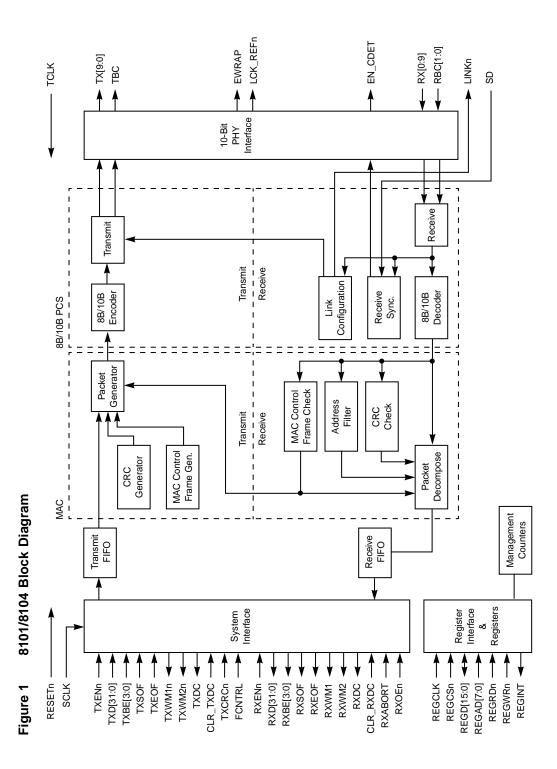
8101/8104 Gigabit Ethernet Controller

LSI LOGIC

Datasheet


The 8101/8104 Gigabit Ethernet Controller is a complete media access controller (MAC sublayer) with integrated coding logic for fiber and short haul copper media (8-bit/10-bit Physical Coding Sublayer) (8B/10B PCS) for 1000 Mbit/s Gigabit Ethernet systems.

The 8104 is functionally the same as the 8101 except that the 8104 is in a 208-pin Ball Grid Array (BGA) package and the 8101 is in a 208-pin Plastic Quad Flat Pack (PQFP) package.

The Controller consists of a 32-bit system interface, receive/transmit First In First Out (FIFO) buffers, a full-duplex Ethernet Media Access Controller (MAC), an 8B/10B PCS, a 10-bit Physical Layer Device (PHY) interface, and a 16-bit register interface. The controller also contains all the necessary circuitry to implement the IEEE 802.3x Flow Control Algorithm. Flow control messages can be sent automatically without host intervention. Figure 1 is a block diagram of the controller.

The controller contains 53 counters which satisfy the management objectives of the Remote Monitoring (RMON) Statistics Group MIB, (RFC 1757), Simple Network Management Protocol (SNMP) Interfaces Group (RFC 1213 and 1573), Ethernet-like Group MIB (RFC 1643), and Ethernet MIB (IEEE 802.3z Clause 30). The controller also contains 136 internal 16-bit registers that can be accessed through the register interface. These registers contain configuration inputs, status outputs, and management counter results.

The 8101/8104 is ideal as an Ethernet controller for Gigabit Ethernet switch ports, uplinks, backbones, and adapter cards.

2

Features

The 8101/8104 provides the following features.

- Combined Ethernet MAC and 8B/10B PCS
- 1000 Mbits/s data rate
- 64-bit, 66 MHz external bus interface (4 Gbits/s bandwidth)
- 10-bit interface to external SERDES chip
- 16-bit interface to internal registers and management counters
- Full RMON, SNMP, and Ethernet management counter support
- Independent receive and transmit FIFOs with programmable watermarks
 - 16 Kbyte receive FIFO size
 - 4 Kbyte Transmit FIFO size
- AutoNegotiation algorithm on chip
- Full duplex only
- Flow control per IEEE 802.3x
- Automatic CRC generation and checking
- Automatic packet error discarding
- Programmable transmit start threshold
- Interrupt capability
- Supports fiber and short haul copper media
- 3.3 V power supply, 5 V tolerant inputs
- Meets all applicable IEEE 802.3 and 802.3z specifications

Transmit Data Path

Data is input to the system from an external bus. The data is then sent to the transmit FIFO. The transmit FIFO provides temporary storage of the data until it is sent to the MAC transmit section. The transmit MAC formats the data into an Ethernet packet according to IEEE 802.3 specification. The transmit MAC also generates MAC control frames and includes logic for AutoNegotiation. The Ethernet frame packet is then sent to the 8B/10B PCS.

The 8B/10B PCS encodes the data and adds appropriate framing delimiters to create 10-bit symbols as specified in IEEE 802.3. The 10-bit symbols are then sent to the 10-bit PHY interface for transmission to an external PHY device.

Receive Data Path

The 10-bit PHY interface receives incoming encoded data from an external PHY device. The incoming encoded data must be encoded in the 10-bit PHY format specified in IEEE 802.3z. The incoming encoded data is then sent to the receive 8B/10B PCS, which strips off the framing delimiters, decodes the data, and converts the encoded data into an Ethernet packet according to the IEEE 802.3 specifications. The Ethernet packet data is then sent to the receive MAC section.

The receive MAC section disassembles the packet, checks the validity of the packet against certain error criteria and address filters, and checks for MAC control frames. The receive MAC then sends valid packets to the receive FIFO. The receive FIFO provides temporary storage of data until it is demanded by the system interface. The system interface outputs the data to an external bus.

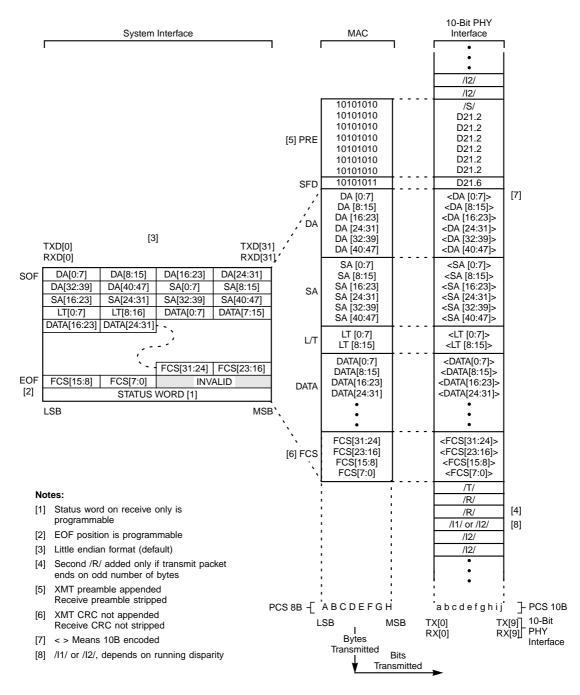
Register Structure

The controller has 136 internal 16-bit registers. Twenty-two registers are available for setting configuration inputs and reading status outputs. The remaining 114 registers are associated with the management counters.

The register interface is a separate internal register bidirectional 16-bit data bus to set configuration inputs, read status outputs, and access management counters.

