second of the second o		المنافقيسون والمهاد ومايو		when the signals are low, data flows from the I/O channel to the system.
71.0	135	Output	SDIRL	Channel Data Bus Control are outputs that control the direction of the data buffer between 82C235 and the I/O channel. When the signals are high (the default), data flows from the system to the I/O channel; when the signals are low, data flows from the I/O channel to the system.
<u>.</u> .	39	Input	PWRGOOD	Power Good is an active-high input from the power supply. When this signal is high, it indicates that all power supply voltages have reached their working levels. CPURST (pin 138) and XRST (pin 134) go high when PWRGOOD is low.
·	141	Bi-directional	MFP5	Multi Function Pin 5 is a bi-directional pin that has two functions:
				MFP5 is Real Time Clock Chip Select (-RTCCS) in external RTC modeRTCCS is an active-low output in this modeRTCCS is a decode of the I/O address range 070H-071H.
				MFP5 is Power Sense (PS) in internal RTC mode. PS is an active-high input in this mode that indicates the state of the battery. The signal should be connected to the battery back-up circuit.
•	140	Input	MFP4	Multi Function Pin 4 is an input that has two functions:
		•		MFP4 is Interrupt Request 8 (IRQ08) in external RTC mode. IRQ08 is an interrupt request (with a priority of 8) from an external (type MC164818) RTC.
				MFP4 is 32KHz Oscillator Input (OSCI) in internal RTC mode. OSCI should be connected to a square wave source with a frequency of 32.768 KHz. This input signal is used as a clock that times the internal RTC of the 82C235.
	126	Input	MFP3	Multi Function Pin 3 is an input pin that is used to reset the CPU (-CPURST2). This signal, an active-low input from the 8042 keyboard controller, is used to generate the CPURST signal to the 80286 microprocessor. The signal is under software control.
	130	Output	MFP2	Multi Function Pin 2 is an output pin that is used for 8042 Chip Select (-8042CS). This signal, an active-low output to the 8042 keyboard controller, is a decode of the I/O address range 060H-06FH.

Pin	Type	Name	Description
129	Input	MFP1	Multi Function Pin 1 is an input pin that generates Gate A20 (GATEA20). This signal, an active-high input from the 8042 keyboard controller, is used by the 82C235 to keep its 0-1MB memory address range under software control when the 80286 processor is in real mode.
125	Input	MFP0	Multi Function Pin 0 is an input pin that acts as Interrupt Request I (IRQ1). This signal, an active-high input from the 8042 keyboard controller, is an interrupt request (with a priority of 1) used by the 82C235's internal interrupt controller.
19		Vœ	+5 Volts
62		\mathbf{v}_{cc}	+5 Volts
102		Vœ	+5 Volts
139		Vcc	+5 Volts
1		Vss	Ground
22		V _{SS}	Ground
59		V _{SS}	Ground
99		Vss	Ground
120		V _{SS}	Ground
142		Vss	Ground

8.2 Pinouts

This section reveals the relationship between the 82C235 signal names and pins.

Table 8-7. Alphabetical Pin Definitions

		<u> </u>				- -	
Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
-0WS	40	D05	150	IRQ12	86	-RAS3	104
A00	5	D06	148	IRQ14	88	-READY	37
A 01	6	D07	146	IRQ15	87	-ROMCS	38
A02	7	D08	159	-LOMEGCS	81	-\$0	31
A03	8	D09	157	-M/IO	34	-\$1	32
A04	9	D10	155	MA0	108	SDIRH	136
A05	10	D11	153	MA1	109	SDIRL	135
A06	11	D12	151	MA2	110	SPKOUT	123
A07	12	D13	149	MA3	111	TC	55
A08	13	D14	147	MA4	112	Vœ	19
A09	14	D15	145	MA5	113	Vα	62
A10	15	-DACK0	89	MA6	114	Vcc	102
A11	16	-DACK1	47	MA7	115	Vcc	139
A12	17	-DACK2	45	MA8	116	Vss	1
A13	18	-DACK3	43	MA9	117	V _{SS}	22
A14	20	-DACK5	91	-MASTER	97	V _{SS}	59
A15	21	-DACK6	_ 93	-MEMCS16	82	Vss	9 9
A16	23	-DACK7	95	MFP0	125	Vss	120
A17	24	DRQ0	90	MFP1	129	V _{SS}	142
A18	25	DRQ1	48	MFP2	130	XD00	60
A19	26	DRQ2	46	MFP3	126	XD01	61
A 20	27	DRQ3	44	MFP4	140	XD02	63
A21	28	DRQ5	92	MFP5	141	XD03	64
A22	29	DRQ6	94	MODA0	58	XD04	65
A23	30	DRQ7	96	MODA20	98	XD05	66
-ADRL	137	-ERROR	128	-MREF	124	XD06	67
ALE	57	HLDA	35	-MWE	103	XD07	68
-BHE	33	HOLD	36	NMI	143	XD08	69
BUSCLK	56	INTR	144	-NPBZ	127	XD09	70
-BUSY	13 3	IOCHCK	42	-NPCS	131	XD10	71
-CASH	101	IOCHRDY	41	NPRST	132	XD11	72
-CASL	100	-IOCS16	83	OSCX1	122	XD12	73
CPURST	138	IRQ03	54	OSCX2	121	XD13	74
CPUX1	3	IRQ04	53	PARH	119	XD14	75
CPUX2	4	IRQ05	52	PARL	118	XD15	76
D00	160	IRQ06	51	PROCCLK	2	-XIOR	79
D01	158	IRQ07	50	PWRGOOD	39	-XIOW	80
D02	156	IRQ09	49	-RAS0	107	-XMEMR	77
D03	154	IRQ10	84	-RAS1	106	-XMEMW	78
D04	152	IRQ11	85	-RAS2	105	XRST	134

Pin	Signal Name	Pln	Signal Name	Pin	Signal Name	Pin	Signal Name
1	V _{SS}	41	IOCHRDY	81	-LOMEGCS	121	OSCX2
2	PROCCLK	42	-IOCHCK	82	-MEMCS16	122	OSCX1
3	CPUX1	43	-DACK3	83	-IOCS16	123	SPKOUT
4	CPUX2	44	DRQ3	84	IRQ10	124	-MREF
5	A00	45	-DACK2	85	IRQ11	125	MFP0
6	A01	46	DRQ2	86	IRQ12	126	MFP3
7	A02	47	-DACK1	87	IRO15	127	-NPBZ
8	A03	48	DRQ1	88	IRQ14	128	-ERROR
9	A04	49	IRQ09	89	-DACK0	129	MFP1
10	A05	50	IRQ07	90	DRQ0	130	MFP2
11	A06	51	IRQ06	91	-DACK5	131	-NPCS
12.	A07	52 .	IRQ05	. 92	DRQ5	132	NPRST
13	80A	53	IRQ04	93	-DACK6	133	-BUSY
14	A09	54	IRQ03	94	DRQ6	134	XRST
15	_A10	55	TC	95	-DACK7	135	SDIRL
16	A11	56	BUSCLK	96	DRQ7	136	SDIRH
17	A12	57	ALE	97	-MASTER	137	-ADRL
18	A13	58	MODA0	98	MODA20	138	CPURST
19	Vcc	59 °	V _{SS}	99	V _{SS}	139	Vcc
20	A14	60	XD00	100	-CASL	140	MFP4
- 21	A15	61	XD01	101	-CASH	141	MFP5
22	V _{ex}	62	V _{cc}	102	V _{cc}	144	Vss
23	A16	63	XD02	103	-MWE	143	NMI
24	A17	64	XD03	104	-RAS3	144	INTR
25	A18	65	XD04	105	-RAS2	145	D15
26	A19	66	XD05	106	-RAS1	146	D07
27	A20	67	XD06	107	-RAS0	147	D14
28	A21	68	XD07	108	MA0	148	D06
29	A22	69	XD08	109	MA1	149	D13
30	A23	· ·70	XD09	110	MA2	150	D05
31	-S0	71	XD10	111	MA3	151	D12
32	-S1	72	XD11	112	MA4	152	D04
33	-BHE	73	XD12	113	MA5	153	D11
34	-M/IO	74	XD13	. 114	MA6	154	D03
.35	HLDA	75	XD14	115	MA7	155	D10
36	HOLD	76	XD15	116	MA8	156	D02
37	-READY	77	-XMEMR	117	MA9	157	D09
38	-ROMCS	78	-XMEMW	118	PARL	158	D01
39	PWRGOOD	79	-XIOR	119	PARH	159	D08
40	ATTIC		WOW!		**		