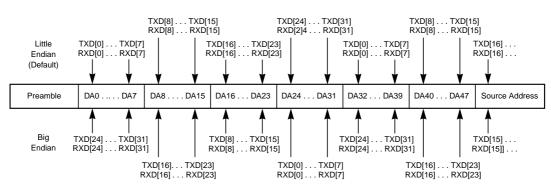
Ethernet Frame Format

Information in an Ethernet network is transmitted and received in packets or frames. The basic function of the controller is to process Ethernet frames. An Ethernet frame is defined in IEEE 802.3 and consists of a preamble, start of frame delimiter (SFD), destination address (DA), source address (SA), length/type field (L/T), data, frame check sequence (FCS), and interpacket gap (IPG).


An Ethernet frame is specified by IEEE 802.3 to have a minimum length of 64 bytes and a maximum length of 1518 bytes, exclusive of the preamble and SFD. Packets that are less than 64 bytes or greater than 1518 bytes are referred to as undersize and oversize packets, respectively.

System Interface

The system interface is a 64-bit wide data interface consisting of separate 32-bit data buses for transmit and receive.


Data Format and Bit Order

The format of the data word on TXD[31:0] and RXD[31:0] and its relationship to the MAC frame format and 10-bit PHY interface format is shown in Figure 2. Note that the controller can be programmed to append an additional 32-bit status word to the end of the receive packet.

Figure 2 Frame Formats and Bit Ordering

The byte order is little endian format mode (default). If the controller is placed in big endian format, the byte order shown in Figure 3 is reversed, DA[0:7] occurs on pins RXD[24:31], DA[24:31] occurs on pins RXD[0:7]and so on. The endian bit affects all bytes in the frame including the receive status word (if appended). The difference between little endian and big endian format is illustrated in Figure 3.

Figure 3 Little Endian vs. Big Endian Format

Transmit

The transmit portion of the system interface consists of 45 signals:

- 32 transmit data input bits (TXD[31:0])
- One transmit enable (TXENn)
- Four transmit byte enable inputs (TXBE[3:0])
- Two transmit start of frame and end of frame inputs (TXSOFn and TXEOFn)
- Two transmit FIFO watermark outputs (TXWM1n and TXWM2n)
- One transmit discard output (TXDC)
- One transmit discard clear input (CLR_TXDC)
- One transmit CRC enable input (TXCRCn)
- One flow control enable input (FCNTRL)

All receive and transmit data is clocked in and out on the rising edge of the system clock, SCLK. SCLK must operate between 33–66 MHz.

Receive

The receive portion of the system interface consists of 45 signals:

- 32 receive output data bits (RXD[31:0])
- One receive enable input (RXENn)
- Four receive byte enable outputs (RXBE[3:0])
- Two receive start of frame and end of frame outputs (RXSOF and RXEOF)
- Two receive FIFO watermark outputs (RXWM1 and RXWM2)
- One receive discard output (RXDC)
- One receive discard clear input (CLR_RXDC)
- One receive packet abort input (RXABORT)
- One receive output enable (RXOEn)

All receive and transmit data is clocked in and out with the system clock, SCLK, which must operate between 33–66 MHz.

Transmit MAC

To generate an Ethernet MAC frame from the transmit FIFO packet, the transmit MAC section:

- generates preamble and SFD
- pads undersize packets with zeros to meet minimum packet size requirements
- calculates and appends a CRC value to the packet
- maintains a minimum interpacket gap

Each of the above four operations can be individually disabled and altered if desired. The transmit MAC then sends the fully formed Ethernet packet to the 8B/10B PCS block for encoding. The transmit MAC section also generates MAC control frames.

Receive MAC

The receive MAC section performs the following operations to disassemble Ethernet packets received from the receive 8B/10B PCS section:

- strips off the preamble and SFD
- strips off the CRC
- checks the destination address against the address filters to determine packet validity
- checks frame validity against the discard conditions
- checks the length/type field for MAC control frames

Each of the above operations can be individually disabled and altered, if desired. The receive MAC then sends valid packets to the receive FIFO for storage.

Transmit FIFO

The transmit FIFO acts as a temporary buffer between the system interface and transmit MAC section. The transmit FIFO size is 4 Kbytes. Data is clocked into the transmit FIFO with the 33–66 MHz system interface clock, SCLK. Data is automatically clocked out of the transmit FIFO with the 125 MHz 8B/10B PCS clock whenever a full packet has been loaded into the FIFO (an EOF is written into the FIFO on the system interface), or the FIFO data exceeds the transmit FIFO AutoSend threshold. There are two programmable watermark outputs, TXWM1n and TXWM2n, which aid in managing the data flow into the transmit FIFO.

Receive FIFO

The receive FIFO acts as a temporary buffer between the receive MAC section and system interface. The receive FIFO size is 16 kbytes. Data is clocked into the receive FIFO with the 125 MHz 8B/10B PCS clock. Data is clocked out of the receive FIFO with the 33–66 MHz system

interface clock, SCLK. There are two programmable watermark outputs, RXWM1 and RXWM2, which aid in managing the data flow out of the receive FIFO.

8B/10B PCS

The 8B/10B PCS encodes the data and adds approiate framing delimiters to create 10-bit symbols as specified in IEEE 802.3.

Transmit

The transmit 8B/10B PCS section accepts Ethernet formatted packet data from the transmit MAC and:

- Encodes the data with the 8B/10B encoder
- Adds the start of packet delimiter
- Adds the end of packet delimiter
- Adds the idle code stream
- Formats the packet according to the 10-bit PHY format defined in IEEE 802.3z

The 8B/10B encoded data stream is then sent to the transmit 10-bit PHY interface for transmission.

The transmit 8B/10B PCS section also generates the AutoNegotation code stream when the controller is in the AutoNegotation process.

Receive

The receive 8B/10B PCS section takes the 8B/10B encoded packet data from the incoming 10-bit PHY interface and:

- Acquires and maintains word synchronization
- Strips off the start of packet delimiter
- Strips off the end of packet delimiter
- Strips off the idle code stream
- Decodes the data with the 8B/10B decoder
- Converts the packet to the Ethernet packet format

The Ethernet packet is then sent to the receive MAC for processing.

The receive 8B/10B PCS section also decodes the AutoNegotation code stream when the controller is in the AutoNegotation process.

8B/10B Encoder

The 8B/10B encoder converts each data byte of a packet into a unique 10-bit word as defined in IEEE 802.3z

The encoder also converts the start of packet delimiter, end of packet delimiter, idle code streams, and AutoNegotation code streams into unique 10B code words. These unique 10B code words are referred to as ordered sets.

The 8B/10B encoder also keeps the running disparity of the outgoing 10B word as close as possible to zero. Running disparity is the difference between the number of ones and zeros transmitted on the outgoing bitstream. The algorithm for calculating running disparity is defined in IEEE 802.3z.

10-Bit PHY Interface

The 10-bit PHY interface is a standardized interface between the 8B/10B PCS section and an external physical layer device. The 10-bit PHY interface meets all the requirements outlined in IEEE 802.3z. The controller can directly connect, without any external logic, to any physical layer device that also complies with the IEEE 802.3z 10-bit interface specifications.