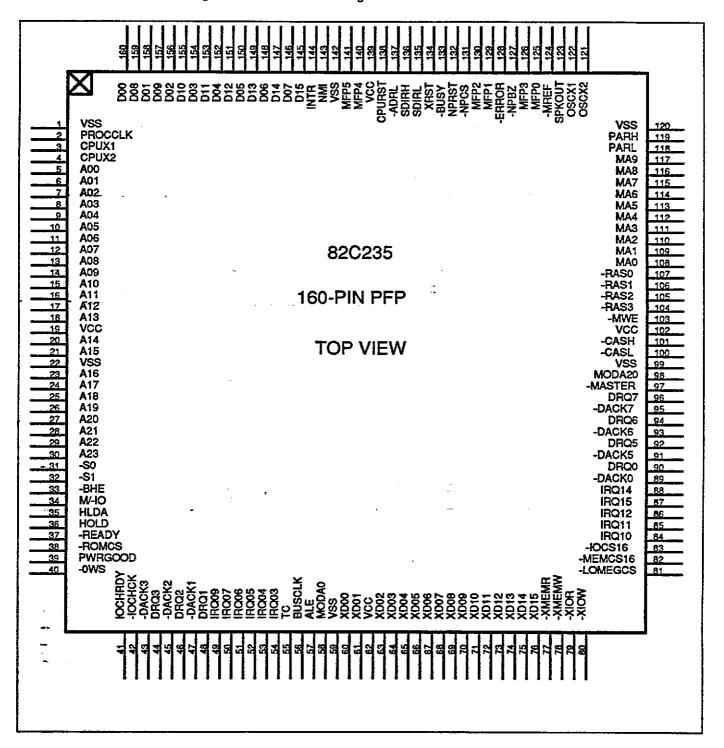
120

Vsş

40

-ows

-XIOW


D00

160

8.3 Pin Diagram

Figure 8-1.

82C235 Pin Diagram

System Characteristics

9.1 Physical Characteristics

Table 9-1. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage	Vcc_		5.5	V
Input Voltage	VI	-0.5	5.5	v
Output Voltage	V _O	-0.5	5.5	v
Operating Temperature	Тор	-25	85	С
Storage Temperature	Tstg	-40	125	С

Note

Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

Table 9-2.

Operating Conditions

Parameter	Symbol	Min	Max	Units
Supply Voltage	Vcc	4.5	5.25	V
Ambient Temperature	TA	0	70	C

Table 9-3. Capacitive Characteristics

Parameter	Symbol	Min	Max	Units
Input Capacitance†	C _{IN}	10		рF
I/O Capacitance†	C _{I/O}		20	рF
Output Capacitance†	Cour		20	рF

† fc = 1 MHz unmeasured pins returned to ground.

9.2 DC Characteristics

Table 9-4. DC Characteristics of the 82C235

Parameter	Conditions	Symbol	Min	Max	Units
Input Low Voltage		v_n	-0.5	0.8	V
Input High Voltage	Vcc = 5.0	V_{IH}	2.0		V
CPUX1 Input Low Voltage	Vcc = 5.0 V	V_{1L}		0.1xV∞	V
CPUX1 Input High Voltage	Vcc = 5.0 V	$v_{ ext{IH}}$	0.9xV∝		v
Output Low Voltage Drive for pins MA0:9, RAS0:3, CASL, CASH, PARL, PARH, ROMCS, XD0:15, DACK0:7, IOCS16, MEMCS16, ADRL, XRST, BUSCLK, MODA0, MODA20, READY, LD0:15	I _{OL} = 4.0 mA	Vol		0.4	v
Drive for pins -XMEMR, -XMEMW, -XIOR, -XIOW, -MREF, -MWE, ALE	IOL = 6.0 mA	Vol	:	0.4	V
Drive for all other pins	$I_{OL} = 2.0 \text{ mA}$	v_{ol}		0.4	V
Output High Voltage Drive for pins MA0:9, RAS0:3, CASL, CASH, PARL, PARH, ROMCS, XD0:15, DACK0:7, IOCS16, MEMCS16, ADRL, XRST, BUSCLK, -XMEMR, -XMEMW, -XIOR, -XIOW, -MREF, -MWE, ALE, MODA0, MODA20, READY, LD0:15	I _{OH} = -4.0 mA	Vон	2.4		V
Drive for all other pins	I _{OH} = -2.0 mA	V _{OH}	2.4		<u>v</u>
PROCCLK Output Low	$I_{OL} = 4.0 \text{ mA}$	Vol		0.2 x V∞	V
PROCCLK Output High	$I_{OH} = -4.0 \text{ mA}$	Voh	0.8 x Vcc		V
Input Leakage Current	$VI = V \infty \text{ to } 0V$	I _{II} .	-10	20	μA
Output Leakage Current	VO = Vcc to $0.45 V$	IoL	-10	20	μΑ
Vcc Supply Current	Vcc = 5.0 V CPUX1 = 32 MHz CPUX1 = 24MHz	Icc	,	.80 60	mA mA
Standby Supply Current	Vcc = 5.25 Vcc = 3.0	Iccsb Iccsb		50 20	μΑ μΑ
Vcc Standby Voltage		VCCSB	3.0	5.25	V

9.3 AC Characteristics (16 MHz 82C235)

All timing parameters are specified under capacitive load of 50 pF and temperature of 70 degree C, unless otherwise stated. These timings are for 16MHz, zero wait state, 40% / 60% PROCCLK, and 60 nanosecond DRAMs.

Unless otherwise specified, all the units discussed in the following tables are in nanoseconds. Also, the AC specifications mentioned in this document are subject to change.

Table 9-5.

Reset Timings (16 MHz)

Symbol	Parameters	Min	Max
t1	PWRGOOD Active from Vcc High (Vcc =4.5V)	100 µs	
12	CPURST XRST Active from PWRGOOD		50 ns
13	CPURST XRST Inactive from PWRGOOD 1	1024 x (Tox1/12)	1026 x (Tox1/12)
t4	PWRGOOD Rise Time (1.0V to 3.6V)		500 us

Table 9-6.

Clock Timings (16 MHz)

Symbol	Parameters	Min	Max
t11	CPUX1 Cycle Time	31	
t12	CPUX1 Rise Time (Oscillator Input)	:	5
t13	CPUX1 Fall Time (Oscillator Input)		5.
t14	CPUX1 High Time (Oscillator Input @ Vcc/2)	12	
t15	CPUX1 Low Time (Oscillator Input @ Vcc/2)	8	
Fcx1	CPUX1 Frequency "	DC	32 MHz
Fox1	OSCX1 Frequency	DC	15 MHz
Tox1	OSCX1 Cycle Time		35
12 1	CPUX1 to PROCCLK Delay		29
122	PROCCLK Rise Time (1.0v to 3.6v)		5
123	PROCCLK Fall Time (3.6v to 1.0v)		5
124	PROCCLK High Time (3.6v)	11	
125	PROCCLK Low Time (1.0v)	8	·····
126	PROCCLK Cycle Time	31	
13 0	PROCCLK to BUSCLK Delay	0	20

Table 9-7. DRAM Control (16 MHz)

Symbol	Parameters	Min	Max
t40	LA Setup to PROCCLK ↓	30	
t41 '	Row Address Delay from CPU Address	0	39
t41a	Row Address Delay from PROCCLK	0	27
42	Column Address Delay from PROCCLK ↑	0	22
t43	-RAS Active Delay from PROCCLK ↓	0	17
t44	-RAS Inactive Delay from PROCCLK ↑/↓	0	20
145	-CAS Active Delay from PROCCLK ↑/↓	0	20
46	-CAS Inactive Delay from PROCCLK ↓	0	18
48	-MWE Active Delay from PROCCLK ↓	3	25
148A	-MWE Active Delay from -S0	3	20
ភ្	Read Data Setup Time to PROCCLK ↓	7	
ı52 ·	Read Data Hold Time from PROCCLK ↓	3	
5 3	D Bus to Parity Delay	0	17
5 4	Write Parity Hold Time from PROCCLK ↓		39

Note: for 16MHz operation, it is recommended that the RAS, CAS, and MA0:9 signals all have equivalent buffer delays to the DRAM.

9.4 Tracking Parameters

In a worst case system analysis, it is not realistic to compare the minimum of one parameter to the maximum of another parameter. A given part will have signal delays with predictable relationships. These delay times should track one another as the silicon experiences different operating conditions. These tracking parameters are relationships between critical signals. They can be used in system timing analysis to guarantee that the time between signals will fall within the specified range.