The 10-bit PHY interface consists of 26 signals as follows:

- 10-bit transmit data output bits (TX[9:0])
- Transmit clock output (TBC)
- 10-bit receive data input bits (RX[9:0])
- Two receive clock inputs (RBC0 and RBC1)
- Comma detect enable output (EN_CDET)
- Loopback output (EWRAP)
- Receiver lock output (LCK_REFn)

Packet Discard

The controller can be programmed to discard receive and transmit packets when certain error conditions are detected. The detection of these error conditions can occur in the MAC, FIFO, or 8B/10B PCS sections.

Transmit Discards

Transmit packets are automatically discarded if certain error conditions are detected. These error conditions are described in Table 1. When a discard error is detected for a transmit packet, any remaining data for that packet being input from the system interface is ignored, a /V/ code is appended to the end of the packet to indicate an error to a remote station, and TXDC is asserted if the packet was being input from the system interface when the discard occurred.

Discard Condition	Description
Transmit FIFO Underflow	TX FIFO empty. Packet transmission to 8B/10B PCS halted. Partially transmitted packet is terminated with a /V/ code, followed by normal /I/ codes.
Transmit FIFO Overflow	TX FIFO full. No more data accepted from the system interface. Partially transmitted packet is terminated with a /V/ code, followed by normal /I/ codes.

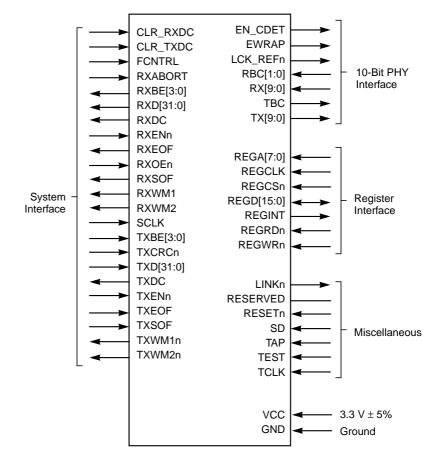
Table 1 Transmit Discard Conditions

Receive Discards

Receive packets can be discarded if the error conditions listed in Table 2 are detected. The discard behavior is dependent on whether or not the packet is being output on the system interface when the discard condition is detected. If the packet containing the error is not being output on the system interface when the discard condition is detected (an internal discard) the packet is discarded, (all data from the packet containing the error is flushed from the receive FIFO). If the packet containing the error is being output on the system interface when the discard condition is detected (an external discard) the packet is automatically discarded. For both internal and external discarded packets, the appended status word is updated to reflect the discard error condition.

Discard Condition	Description
Receive FIFO overflow	Receive FIFO full. No more data accepted from the 8B/10B PCS.
CRC error	Receive packet has a CRC error.
Undersize packet	Receive packet is less than 64 bytes, exclusive of preamble and SFD.
Oversize packet	Receive packet is greater than maximum packet size, exclusive of preamble and SFD.
PCS codeword error	Receive packet contains at least one word with an 8B/10BPCS coding error.

 Table 2
 Receive Discard Conditions


Counters

The controller has a set of 53 management counters. Each counter tabulates the number of times a specific event occurs. These counters provide the necessary statistics to completely support the following specifications:

- RMON Statistics Group (IETF RFC 1757)
- SNMP Interfaces Group (IETF RFC 1213 and 1573)
- Ethernet-Like MIB (IETF RFC 1643)
- Ethernet MIB (IEEE 802.3z, clause 30)

Signal Descriptions

This section describes the controller interfaces and the signals used in each interface. Figure 4 is a diagram of the 8101/8104 signals.

Figure 4 8101/8104 Interface Diagram

System Interface Signals

This section describes the 8101/8104 system interface signals.

CLR RXDC Clear RXDC

When CLR RXDC is asserted, the RXDC pin is cleared. When CLR RXDC is LOW, the RXDC pin is not cleared. CLR RXDC is clocked in on the rising edge of the system clock, SCLK.

This pin only clears RXDC when AutoClear mode is disabled. When AutoClear mode is enabled, this pin is ignored and RXDC is automatically cleared two clock cycles after RXEOF is asserted.

Clear TXDC CLR_TXDC

When CLR_TXDC is HIGH, the TXDC pin is cleared. When CLR TXDC is LOW, the TXDC pin is not cleared. TXDC is clocked in on the rising edge of the system clock, SCLK.

This pin only clears TXDC when AutoClear mode is disabled. When AutoClear mode is enabled, this pin is ignored and TXDC is automatically cleared two clock cycles after TXEOF is asserted.

FCNTRL **Flow Control Enable** Input When FCNTRL is HIGH, transmitter automatically transmits a MAC control pause frame. When FCNTRL is LOW, the controller resumes normal operation. FCNTRL is clocked in on the rising edge of the system clock, SCLK.

RXABORT Receive FIFO Data Abort Input When RXABORT is asserted, the packet being read out on RXD[31:0] is aborted and discarded. When LOW, the packet is not aborted and discarded. RXABORT is clocked in on the rising edge of the system clock, SCLK. **RXBE[3:0]** Receive Byte Enable Output

These outputs determine which bytes of the current data on RXD[31:0] contain valid data. RXBE[3:0] is clocked out of the device on the rising edge of the system interface clock, SCLK.

Input

Input

RXD[31:0] **Receive Data** Output This output bus contains the 32-bit received data word that is clocked out on the rising edge of the system interface clock. SCLK.

RXDC

Receive Packet Discard Output When HIGH, device detects that current packet being output on the system interface has an error and should be discarded. When LOW, no discard.

Asserting the RXABORT pin or setting the AUTORXAB bit in register 9 (Configuration 3 Register) automatically discards the packet being output. RXDC is clocked out on the rising edge of the system clock, SCLK.

If AutoClear mode is not enabled, this output is latched HIGH and stays latched until cleared with the assertion of the CLR_RXDC pin. If AutoClear mode is enabled, this output is latched HIGH and automatically clears itself two clock cycles after RXEOF is asserted. RXDC can also be cleared with RXABORT if programmed to do so.

RXENn Receive Enable Input This input must be asserted active LOW to enable the

current data word to be clocked out of the receive FIFO on RXD[31:0]. RXENn is clocked in on the rising edge of the system interface clock, SCLK.

on the rising edge of the system interface clock, SCLK.

RXEOF **Receive End Of Frame** Output This output is asserted on the same clock cycle when the last word of the packet is being read out of the receive FIFO on RXD[31:0]. RXEOF is clocked out of the device

RXOEn Receive Output Enable Input When LOW, all receive outputs are active. When HIGH, receive outputs (RXD[31:0], RXBE[3:0], RXSOF, RXEOF) are high-impedence.

RXSOF Receive Start Of Frame Output This output is asserted on the same clock cycle when the first word of the packet is being read out of the receive FIFO on RXD[31:0]. RXSOF is clocked out of the device on the rising edge of the system interface clock, SCLK.

16

	either RXWM1 or RXWM2 is asserted, independent of RXENn.
RXWM2	Receive FIFO Watermark 2 Output When RXWM2 is LOW, the receive FIFO data is less than or equal to the receive FIFO watermark 2 threshold and no EOF in FIFO. When HIGH, the receive FIFO data is greater than the watermark. RXWM2n is clocked out on the rising edge of the system clock, SCLK. Data is valid on RXD[31:0] when either RXWM1 or RXWM2 is asserted, independent of RXENn.
SCLK	System Interface ClockInputThis input clocks data in and out of the transmit and receive FIFOs on TXD[31:0] and RXD[31:0], respectively.All system interface inputs and outputs are also clocked in and out on the rising edge of SCLK, with the exception of RXOEn. SCLK clock frequency must be between 33–66 MHz.
TXBE[3:0]	Transmit Byte EnableInputThese inputs determine which bytes of the current 32-bitword on TXD[31:0] contain valid data. TXBE[3:0] isclocked into the device on the rising edge of the systeminterface clock, SCLK.
TXCRCn	Transmit CRC EnableInputWhen TXCRC is LOW, CRC is calculated and appended to the current packet being input on the system interface.When TXCRC is HIGH, CRC is not calculated. TXCRCn is clocked in on the rising edge of the system clock, SCLK, and must be asserted on the same SCLK clock cycle as TXSOF.
TXD[31:0]	Transmit Data Input

Receive FIFO Watermark 1

When RXWM1 is LOW, the receive FIFO data is less than or equal to the receive FIFO watermark 1 threshold. When HIGH, the receive FIFO data is greater than the watermark. RXWM1 is clocked out on the rising edge of the system clock, SCLK. Data is valid on RXD[31:0] when

[31:0] Transmit Data Input This input bus contains the 32-bit data word that is clocked into the transmit FIFO on the rising edge of the system interface clock, SCLK.

RXWM1

Output

TXDC	Transmit Packet DiscardOutputWhen TXDC is HIGH, the controller detects that the current packet being input on the system interface has an error, the rest of packet is ignored. When LOW, The packet is not discarded. TXDC is clocked out on thr rising edge of the system clock.
	If AutoClear mode is not enabled, this output is latched HIGH and stays latched until cleared with the assertion of the CLR_TXDC pin. If the AutoClear mode is enabled, this output is latched HIGH and automatically clears itself two clock cycles after TXEOF is asserted.
TXENn	Transmit EnableInputThis input must be low to enable the current data word on TXD[31:0] to be clocked into the transmit FIFO.TXENn is clocked in on the rising edge of the system interface clock, SCLK.
TXEOF	Transmit End Of FrameInputThis input must be asserted on the same clock cyclewhen the last word of the packet is being clocked in onTXD[31:0]. TXEOF is clocked into the device on the risingedge of the system interface clock, SCLK.
TXSOF	Transmit Start Of FrameInputThis input must be asserted in the same clock cycle that the first word of the packet is being clocked in on TXD[31:0]. TXSOF is clocked into the device on the rising edge of the system interface clock, SCLK.
TXWM1n	Transmit FIFO Watermark 1OutputWhen TXWM1n is HIGH, the transmit FIFO data is less than or equal to the transmit FIFO watermark 1. When LOW, the transmit FIFO data is above the watermark. TXWM1n is clocked out on the rising edge of the system clock, SCLK.
TXWM2n	Transmit FIFO Watermark 2OutputWhen TXWM2n is HIGH, the transmit FIFO data is less than or equal to the transmit FIFO watermark 2. When LOW, the transmit FIFO data is above the watermark. TXWM2n is clocked out on the rising edge of the system clock, SCLK.

10-Bit PHY Interface Signals

This section describes the 8101/8104 10-Bit PHY interface signals.

EN_CDET	Comma Detect EnableOutputThis output is asserted when either the receive 8B/10BPCS state machine is in the loss of synchronization stateor the CDET bit is set in Register 9 (Configuration 3register. This output is typically used to enable thecomma detect function in an external physical layerdevice.
EWRAP	Loopback Output Enable Output This output is asserted whenever the EWRAP bit is set in Register 9 (Configuration 3 register). This output is typically used to enable loopback in an external physical layer device.
LCK_REFn	Receiver LockOutputThis output is asserted whenever the LCK_REFn bit is set in Register 9 (Configuration 3 register). This output is typically used to enable the receive lock-to-reference mechanism in an external physical layer
RBC[1:0]	Receive ClockInputThe RBC[1:0] signals clock receive data into the controller on the clock rising edge. RBC[1:0] are 62.5 MHz clocks, 180° out of phase, that clock data into the controller on RX[9:0] at an effective rate of 125 MHz.
RX[9:0]	Dessive Deta
	Receive DataInputThese inputs contain receive data that are clocked in on the rising edges of RBC[1:0]
ТВС	These inputs contain receive data that are clocked in on

Register Interface Signals

This section describes the 8101/8104 register interface signals.

- **REGA[7:0]** Register Interface Address Input These inputs provide the address for the specific internal register to be accessed, and are clocked into the device on the rising edge of REGCLK.
- REGCLKRegister Interface ClockInputThis input clocks data in and out on REGD[15:0],
REGA[7:0], REGRDn, and REGWRn on its rising edge.
REGCLK frequency must be between 5–40 MHz.
- REGCSnRegister Interface Chip SelectInputThis input must be asserted to enable reading and writing
data on REGD[15:0] and REGA[7:0]. This input is
clocked in on the rising edge of REGCLK.
- **REGD[15:0]** Register Interface Data Bus Bidirectional This bus is a bidirectional 16-bit data path to and from the internal registers. Data is read and written from and to the internal registers on the rising edge of the register clock, REGCLK.
- **REGINT Register Interface Interrupt Output** This output is asserted when certain interrupt bits in the registers are set, and it remains latched HIGH until all interrupt bits are read and cleared.
- REGRDnRegister Interface ReadInputWhen this input is asserted, the accessed internal
register is read (data is output from the register). This
input is clocked into the device on the rising edge of
REGCLK.
- **REGWRN Register Interface Write Input** When this input is asserted, the accessed internal register is written (data is input to the register). This input is clocked into the device on the rising edge of REGCLK.

Micellaneous Signals

This section describes the 8101/8104 micellaneous signals.

- LINKn Receive Link Output When this signal is HIGH, there is no link. When this signal is asserted, the receive link is synchronized and configured.
- **RESERVED** Reserved These pins are reserved and must be left floating.
- RESETnResetInputWhen this signal is HIGH, controller is in normal
operation. When this signal is asserted, controller resets,
FIFOs are cleared, counters are cleared, and register bits
are set to default values.
- SDSignal DetectInputWhen this signal is asserted, data detected on receive
10-bit PHY is valid. When SD is LOW, data is not valid
and the 8B/10B PCS receiver is forced to a loss of sync
state. This signal is ignored (assumed high) unless the
SD_EN bit in Register 9 (Configuration 3) register is
cleared.
- TAP3-State All PinsInputThis pin is used for testing purposes only. When
asserted, all output and bidirectional pins are placed in a
high-impedence state.
- TESTTest ModeInputThis pin is used for factory test and must be tied LOW for
proper operation.InputTCLKTransmit ClockInput
 - **CLK** Transmit Clock Input This 125 MHz input clock is used by the 8B/10B PCS section and generates the 125 MHz transmit output clock, TBC is used to output data on the 10-bit PHY interface.

Power Supply Signals

This section describes the 8101/8104 power supply signals.