Table 9-8. Tracking Parameters (16 MHz)

Symbol	Parameters	Min	Max
Œ1	RAS Tracking (t44-t43)	-2	8
tE2	Column Address Tracking (t42-t45)		7
tE3	RAS Hold Tracking (t45-t44)		3
ι Ε 4	RAS to Column Address Delay (t42-t43)	-1	11
tE5	Column Address to RAS Lead Time (t42-t44)		10
tE6	Write Data Setup (t53-t45)		5
њ:	RAS Address Setup (t41-t43)		25

ole 9-9. 8-Bit Bus and ROM Cycle (16 MHz)

Symbol	Parameters	Min	Max
t61	-ADRL Active Delay from PROCCLK↓	-2	15
t62 ·	-ADRL Inactive Delay from PROCCLK ↓	0	15
t63	ALE Active Delay from BUSCLK ↓	-10	15
t63A	ALE Active Delay from PROCCLK ↓	0	23
t64	ALE Inactive Delay from BUSCLK ↑	-10	12
t64A	ALE Inactive Delay from PROCCLK ↑/↓	0	22
ı65	Command Active Delay from BUSCLK ↑/↓	-10	15
t65A	Command Active Delay from PROCCLK ↓	3	42
166	Command Inactive Delay from BUSCLK ↑	-10	12
166A	Command Inactive Delay from PROCCLK ↑/↓	0	22
167	SDIR Active Delay from PROCCLK ↓	0	28
t68	MODA20 Delay from LA20	0	22
t69	-LMEGCS Delay from PROCCLK ↓	Ö	23
171	XD Bus Setup Time from PROCCLK ↓	35	
t72	XD Bus Hold Time from PROCCLK ↓	5	
t73	IOCHRDY Setup Time to BUSCLK ↑	26	
<i>(</i> 75	-ROMCS Active Delay from BUSCLK T	0	40
t75A	-ROMCS Active Delay from PROCCLK ↓	0	26
t76	-ROMCS Inactive Delay from BUSCLK 1	-2	15
176A	-ROMCS Inactive Delay from PROCCLK ↑/↓	0	26
:77	-MREF Active Delay from PROCCLK ↑	0	31
:78	-MREF Inactive Delay from OSC T	0	40
<i>(</i> 79	* Refresh Address Valid from -REFRESH ↓	0	50
18 0	HOLD Inactive Delay from OSC ↑	0	31
t81 ·	-XMEMR Active Delay from OSC 1	0	50
182	- XMEMR Inactive Delay from OSC ?	0	50
183	-RAS Active Delay from OSC ↑	0	50
84	-RAS Inactive Delay from OSC ↑	0	50
85	XD Bus to D Bus Delay	0	30
186	-MEMCS16 Setup Time to BUSCLK ↑	30	
187	-MEMCS16 Hold Time to BUSCLK ↑	17	
188	-IOCS16 Setup Time to COMMAND ↓	30	
189	-MEMCS16 Hold Time to BUSCLK T	31	

4

Table 9-10. CPU Interface (16 MHz)

Symbol	Parameters	Min	Max
111	-S0 and -S1 Setup Time to PROCCLK ↓	13	
t112	-S0 and -S1 Hold Time from PROCCLK ↓	1	
t113	A Bus Setup Time to PROCCLK ↓	0	
t114	A Bus Hold Time from PROCCLK \$\d\]	0	
115	-BHE Setup Time to PROCCLK ↓	3	
t116	-BHE Hold Time from PROCCLK ↓	1	
t117	D Bus Active Time to PROCCLK ↓	5	
t118	D Bus Inactive Time from PROCCLK \$\dprime\$	3	
120	Write Data Hold Time from PROCCLK ↓	0	
121	-READY Active Delay from PROCCLK ↑	0	31
:122	-READY Inactive Delay from PROCCLK T	0	31
123	OWS Setup Time to BUSCLK ↓	32	
124	OWS Hold Time to BUSCLK ↓	4	
128	XD Bus Invalid from COMMAND T	5	25
129	SA0 Valid from BUSCLK ↓	-10	20
129A	SA0 Valid from PROCCLK ↓	0	20
132	-MEMCS16 Active Delay from PROCCLK ↓	0	40
132A	-MEMCS16 Active Delay from -S0, -S1	0	22
:133	-ADRL and ALE Active Delay from HLDA 1.	. 0	40
134	-ADRL and ALE Inactive Delay from HLDA ↓	0	40
135	-READY Active Delay from PROCCLK ↓	-2	18
136	-READY Inactive Delay from PROCCLK ↓	-2	31
137	D Bus to XD Bus Delay	0	48

Table 9-11. Miscellaneous (16 MHz)

Symbol	Parameters	Min	Max
t151	CPURST Active Delay from PROCCLK	-2	21
t152	CPURST Inactive Delay from PROCCLK	0	21
t153	-8042CS Active Delay from ADRL	0	31
t163	NPBUSY Active Pulse Width	26	
t164	-ERROR Hold Time to -NPBZ	30	
1165	-ERROR Setup Time to -NPBZ	10	
t167	-BUSY Active Delay from -NPBZ	0	18
t168	-BUSY Inactive Delay from -NPBZ	0	23
t169	-BUSY Inactive Delay from -XIOW	-5	60
t170	NPRST Active Delay from -XIOW	-10	50
t171	NPRST Inactive Delay from -XIOW	0	50
t173	IOCHRDY Setup Time to OSC	20	
t174	IOCHRDY Hold Time to OSC	17	

9.5 AC Characteristics (12 MHz 82C235)

All timing parameters are specified under capacitive load of 50 pF and temperature of 70 degree C, unless otherwise stated. These timings are for 12 MHz, zero wait state, 40% / 60% PROCCLK, and 80 nanosecond DRAMs.

Unless otherwise specified, all the units discussed in the following tables are in nanoseconds. Also, the AC specifications mentioned in this addendum are subject to change.

Table 9-12. Reset Timings (12 MHz)

Symbol	Parameters	Min	Max
tl	PWRGOOD Active from Vcc High (Vcc =4.5V)	100 μs	
12	CPURST XRST Active from PWRGOOD		50 ns
ថ	CPURST XRST Inactive from PWRGOOD ↑	1024 x (Tox1/12)	1026 x (Tox1/12)
t4	PWRGOOD Rise Time (1.0V to 3.6V)		500 μs

Table 9-13. Clock Timings (12 MHz)

Symbol	Parameters	Min	Max	
tl1	CPUX1 Cycle Time	41		
t12	CPUX1 Rise Time (Oscillator Input)		8	
t13	CPUX1 Fall Time (Oscillator Input)		8	
t14	CPUX1 High Time (Oscillator Input @ Vcc/2)	16		
t15	CPUX1 Low Time (Oscillator Input @ Vcc/2)	16		
Fcx1	CPUX1 Frequency	. DC	24 MHz	
Fox1	OSCX1 Frequency	DC	15 MHz	
Tox1	OSCX1 Cycle Time		35	
121	CPUX1 to PROCCLK Delay		29	
122	PROCCLK Rise Time (1.0v to 3.6v)		8	
123	PROCCLK Fall Time (3.6v to 1.0v)	, -	8	
124	PROCCLK High Time (3.6v)	13		
125	PROCCLK Low Time (1.0v)	11		
126	PROCCLK Cycle Time	41		
130	PROCCLK to BUSCLK Delay	0	20	

Table 9-14. DRAM Control (12 MHz)

Symbol	Parameters	Min	Max
t40	LA Setup to PROCCLK ↓	30	
t41	Row Address Delay from CPU Address	0	39
t41a	Row Address Delay from PROCCLK	0	41
t42	Column Address Delay from PROCCLK ↑	0	22
t43	-RAS Active Delay from PROCCLK ↓	0	20
t44	-RAS Inactive Delay from PROCCLK ↑/↓	0	20
t45	-CAS Active Delay from PROCCLK ↑/↓	0	20
46	-CAS Inactive Delay from PROCCLK ↓	0	32
48	-MWE Active Delay from PROCCLK ↓	3	32
48A	-MWE Active Delay from -S0	3	20
5 1	Read Data Setup Time to PROCCLK ↓	7	
52 **	Read Data Hold Time from PROCCLK ↓ 6		
153	D Bus to Parity Delay 0		31
5 4	Write Parity Hold Time from PROCCLK ↓		40

Table 9-15. Tracking Parameters (12 MHz)

Symbol	Parameters	Min	Max
tE1	RAS Tracking (t44-t43)	-2	
tE2	- Column Address Tracking (t42-t45)		7
tE3	RAS Hold Tracking (t45-t44)		3
tE4	RAS to Column Address Delay (142-143)	-1	11
tE5	Column Address to RAS Lead Time (t42-t44)		10
1E6	Write Data Setup (t53-t45)		5
£7	RAS Address Setup (t41-t43)		25

Table 9-16. 8-Bit Bus and ROM Cycle (12 MHz)