VCC	Positive Supply $3.3 \text{ V} \pm 5\%$	-
GND	Ground 0 Volts	-

Specifications

This section describes the specifications of the 8101/8104 Gigabit Ethernet Controller.

Absolute Maximum Ratings

Absolute maximum ratings are limits, which when exceeded may cause permanent damage to the device or affect device reliability. All voltages are specified with respect to GND, unless otherwise specified.

VCC supply voltage	–0.3 V to +4.0 V
All inputs and outputs	-0.3 V to +5.5 V
Package power dissipation	2.2 Watt @ 70 °C
Storage temperature	–65 °C to +150 °C
Temperature under bias	–10 °C to +85 °C
Lead temperature (soldering, 10 s)	260 °C
Body temperature (soldering, 30 s)	220 °C

DC Electrical Characteristics

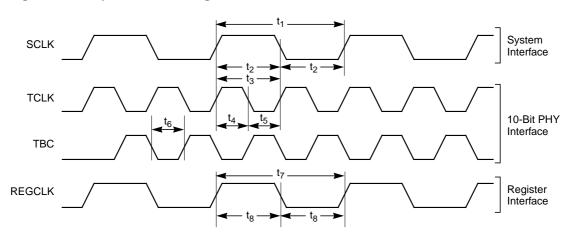
Table 3 lists and describes the DC electrical characteristics of the8101/8104. Unless otherwise noted, all test conditions are as follows:

- TA = 0 to +70 $^{\circ}$ C
- VCC = 3.3 V ± 5%
- SCLK = 66 MHz \pm 0.01%
- TCLK = 125 MHz ± 0.01%

Table 3 DC Electrical Characteristics

		Limit				
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VIL	Input LOW voltage	_	_	0.8	Volt	
VIH	Input HIGH voltage	2	-	5.5	Volt	
IIL	Input LOW current	-	-	-1	μA	VIN = GND
ΙΗ	Input HIGH current	_	_	1	μA	VIN = VCC
VOL	Output LOW voltage	GND	_	0.4	Volt	IOL = -4 mA All except LINKn
		GND	-	1	Volt	IOL = -20 mA LINKn
VOH	Output HIGH voltage	2.4	-	VCC	Volt	IOL = 4 mA All except LINKn
		VCC -1.0	-	VCC	Volt	IOL = 20 mA LINKn
CIN	Input capacitance	-	-	5	pF	
ICC	VCC supply current	_	-	300	mA	No output load

AC Electrical Characteristics

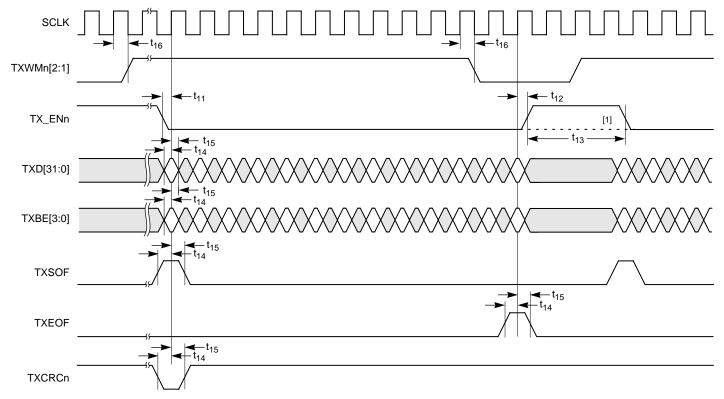

The following tables list and describe the the AC electrical characteristics of the 8101/8104. Unless otherwise noted, all test conditions are as follows:

- TA = 0 to +70 °C
- VCC = 3.3 V ± 5%
- SCLK = 66 MHz ± 0.01%
- TCLK = 125 MHz \pm 0.01%
- Input conditions:
 - All Inputs: tr, tf \leq 4 ns, 0.8 V to 2.0 V
- Output loading
 - TBC, TX[9:0]: 10 pF
 - LINK: 50 pF
 - All other digital outputs: 30 pF
- Measurement points:
 - Data active to 3-state: 200 mV change
 - Data 3-state to active: 200 mV change
 - All inputs and outputs: 1.5 Volts

		Limit				
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
t1	SCLK cycle time	1/33		1/66	1 MHz	
t2	SCLK duty cycle	40		60	%	
t3	TCLK period	7.9992	8	8.0008	ns	
t4	TCLK HIGH time	3.6		4.4	ns	
t5	TCLK LOW time	3.6		4.4	ns	
t6	TCLK to TBC delay	0		8	ns	
t7	REGCLK cycle time	1/5		1/40	1 MHz	
t8	REGCLK duty cycle	40		60	%	

Table 4 Input Clock Timing Characteristics

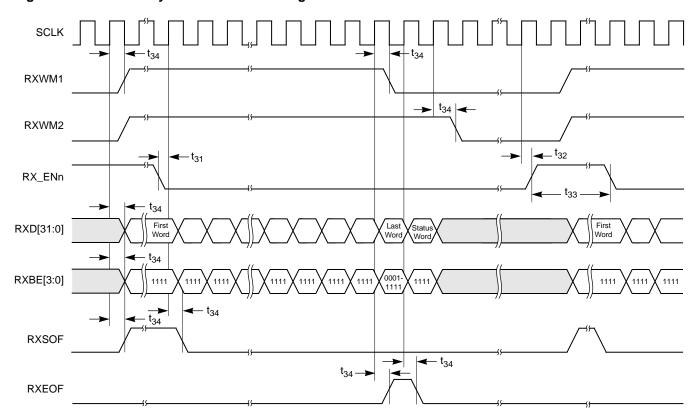
Note: Refer to Figure 5 for timing diagram.


Figure 5 Input Clock Timing

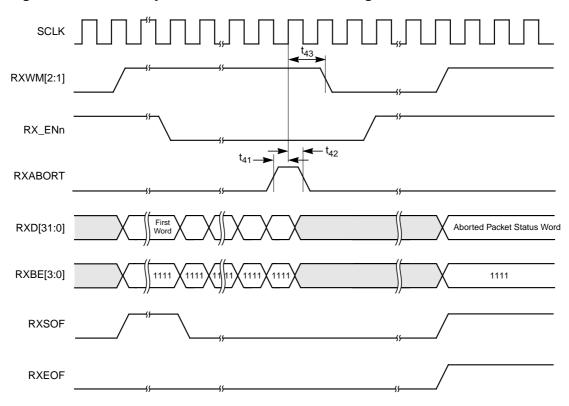
		Limit				
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
t11	TXENn setup time	5			ns	
t12	TXENn hold time	0			ns	
t13	TXENn deassert time	1 SCLK cycle			ns	
t14	TXD, TXBE, TXSOFn, TXEOF, and TXCRC setup time	5			ns	
t15	TXD, TXBE, TXSOFn, TXEOF, and TXCRC hold time	0			ns	
t16	TXWMn[2:1] delay time	0		8	ns	
t17	TXWMn[2:1] rise/fall time			4	ns	

Table 5 Transmit System Interface Timing Characteristics

Note: Refer to Figure 6 for timing diagram.