Symbol	Parameters	Min	Max	
t61	-ADRL Active Delay from PROCCLK ↓	-2	20	
t62	-ADRL Inactive Delay from PROCCLK ↓	0	20	
t63	ALE Active Delay from BUSCLK ↓	-10	15	
t63A	ALE Active Delay from PROCCLK ↓	0	23	
t64	ALE Inactive Delay from BUSCLK ↑	-10	12	
t64A	ALE Inactive Delay from PROCCLK ↑/↓	0	22.	
165	Command Active Delay from BUSCLK ↑/↓	-10	15	
t65A	Command Active Delay from PROCCLK ↓	3	42	
166	Command Inactive Delay from BUSCLK ↑	-10	12	
t66A	Command Inactive Delay from PROCCLK ↑/↓	0	22	
167	SDIR Active Delay from PROCCLK ↓	0	35	
168.	MODA20 Delay from LA20	0	22	
16 9	-LMEGCS Delay from PROCCLK ↓	0	23	
:71	XD Bus Setup Time from PROCCLK ↓	35		
t 7 2	XD Bus Hold Time from PROCCLK ↓	5		
t 7 3	IOCHRDY Setup Time to BUSCLK 1	26		
75	-ROMCS Active Delay from BUSCLK T	-2	40	
75A	-ROMCS Active Delay from PROCCLK ↓	0	26	
<i>7</i> 6	-ROMCS Inactive Delay from BUSCLK from	0	20	
76A	-ROMCS Inactive Delay from PROCCLK ↑/↓	0	26	
77	-MREF Active Delay from PROCCLK 1 0		40	
78	-MREF Inactive Delay from OSC ↑			
79	Refresh Address Valid from -REFRESH ↓	0	57	
80	HOLD Inactive Delay from OSC 1	0	40	
81	-XMEMR Active Delay from OSC T	0	50	
82	-XMEMR Inactive Delay from OSC T	. 0.	. 50	
83	-RAS Active Delay from OSC T	0	50	
84	-RAS Inactive Delay from OSC T	0	50	
85	XD Bus to D Bus Delay	0	50	
86	-MEMCS16 Setup Time to BUSCLK T	35		
87	-MEMCS16 Hold Time to BUSCLK T	17		
88	-IOCS16 Setup Time to COMMAND \$\ddot\$	30		
189	-MEMCS16 Hold Time to BUSCLK T	40		

Table 9-17. CPU Interface (12 MHz)

Symbol	Parameters	Min	Max
t111	-S0 and -S1 Setup Time to PROCCLK ↓	22	
:112	-S0 and -S1 Hold Time from PROCCLK ↓	3	
t113	A Bus Setup Time to PROCCLK ↓	0	
tl 14	A Bus Hold Time from PROCCLK ↓	0	
t115	-BHE Setup Time to PROCCLK ↓	5	
t116	-BHE Hold Time from PROCCLK 1	3	
t117	D Bus Active Time to PROCCLK ↓	5	
t118	D Bus Inactive Time from PROCCLK ↓	6	
t120	Write Data Hold Time from PROCCLK ↓	0	
t121	-READY Active Delay from PROCCLK ↑	0	36
t122	-READY Inactive Delay from PROCCLK T	0	40
:123	0WS Setup Time to BUSCLK ↓	32	
t124	0WS Hold Time to BUSCLK ↓	4	
t128	XD Bus Invalid from COMMAND ↑	5	25
:129	SA0 Valid from BUSCLK \$\dagger\$	-10	20
t129A	SA0 Valid from PROCCLK ↓	0	40
t132	-MEMCS16 Active Delay from PROCCLK ↓	0	40
t132A	-MEMCS16 Active Delay from -S0, -S1	0	22
t133	-ADRL and ALE Active Delay from HLDA 1	0	40
t134	-ADRL and ALE Inactive Delay from HLDA ↓	0	40
t135	-READY Active Delay from PROCCLK ↓		24
t136	-READY Inactive Delay from PROCCLK ↓	-2	40
t137	D Bus to XD Bus Delay	0	48

Table 9-18. Miscellaneous (12 MHz)

Symbol	Parameters	Min	Max 21	
t151	CPURST Active Delay from PROCCLK	-2		
t152	CPURST Inactive Delay from PROCCLK	0	21	
t153	-8042CS Active Delay from ADRL	0	31	
163	NPBUSY Active Pulse Width	26	•	
164	-ERROR Hold Time to -NPBZ	30		
165	-ERROR Setup Time to -NPBZ	10		
167	-BUSY Active Delay from -NPBZ	0	23	
168	-BUSY Inactive Delay from -NPBZ	0	23	
169	-BUSY Inactive Delay from -XIOW	-5	60	
170	NPRST Active Delay from -XIOW	-10	50	
:171	NPRST Inactive Delay from -XIOW	0	50	
173	IOCHRDY Setup Time to OSC 20			
t174	IOCHRDY Hold Time to OSC 17			

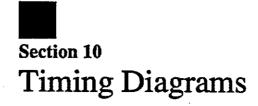


Figure 10-1.

Hardware Reset

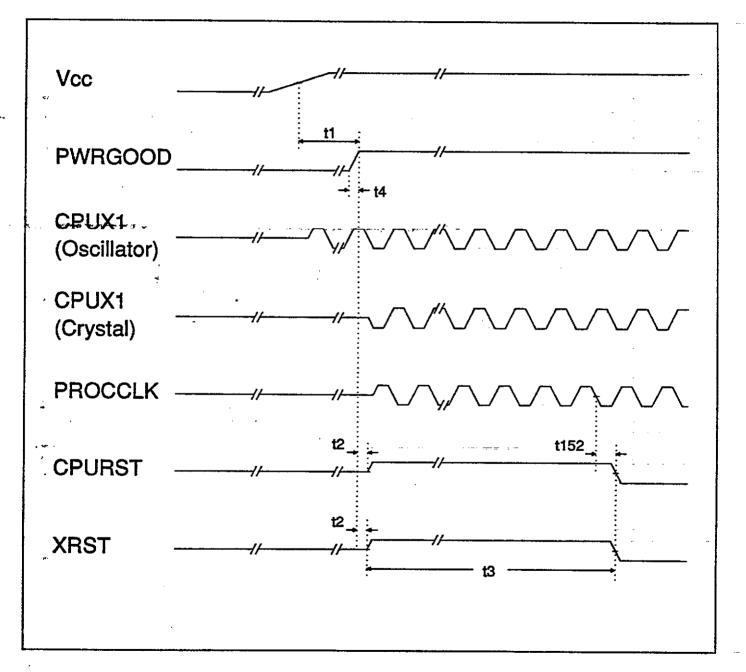


Figure 10-2. Clock Input

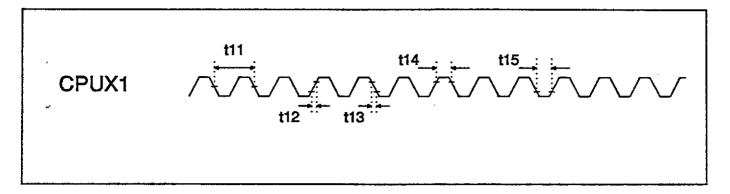
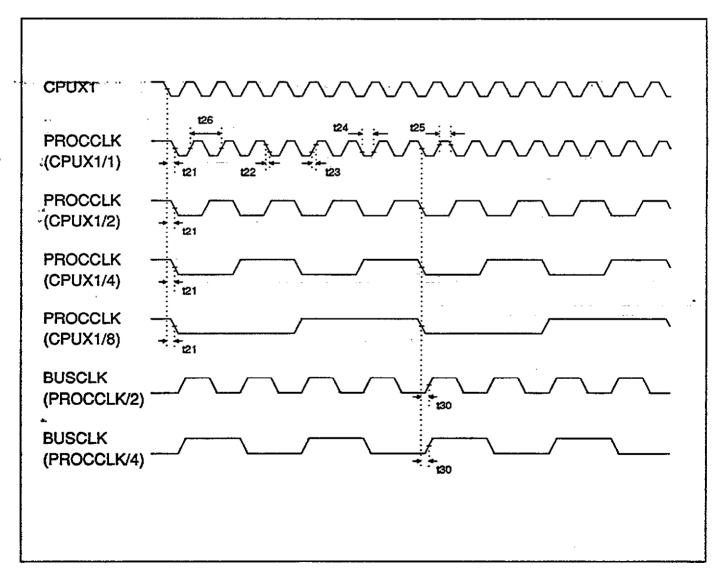