[1] Back-to-back packet transmission allowed without TXENn deassertion.


Table 6	Receive System I	nterface Timing	Characteristics
---------	------------------	-----------------	-----------------

		Limit				
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
t31	RXENn setup time	5			ns	
t32	RXENn hold time	1			ns	
t33	RXENn deassert time	3 SCLK cycles			ns	
t34	RXD, RXBE, RXSOF, RXEOF, and RXWM delay time	0		8	ns	
t35	RXD, RXBE, RXSOF, RXEOF, and RXWM rise/fall time			4	ns	
t41	RXABORT setup time	5			ns	
t42	RXABORT hold time	0			ns	
t43	RXABORT assert to RXWM deassert delay	0		1 SCLK cycle +8 ns	ns	
t46	RXOEn deassert to data High-Z delay	0		15	ns	
t47	RXOEn assert to data active delay	0		15	ns	

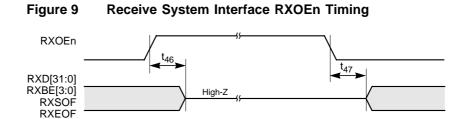

Note: Refer to Figure 7 through 9 for timing diagrams.

Figure 7 Receive System Interface Timing

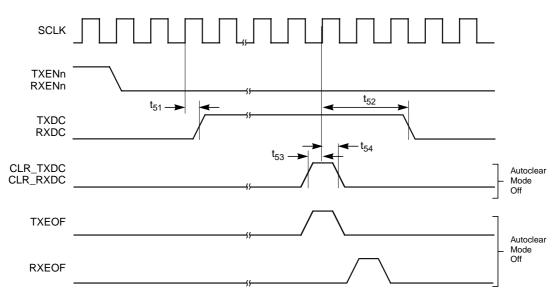
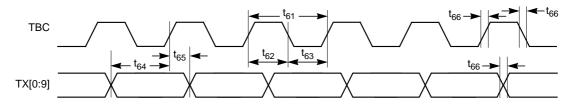


Table 7 System Interface TXDC/RXDC Timing Characteristics

			Limit	t		
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
t51	TXDC/RXDC assert delay time	0		8	ns	
t52	TXDC/RXDC deassert delay time	0		2 SCLK cycles +8 ns	ns	AutoClear mode off
		0		3 SCLK cycles +8 ns	ns	AutoClear mode on
t53	CLR_TXDC/RXDC setup time	5			ns	
t54	CLR_TXDC/RXDC hold time	0			ns	
t55	TXDC/RXDC rise and fall time			4	ns	

Note:	Refer to	Figure	10 for	timing	diagram.
-------	----------	--------	--------	--------	----------

Figure 10 System Interface RXDC/TXDC Timing

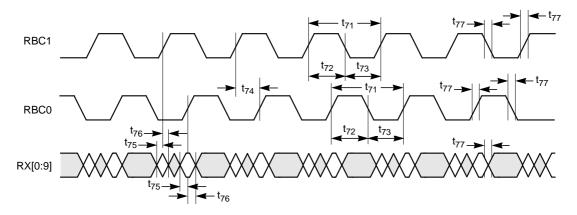


			Limit			
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
t61	TBC period	7.992	8	8.008	ns	
t62	TBC HIGH time	3.2		4.8	ns	
t63	TBC LOW time	3.2		4.8	ns	
t64	TX[9:0] data valid before TBC rising edge	2.0			ns	Assumes TBC duty cycle = 40–60%
t65	TX[9:0] data valid after TBC rising edge	1.0			ns	Assumes TBC duty cycle = 40–60%
t66	TBC, TX[9:0] rise and fall time	0.7		2.4	ns	

Table 8 Transmit 10-Bit PHY Interface Timing Characteristics

Note: Refer to Figure 11 for timing diagram.

Figure 11 Transmit 10-Bit PHY Interface Timing



			Limit			
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
t71	RBC frequency	62.4937	62.5	62.5063	MHz	
t72	RBC HIGH time	6.4		9.6	ns	
		6.4		128	ns	During synchronization
t73	RBC LOW time	6.4		9.6	ns	
		6.4		128	ns	During synchronization
t74	RBC skew	7.5		8.5	ns	
t75	RX[9:0] setup time	2.5			ns	
t76	RX[9:0] hold time	1.5			ns	
t77	RBC, RX[9:0] rise and fall time	0.7		2.4	ns	

Table 9 Receive 10-Bit PHY Interface Timing Characteristics

Figure 12 Receive 10-Bit PHY Interface Timing

			Limi	it		
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
t81	REGCSn, REGWRn, REGRDn, REGA, REGD setup time	10			ns	
t82	REGCSn, REGWRn, REGRDn, REGA, REGD hold time	1			ns	
t83	REGCLK to REGD active delay			10	ns	Read cycle. All registers except Counter Registers 1–53
				6 REGCLK cycles +10 ns	ns	Read cycle. Counter Registers 1–53, first 16 bits of counter result
				3 REGCLK cycles +10 ns	ns	Read cycle. Counter Registers 1–53, second 16 bits of counter result
t84	REGCLK to REGD 3-state delay	0		10	ns	
t85	REGCLK to REGINT assert delay	0		20	ns	
t86	REGCLK to REGINT deassert delay	0		20	ns	

Table 10 Register Interface Timing Characteristics

Note: Refer to Figure 13 and Figure 14 for timing diagrams.

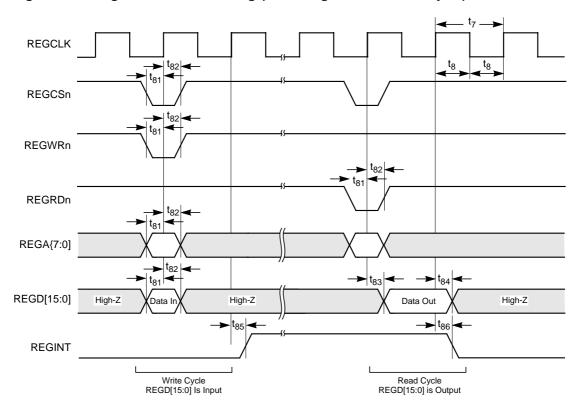


Figure 13 Register Interface Timing (Excluding Counter Read Cycle)

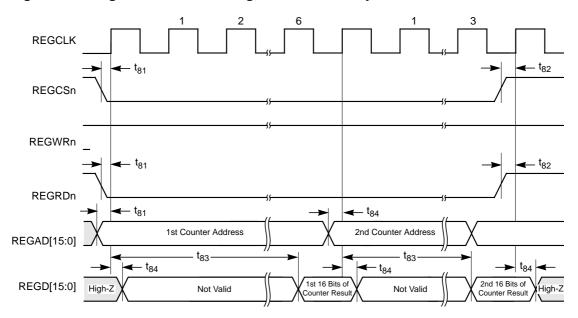
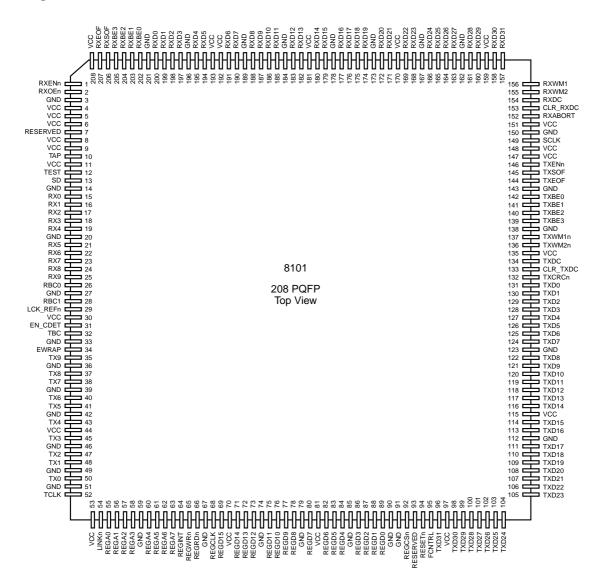