Figure 10-3. Clock Output

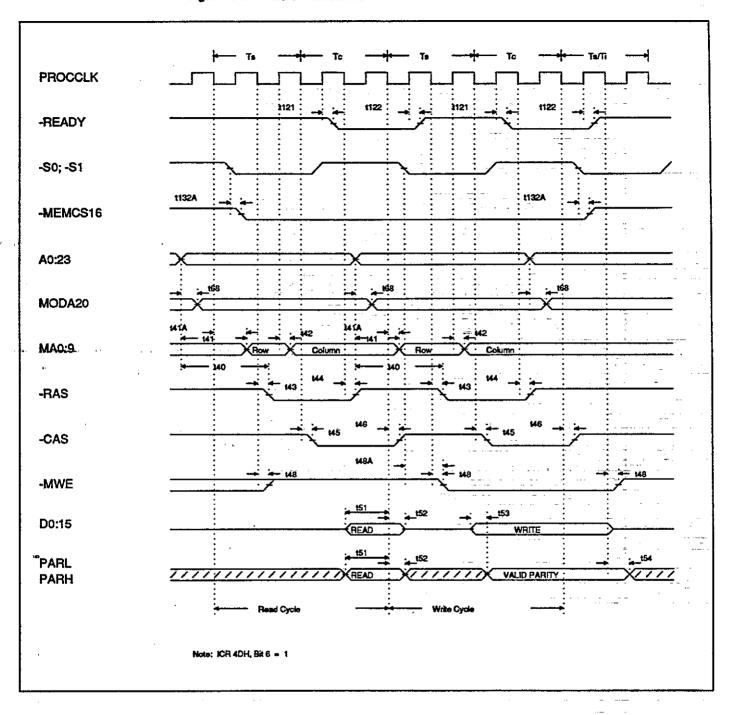
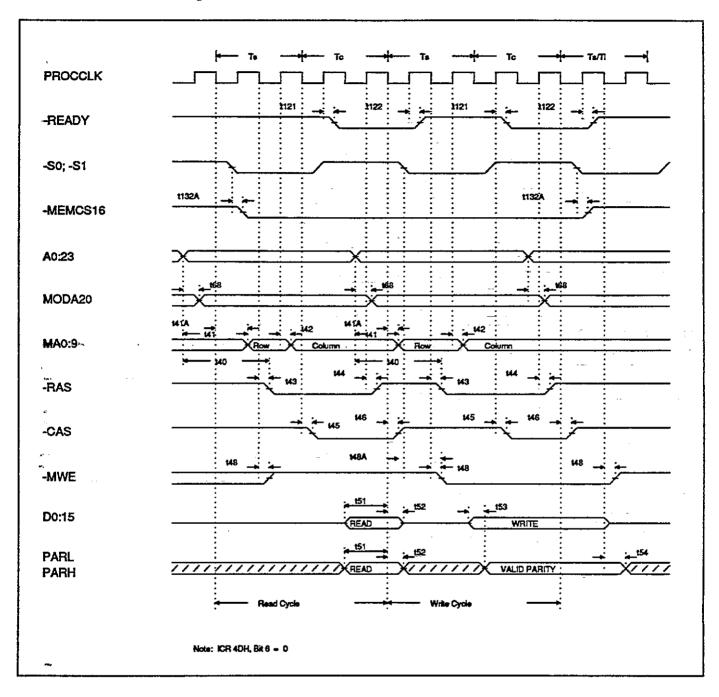



Figure 10-5.

Zero Wait State with Extended RAS DRAM

One Wait State DRAM Figure 10-6.

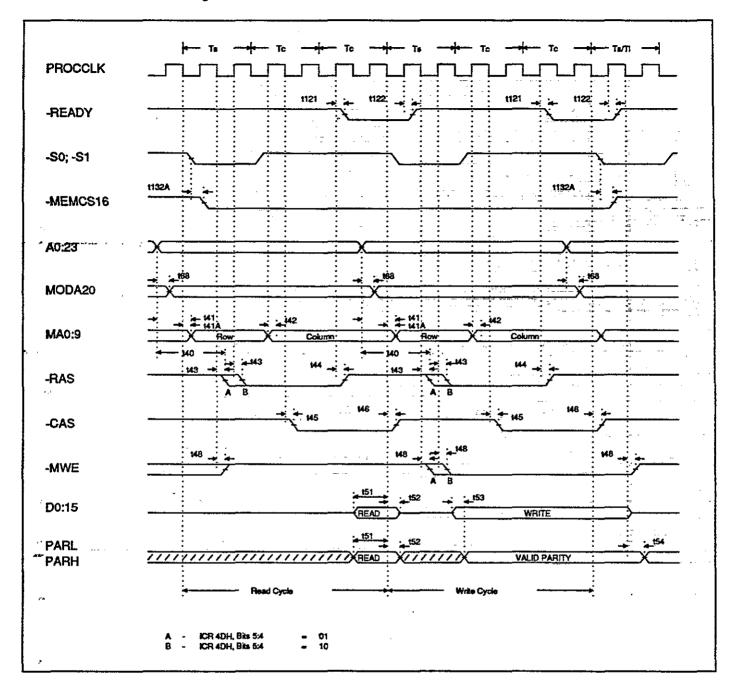
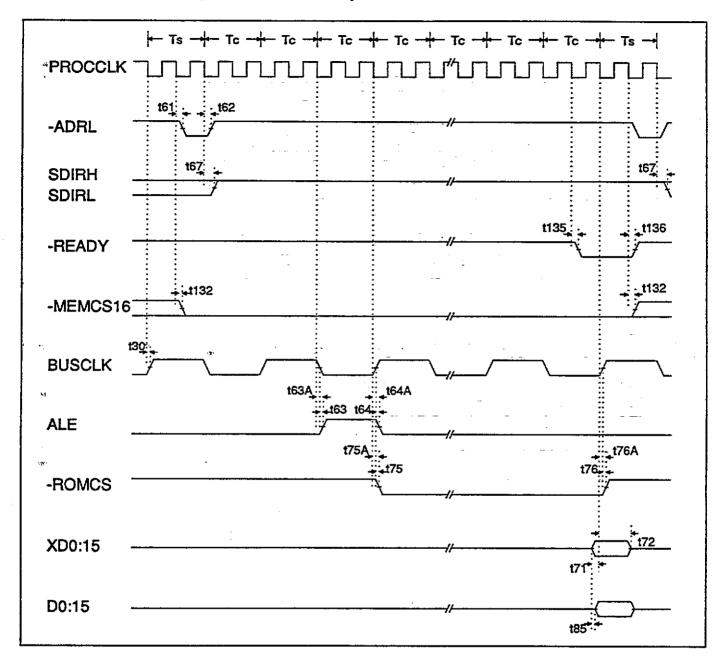



Figure 10-7. 16-Bit ROM Cycle

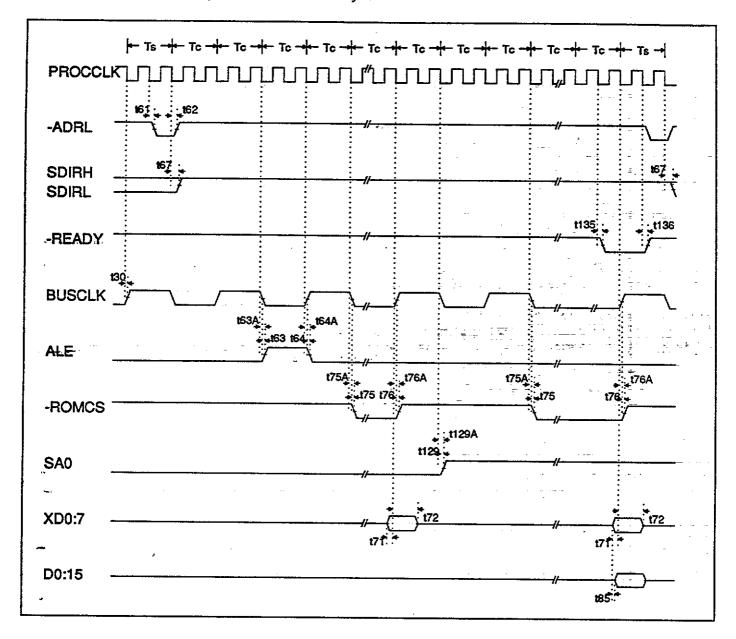


Figure 10-9. Memory Refresh Cycle

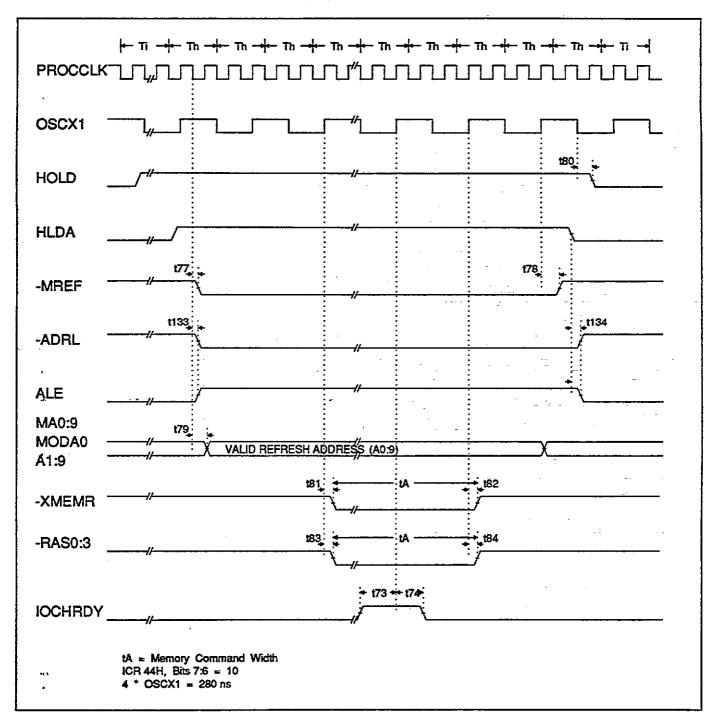


Figure 10-10. Numeric Coprocessor

Figure 10-11. CPU Interface

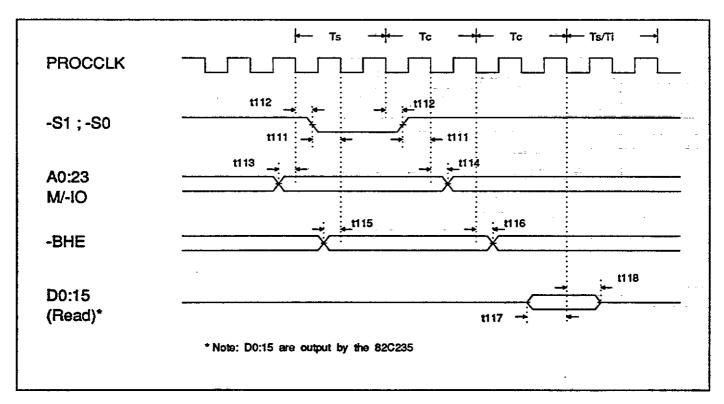
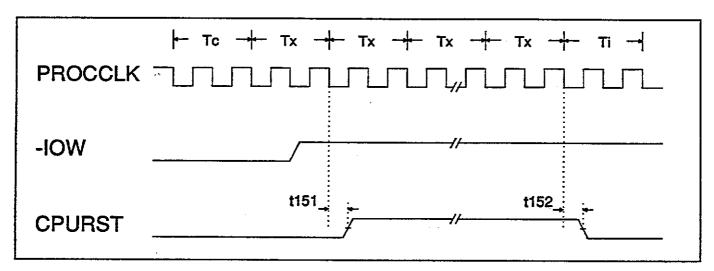
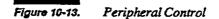




Figure 10-12. Software Reset

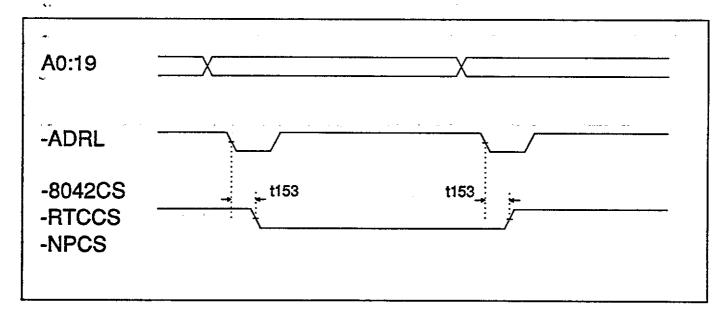
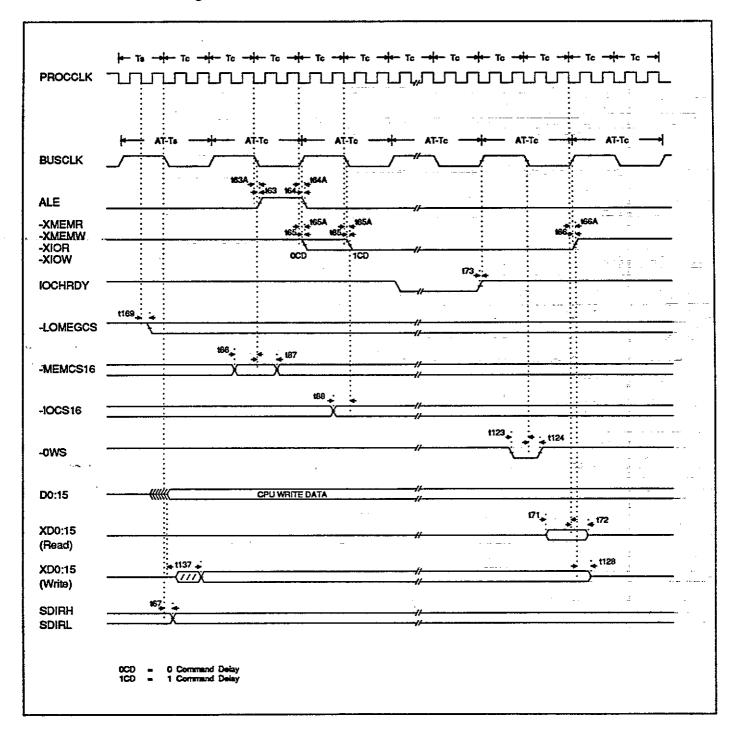
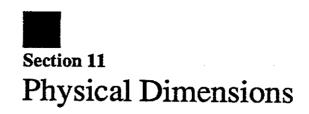
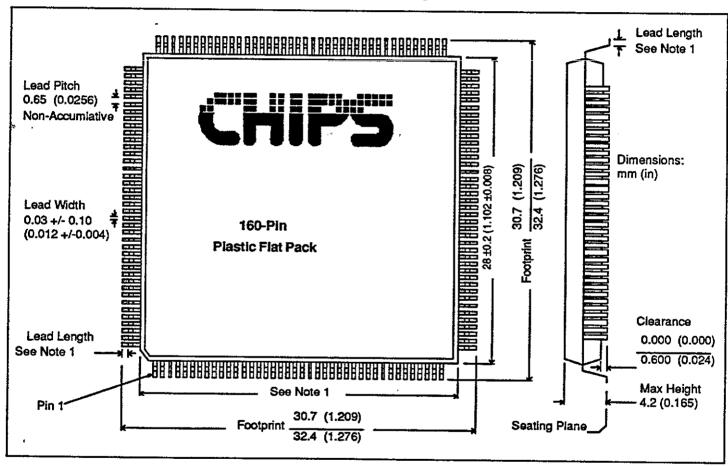




Figure 10-14. I/O Channel


Timing Diagrams

This page is intentionally left blank.

11.1 System Controller

Figure 11-1. 160-Pin Plastic Flat Package

Note 1 Lead Length = 0.7 ± 0.2 (0.028 ±0.008) Package Vendor = A Lead Length = 0.8 ± 0.2 (0.031 ±0.008) Package Vendor = B

Physical Dimensions

This page is intentionally left blank.

Appendix A **Address Mapping**

A.1 I/O Address Maps

The following tables indicate the I/O ports used in the 82C235. If an address is not shown, it is not used. Refer to an IBM PC AT technical reference manual for reserved locations.

Port 0H-0FH DMA Controller 1

I/O Port Address	Read/Write	Description
0000H	R/W	DMA Channel 0 current address
0001H	R/W	DMA Channel 0 current word count
0002H	R/W	DMA Channel 1 current address
0003H	R/W	DMA Channel 1 current word count
0004H	R/W	DMA Channel 2 current address
0005H	R/W	DMA Channel 2 current word count
0006H	R/W	DMA Channel 3 current address
0007H	R/W	DMA Channel 3 current word count
0008H	R/W	Command/Status Register
0009H	R/W	DMA Request Register
000AH	R/W	DMA Single Bit Mask Register
000BH	R/W	DMA Mode Register
000CH	R/W	DMA Clear Byte Pointer
000DH	R/W	DMA Master Clear
000EH	R/W	Clear Mask Register
000FH	R/W	DMA Write All Mask Register Bit

Port 20H-21H Interrupt Controller 1

VO Port Address	Read/Write	Description
0020H	W	INTC ICW1
	W	INTC OCW2
	W	INTC OCW3
	R	INTC Interrupt Request Register (IIR
	R	INTC In-Service Register (ISR)
	R	INTC Polling Data Byte
0021H	w	INTC ICW2
	W	INTC ICW3
	W	INTC ICW4
····	W	INTC OCW1
	R	INTC Interrupt Mask Register (IMR)

Port 22H-23H Internal Configuration Registers (ICRs)