Figure 14 Register Interface Timing, Counter Read Cycle

8101/8104 Pinouts and Pin Listings

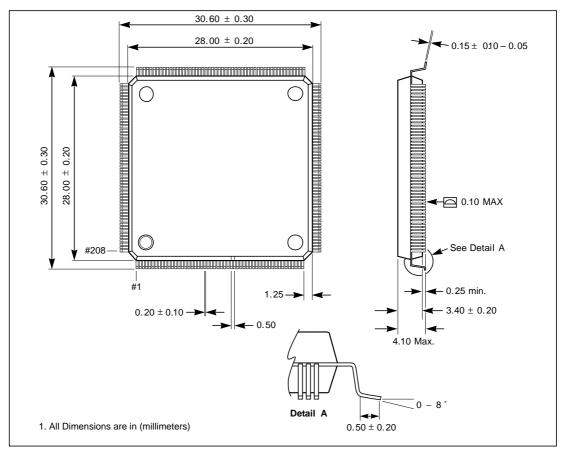
Figure 15 shows the pinout and Table 11 lists the pins for the 8101 and Figure 16 shows the pinout and Table 12 lists the pins for the 8104.

Table 11 8101 208-Pin PQFP Pin List (Alphabetical Listing)

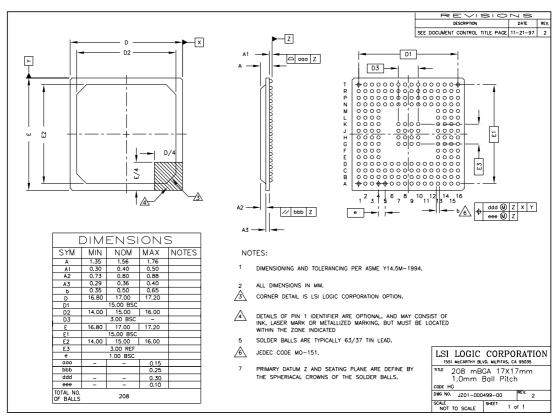
Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
CLR_RXDC	153	REGA2	57	RXBE1	203	SCLK	149	TXD21	107
CLR_TXDC	133	REGA3	58	RXBE2	204	SD	13	TXD22	106
EN_CDET	31	REGA4	60	RXBE3	205	TAP	10	TXD23	105
EWRAP	34	REGA5	61	RXD0	200	TBC	32	TXD24	104
FCNTRL	95	REGA6	62	RXD1	199	TCLK	52	TXD25	103
GND	3	REGA7	63	RXD2	198	TEST	12	TXD26	102
GND	14	REGCLK	68	RXD3	197	TX0	50	TXD27	101
GND	20	REGCSn	92	RXD4	195	TX1	48	TXD28	100
GND	27	REGD0	89	RXD5	194	TX2	47	TXD29	99
GND	33	REGD1	88	RXD6	191	TX3	45	TXD30	98
GND	36	REGD2	87	RXD7	190	TX4	43	TXD31	96
GND	39	REGD3	86	RXD8	188	TX5	41	TXDC	134
GND	42	REGD4	84	RXD9	187	TX6	40	TXENn	146
GND	46	REGD5	83	RXD10	186	TX7	38	TXEOF	144
GND	49	REGD6	82	RXD11	185	TX8	37	TXSOF	145
GND	51	REGD7	80	RXD12	183	TX9	35	TXWM1n	137
GND	59	REGD8	78	RXD13	182	TXBE0	142	TXWM2n	136
GND	67	REGD9	77	RXD14	180	TXBE1	141	VCC	4
GND	74	REGD10	76	RXD15	179	TXBE2	140	VCC	5
GND	79	REGD11	75	RXD16	177	TXBE3	139	VCC	6
GND	85	REGD12	73	RXD17	176	TXCRCn	132	VCC	8
GND	90	REGD13	72	RXD18	175	TXD0	131	VCC	9
GND	91	REGD14	71	RXD19	174	TXD1	130	VCC	11
GND	112	REGD15	69	RXD20	172	TXD2	129	VCC	30
GND	123	REGINT	64	RXD21	171	TXD3	128	VCC	44
GND	138	REGRDn	66	RXD22	169	TXD4	127	VCC	53
GND	143	REGWRn	65	RXD23	168	TXD5	126	VCC	70
GND	150	RESERVED	7	RXD24	166	TXD6	125	VCC	81
GND	162	RESERVED	93	RXD25	165	TXD7	124	VCC	97
GND	167	RESETn	94	RXD26	164	TXD8	122	VCC	115
GND	173	RX0	15	RXD27	163	TXD9	121	VCC	135
GND	178	RX1	16	RXD28	161	TXD10	120	VCC	147
GND	184	RX2	17	RXD29	160	TXD11	119	VCC	148
GND	189	RX3	18	RXD30	158	TXD12	118	VCC	151
GND	196	RX4	19	RXD31	157	TXD13	117	VCC	159
GND	201	RX5	21	RXDC	154	TXD14	116	VCC	170
LCK_REFn	29	RX6	22	RXENn	1	TXD15	114	VCC	181
LINKn	54	RX7	23	RXEOF	207	TXD16	113	VCC	193
RBC0	26	RX8	24	RXOEn	2	TXD17	111	VCC	192
RBC1	28	RX9	25	RXSOF	206	TXD18	110	VCC	208
REGA0	55	RXABORT	152	RXWM1	156	TXD19	109		200
REGA1	56	RXBE0	202	RXWM2	155	TXD20	108		
	00	10 OLO	202	10/00/01/02	100		100		