VO Port Address	Index	Read/Write	Description
0022H		W Only	Internal Configuration Index Register
0023H		R/W	Internal Configuration Data Register
	01H	R/W	DMA Wait-state Control Register
	40H	Read Only	Version Register
	41H	R/W	Channel Control Register
	42H	R/W	Reserved
	43H	R/W	Reserved
	44H	R/W	Peripheral Control Register
	45H	R/O	Miscellaneous Status Register
	46H	R/W	Power Management Register
	47H		Reserved
	48H	R/W	ROM Enable Register
	49H	R/W	RAM Write Protect Register
	4AH	R/W	Shadow RAM Enable Register 1
	4BH	R/W	Shadow RAM Enable Register 2
****	4CH	R/W	Shadow RAM Enable Register 3
	4DH	R/W	DRAM Configuration Register
	4EH	R/W	Extended Boundary Register
	4FH	R/W	EMS Control Register

Port 40H-43H Timer/Counter Registers

I/O Port Address	Read/Write	Description
0040H	R/W	Timer 0 Count Load/Read
0041H	R/W	Timer 1 Count Load/Read
0042H	R/W	Timer 2 Count Load/Read
0043H	W	Timer Control Word

Port 61H-92H Miscellaneous I/O Registers

I/O Port Address	Read/Write	Description
0061H	R/W	Control/Status Port
0070H	W	Real-Time Clock Index and NMI Mask
0071H	R/W	Real-Time Clock Data Port
0092H	R/W	System Control Port

Port 81H-8BH DMA Page Registers

VO Port Address	Read/Write	Description
0081H	W	DMA Channel 2 Page Register
0082H	W	DMA Channel 3 Page Register
0083H	W	DMA Channel 1 Page Register
0087H	W	DMA Channel 0 Page Register
0 089H	W	DMA Channel 6 Page Register
008AH	W	DMA Channel 7 Page Register
008BH	W	DMA Channel 5 Page Register

Port A0H-A1H Interrupt Controller 2

VO Port Address	Read/Write	Description		
00A0H	W	INTC ICW1		
	W	INTC OCW2		
	W	INTC OCW3		
	- R	INTC Interrupt Request Register (IIR		
	R	INTC In-Service Register (ISR)		
	R	INTC Polling Data Byte		
00A1H	W	INTC ICW2		
	W	INTC ICW3		
	W	INTC ICW4		
	W	INTC OCW1		
	R	INTC Interrupt Mask Register (IMR)		

Port COH-DEH DMA Controller 2

VO Port Address	Read/Write	Description	
00C0H	R/W	Channel 0 base and current address	
00C2H	R/W	Channel 0 base and current word count	
00C4H	R/W	Channel 1 base and current address	
00C6H	R/W	Channel 1 base and current word count	
00C8H	R/W	Channel 2 base and current address	
00CAH	R/W	Channel 2 base and current word count	
00CCH	R/W	Channel 3 base and current address	
00CEH	R/W	Channel 3 base and current word count	
00D0H	R/W	Read Status Register/Write Comnd Reg	
00D2H	R/W	Write Request Register	
00D4H	R/W	Write Single Mask Register Bit	
00D6H	R/W	Write Mode Register	
00D8H	R/W	Clear Byte Pointer Filp-Flop	
00DAH	R/W	Read Temporary Register/Write Mstr Cir	
00DCH	R/W	Clear Mask Register	
00DEH	R/W	Write All Mask Register Bits	

Port 0H-1H Coprocessor Registers

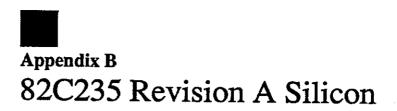
UO Port Address	Read/Write	Description
00F0H	W	Clear Co-processor Busy
00F1H	W	Reset Co-processor

Port 8H-AH EMS Page Registers

/O Port Address	Read/Write	Description
02x8H	R/W	EMS Page Register
02x9H	R/W	EMS Page Register
02xAH	R/W	EMS Page Register

Note

"x" is equal to 0 or 1 depending on ICR 4F, bit 0.


A.2 Memory Address Map

The following table indicates the memory addresses used in the 82C235. For more detailed information about memory addressing, refer to the IBM PC AT Technical Reference Manual.

Table A-1.

Memory Address Map

Memory Address	Read/Write	Description	
000000-09FFFFH	R/W	System RAM	
0A0000-0BFFFFH	R/W	Video Memory or Shadow RAM	
OCOCCO-OEFFFFH	R/W	BIOS extension or Shadow RAM	
0F0000-0FFFFFH	R/W	ROM or Shadow RAM	
100000-FBFFFFH	R/W	Expanded or Extended Memory	
FC0000-FEFFFFH	R Only	BIOS extension	
FF0000-FFFFFFH	R/W	ROM	

B.1 Features

The operation of Revision A 82C235 silicon (marked F82C235 A), differs from the descriptions provided in the previous sections.

The following table outlines the functional differences between the 82C235 Revision D silicon and the 82C235 Revision A silicon.

Table B-1. Feature Differences Between 82C235 A and 82C235 D

Feature/Register			82C	235 Revision A				82C235 Revision	D
Master DRAM Timing Index Configuration Register 4DH Bit 7	Revi	Master DRAM timing is not programmable in Revision A silicon. This bit is a RESERVED bit in 82C235 A silicon.			in This bit selects the proper DRAM timing for Mast D accesses to DRAM. 0 = 12 MHz (default) 1 = 16 MHz			ning for Master	
Local DRAM Timing		_		These bits define the local DRAM timing as shown following:			ming as shown in the		
Index Configuration Register 4DH Bits 6:4	B 6 0 0 0	B 5 0 0 1	B4 0 1 0	Timing Zero Wait State (with Extended -RAS) One Wait State One Wait State with -RAS delay	B 6 0 0 0 1	B5 0 0 1 0	1 0 0 0	Timing Zero Wait State (with Extended One Wait State One Wait State Zero Wait State	with -RAS delay
	Allo	All other combinations are RESERVED				All other combinations are RESERVED			
Mixed DRAM configuration Index Configuration Register 4EH Bit 6 Index Configuration Register 4EH	types This silico	is not s bit is a l	F256K and 1M DRAM ted in 82C235 A silicon. RVED bit in 82C235 A	This bit enables the intermixing of 256K and 1M DRAM types per the following table: 0 = No intermixing allowed (default) 1 = Intermixing supported via Table 7-1 DRAM Configuration found in Section 7: Configuration Registers. SPECIAL RESERVED. During each system resets, the) 7-1 DRAM 7: Configuration th system resets, the	
Bit 4				<u>.</u>	Ali sı	nbsedn	ent wr		to this bit position. must place a logic
I/O Port 61H Bit 3	CHC	K DIS	read/v	write bit)	CHC	K DIS	(read/	write bit)	
per gamente - V		bit enab hannel d		sables NMI generation for errors.		bit ensi		sables NMI gener	ation for I/O channel
P1				generation (default) generation				generation (defaul generation	b
XRST Active Time		ective de 235 A si		n of the XRST output for is:	The s		iuratio	n of the XRST ou	put for 82C235 D
	Min 64	<u>Max</u> 66	PRO	<u>Units</u> CCLK cycles	1024 1	iin x Tox 12		Max 1026 x Tox1 12	<u>Units</u> ns
					where	e Tox1	is the	OSCX1 cycle tim	e in nanoseconds
-ROMCS Decode	acces		he FC	ed for all memory read 0000H to FFFFFFH range				ed for all memory FFH range of add	read accesses to the resses.

Note: All RESERVED bits must have a logic zero written to them for all write accesses.

All SPECIAL RESERVED bits (ICR 4EH, Bit 4) must have a logic one written during all system resets and for all subsequent write accesses.

B.2 AC Characteristics

All timing parameters are specified under capacitive load of 50 pF and temperature of 70 degree C, unless otherwise stated. These timings are for 12 MHz, zero wait state, 45% / 55% PROCCLK, and 80 nanosecond DRAMS.

Unless otherwise stated, the units of these AC specifications are in nanoseconds and are subject to change.

Table B-2. Reset Timing (12 MHz)

Symbol	Parameters	Min	Max
tl	PWRGOOD Active from Vcc High (Vcc =4.5V)	100 µs	
12	CPURST XRST Active from PWRGOOD ↑	-	50
ß	CPURST XRST Inactive from PWRGOOD ↑	64	66 PROCCLK cycles
t4*	PWRGOOD Rise Time (1.0V to 3.6V)		500 มร

Table B-3. Clock Timing (12 MHz)

Symbol	Parameters	Min	Max
tl1	CPUX1 Cycle Time	41	
t12	CPUX1 Rise Time (Oscillator Input)		8
t13	CPUX1 Fall Time (Oscillator Input)	=	8
t14	CPUX1 High Time (Oscillator Input @ Vcc/2)	16	
:15	CPUX1 Low Time (Oscillator Input @ Vcc/2)	16	
Fcx1	CPUX1 Frequency	DC	24 MHz
Fox1	OSCX1 Frequency	DC	15 MHz
Tox1	OSCX1 Cycle Time	35	
21	CPUX1 to PROCCLK Delay		20
22	PROCCLK Rise Time (1.0v to 3.6v)		8
23	PROCCLK Fall Time (3.6v to 1.0v)		8
24	PROCCLK High Time (3.6v)	13	.
25	PROCCLK Low Time (1.0v)	11	
26	PROCCLK Cycle Time	41	
30	PROCCLK to BUSCLK Delay		25

Table B-4. DRAM Control

Symbol	Parameters	Min	Max
: 41	Row Address Delay from CPU Address	0	35
t42	Column Address Delay from PROCCLK 1	8	22
t43†	-RAS Active Delay from PROCCLK ↓	8	20
t44†	-RAS Inactive Delay from PROCCLK ↑/↓	6	20
t45†	-CAS Active Delay from PROCCLK ↑/↓	8	20
t 46	-CAS Inactive Delay from PROCCLK ↓	6	32
t48	-MWE Active Delay from PROCCLK ↓	3	32
រភ្1	Read Data Setup Time to PROCCLK ↓	5	
t52	Read Data Hold Time from PROCCLK ↓	6	
153 †	D Bus to Parity Delay	0	17
t54	Write Parity Hold Time from PROCCLK ↓		31

[†] Timings for 12 MHz, zero wait state, 45% / 55% PROCCLK, and using DRAMs with the following parameters: RAS Precharge Time (tRP) = 60 ns max. CAS Access Time (tCAC) = 25 ns max.

Table B-5. 8-Bit and ROM Cycle

Symbol 🔧	Parameters -	Min	Max
161	-ADRL Active Delay from PROCCLK ↓	3	20
t62	-ADRL Inactive Delay from PROCCLK ↓	3	20
163	ALE Active Delay from BUSCLK ↓	-10	10
t64	ALE Inactive Delay from BUSCLK ↑	-10	12
t65	Command Active Delay from BUSCLK ↑/↓	-10	13
t66	Command Inactive Delay from BUSCLK ↑	-10	15
t67	SDIR Active Delay from PROCCLK ↓	0	43
<i>i</i> 71	XD Bus Setup Time from PROCCLK ↓	35	
72	XD Bus Hold Time from PROCCLK ↓	5	
t73	IOCHRDY Setup Time to BUSCLK 1	26	
75	-ROMCS Active Delay from BUSCLK ↑	0	40
t76	-ROMCS Inactive Delay from BUSCLK T	0	20
<i>a</i> 7	-MREF Active Delay from PROCCLK ↑	0	40
:78	-MREF Inactive Delay from OSC T	0	42
:79	Refresh Address Valid from -REFRESH ↓	0	57
: 80	HOLD Inactive Delay from OSC ↑	0	40
t81	-XMEMR Active Delay from OSC T	0	50
182	-XMEMR Inactive Delay from OSC T	0	50
t83	-RAS Active Delay from OSC T	0	50
t84	-RAS Inactive Delay from OSC T	0	50
t85	XD Bus to D Bus Delay	0	58
t86	-MEMCS16 Setup Time to BUSCLK ↑	35	
t87	-MEMCS16 Hold Time to BUSCLK ↑	17	
88	-IOCS16 Setup Time to COMMAND ↑	30	
189	-MEMCS16 Hold Time to BUSCLK ↓	31	

Table B-6. DMA Timing

Symbol	Parameters	Min	Max
t90	DREQ Setup Time to PROCCLK ↓	20	
1 91	HLDA Setup Time to PROCCLK ↓	20	
t92	Address Valid Delay from PROCCLK 1	0	35
t 9 3	-DACK Active Delay from PROCCLK ↓	0	40
t94	-DACK Inactive Delay from PROCCLK ↓	0	40
195	Command Valid from PROCCLK ↓	0	50
96	Command Active Delay from PROCCLK ↓	_ 0	50
197	Command Inactive Delay from PROCCLK ↓	G	50
198	Command Invalid from PROCCLK ↓	0	40
99	TC Active Delay from PROCCLK ↓	0	50
t100	TC Inactive Delay from PROCCLK ↓	0	50

Table B-7. CPU Interface

Symbol	Parameters	Min	Max
1111	-S0 and -S1 Setup Time to PROCCLK ↓	22	
t112	-S0 and -S1 Hold Time from PROCCLK ↓	3	
t113	A Bus Setup Time to PROCCLK ↓	0	
tl 14	A Bus Hold Time from PROCCLK ↓	0	_
t115	-BHE Settip Time to PROCCLK ↓	5	
t116	-BHE Hold Time from PROCCLK ↓	9	
t117	D Bus Active Time to PROCCLK ↓	5	
t118	D Bus Inactive Time from PROCCLK ↓	6	
t120	Write Data Hold Time from PROCCLK ↓	0	
t121	-READY Active Delay from PROCCLK ↑	0	36
t122	-READY Inactive Delay from PROCCLK ↑	0	40
t123 "	0WS Setup Time to BUSCLK ↓	32	
t124	OWS Hold Time to BUSCLK ↓	4	
1128	XD Bus Invalid from COMMAND ↑	5	25
t129	SA0 Valid from BUSCLK ↓	-10	20
t132	-MEMCS16 Active Delay from PROCCLK ↓	0	40
t133	-ADRL and ALE Active Delay from HLDA T	0	40
134	-ADRL and ALE Inactive Delay from HLDA ↓	0	40
135	-READY Active Delay from PROCCLK \$\displaystyle	0	24
136	-READY Inactive Delay from PROCCLK ↓	0	40
137	D Bus to XD Bus Delay	0	74

Table B-8. Miscellaneous Timing

Symbol	Parameters	Min	Max
t151	CPURST Active Delay from PROCCLK	22	22
t152	CPURST Inactive Delay from PROCCLK	4	22
t153	-8042CS Active Delay from ADRL	0	40
t163	NPBUSY Active Pulse Width	26	
t164	-ERROR Hold Time to -NPBZ	30	
t165	-ERROR Setup Time to -NPBZ	10	
t167	-BUSY Active Delay from -NPBZ	0	23
:168	-BUSY Inactive Delay from -NPBZ	0	23
:169	-BUSY Inactive Delay from -XIOW	0	60
t170	NPRST Active Delay from -XIOW	0	50
t171	NPRST Inactive Delay from -XIOW	0	50
t173	IOCHRDY Setup Time to OSC	20	
t174	IOCHRDY Hold Time to OSC	15	

Notes: 7 denotes a low-to-high transition, \$\square\$ denotes a high-to-low transition

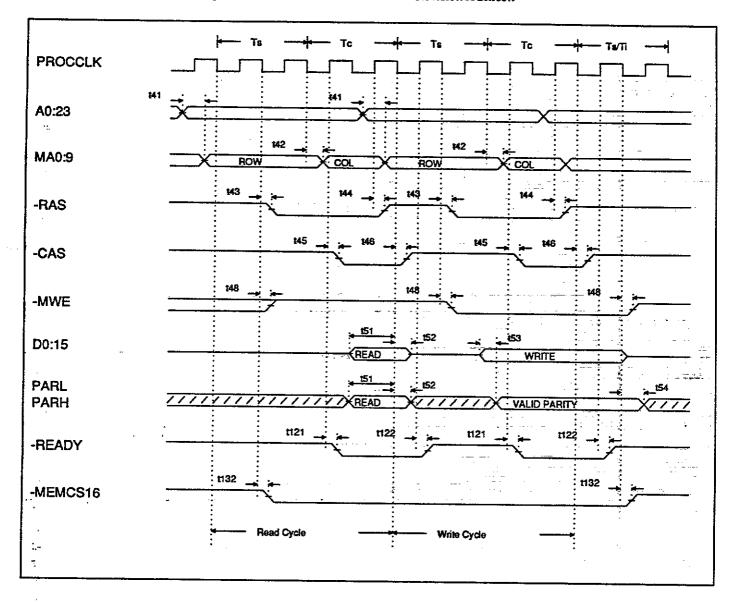

B.3 Timing Diagrams - Revision A Silicon

Figure B-1. Memory Refresh Cycle - Revision A Silicon

Figure B-2.

Zero Wait State DRAM - Revision A Silicon

■ 82C235 Revision A Silicon

This page is intentionally left blank.

		 . <u>. </u>	
ŗ			

CHIPS and Technologies, Inc. 3050 Zanker Road San Jose, California 95134 Phone: 408-434-0600 Telex: 272929 CHIPS UR FAX: 408-434-6452

Publication No: DS57 Stock No:010235-002 Revision No: 2.0