Pinout
BGA
208-Pin
8104
Figure 16

A16 RXD31	B16	RXWM2	C16 TXDC	D16	VCC	E16	TXENn	F16	TXBE1	G16	TXWM1n	H16	CLR_TXDC	J16	TXD4	K16	TXD8	L16	TXD12	M16	VCC	N16	TXD16	P16	TXD20	R16	TXD21	T16 TXD24
A15 RXD30	B15	RXWM1	C15 CLR_RXDC	D15	SLCK	E15	TXSOF	F15	TXBE0	G15	TXWM2n	H15	TXCRCn	J15	TXD5	K15	GND	L15	TXD11	M15	TXD15	N15	TXD18	P15	TXD22	R15	TXD23	T15 TXD25
A14 RXD29	B14	VCC	C14 RXABORT	D14	VCC	E 14	TXEOF	F14	TXBE2	G14	VCC	H14	TXD0	J14	TXD3	K14	TXD7	L14	TXD10	M14	TXD14	N14	TXD17	P14	TXD19	R14	TXD27	T14 TXD26
A13 RXD27	B13	RXD28	C13 GND	D13	VCC	E 13	GND	F13	TXBE3	G13	TXDC	H13	TXD1	J13	TXD2	K13	TXD6	L13	TXD9	M13	TXD13	N13	VCC	P13	TXD30	R13	TXD28	T13 TXD29
A12 RXD23	B12	RXD25	C12 RXD26	D12	RXD24																	N12	RESERVED	P12	RESETn	R12	TXD31	T12 FCNTRL
A11 RXD21	B11	VCC	C11 RXD22	D11	VCC											1		1				N11	REGD1	P11	REGD0	R11	GND	T11 REGCSn
A10 RXD20	B10	RXD19	C10 RXD18	D10	RXD17					G10	GND	H10	GND	J10	GND	K10	GND					N10	REGD5	P10	REGD4	R10	REGD2	T10 REGD3
A9 RXD16	B9	RXD15	C9 RXD14	6D	VCC					69	GND	6H	GND	96	GND	K9	GND					6N	REGD7	64	REGD6	R9	VCC	T9 VCC
A8 RXD11	BB	RXD10	c8 RXD12	ä	RXD13					G8	GND	8	GND	JB	GND	K8	GND					NB	REGD8	P8	REGD9	R8	REGD11	T8 REGD10
A7 RXD7	87	RXD8	c7 RXD6	D7	RXD9					G7	GND	H7	GND	77	GND	K7	GND					NZ	REGD12	P7	REGD13	R7	VCC	T7 REGD14
A6 VCC	B6	VCC	c6 VCC	D6	RXD5																	9N	REGD15	P6	REGCLK	R6	REGRDn	T6 GND
A5 RXD4	B5	RXD2	C5 RXD3	D5	RXD1																	N5	REGWRn	P5	REGINT	R5	REGA6	T5 REGA7
A4 RXD0	B4	RXBE2	C4 RXBE1	D4	RXBE0	E4	TEST	F4	RX2	G4	RX6	H4	RBC0	J4	VCC	K4	TX9	L4	TX6	M4	VCC	N4	GND	P4	REGA5	R4	REGA4	T4 GND
A3 RXBE3	B3	RXSOF	c3 VCC	D3	RESERVED	E3	VCC	F3	RX1	e3	RX5	H3	RX9	J3	VCC	K3	EWRAP	L3	GND	M3	TX4	N3	GND	52	REGA3	R3	REGA2	T3 REGA1
A2 RXEOF	B2	RXENn	c2 VCC	D2	VCC	E2	TAP	F2	RX0	G2	RX3	H2	RX7	J2	LCK_REFn	K2	EN_CDET	12	TX8	M2	TX5	N2	TX2	P2	TCLK	R2	VCC	T2 REGA0
A1 VCC	B1	RXOEn	C1 GND	5	VCC	E1	VCC	F1	SD	G1	RX4	Ħ	RX8	11	RBC1	K1	TBC	L1	TX7	M1	GND	Z1	TX3	P1	TX1	R1	TX0	T1 LINKn


Table 12 8104 208-Pin BGA Pin List (Alphabetical Listing)

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
CLR_RXDC	C15	REGA4	R04	RXBE3	A03	TBC	K01	TXD24	T16
CLR_TXDC	H16	REGA5	P04	RXD0	A04	TCLK	P02	TXD25	T15
COM_DET	F01	REGA6	R05	RXD1	D05	TEST	E04	TXD26	T14
EN_CDET	K02	REGA7	T05	RXD2	B05	TX0	R01	TXD27	R14
EWRAP	K03	REGCLK	P06	RXD3	C05	TX1	P01	TXD28	R13
FCNTRL	T12	REGCSn	T11	RXD4	A05	TX2	N02	TXD29	T13
GND	A07	REGD0	P11	RXD5	D06	TX3	N01	TXD30	P13
GND	C01	REGD1	N11	RXD6	C07	TX4	M03	TXD31	R12
GND	C13	REGD2	R10	RXD7	A07	TX5	M02	TXDC	G13
GND	E13	REGD3	T10	RXD8	B07	TX6	L04	TXENn	E16
GND	G07	REGD4	P10	RXD9	D07	TX7	L01	TXEOF	E14
GND	G08	REGD5	N10	RXD10	B08	TX8	L02	TXSOF	E15
GND	G09	REGD6	P09	RXD11	A08	TX9	K04	TXWM1n	G16
GND	G10	REGD7	N09	RXD12	C08	TXBE0	F15	TXWM2n	G15
GND	H07	REGD8	N08	RXD13	D08	TXBE1	F16	VCC	A01
GND	H08	REGD9	P08	RXD14	C09	TXBE2	F14	VCC	A06
GND	H09	REGD10	T08	RXD15	B09	TXBE3	F13	VCC	B06
GND	H10	REGD11	R08	RXD16	A09	TXCRCn	H15	VCC	B11
GND	J07	REGD12	N07	RXD17	D10	TXD0	H14	VCC	B14
GND	J08	REGD13	P07	RXD18	C10	TXD1	H13	VCC	C02
GND	J09	REGD14	T07	RXD19	B10	TXD2	J13	VCC	C03
GND	J10	REGD15	N06	RXD20	A10	TXD3	J14	VCC	D01
GND	K07	REGINT	P05	RXD21	A11	TXD4	J16	VCC	D02
GND	K08	REGRDn	R06	RXD22	C11	TXD5	J15	VCC	D09
GND	K09	REGWRn	N05	RXD23	A12	TXD6	K13	VCC	D11
GND	K10	RESERVED	D03	RXD24	D12	TXD7	K14	VCC	D13
GND	K15	RESERVED	N12	RXD25	B12	TXD8	K16	VCC	D14
GND	L03	RESETn	P12	RXD26	C12	TXD9	L13	VCC	D16
GND	M01	RX0	F02	RXD27	A13	TXD10	L14	VCC	E01
GND	N03	RX1	F03	RXD28	B13	TXD11	L15	VCC	E03
GND	N04	RX2	F04	RXD29	A14	TXD12	L16	VCC	G14
GND	R11	RX3	G02	RXD30	A15	TXD13	M13	VCC	J03
GND	T04	RX4	G01	RXD31	A16	TXD14	M14	VCC	J04
GND	T06	RX5	G03	RXDC	C16	TXD15	M15	VCC	M04
LCK_REFn	J02	RX6	G04	RXENn	B02	TXD16	N16	VCC	M16
LINKn	T01	RX7	H02	RXEOF	A02	TXD17	N14	VCC	N13
RBC0	H04	RX8	H01	RXOEn	B01	TXD18	N15	VCC	R02
RBC1	J01	RX9	H03	RXSOF	B03	TXD19	P14	VCC	R07
REGA0	T02	RXABORT	C14	RXWM1	B15	TXD20	P16	VCC	R09
REGA1	T03	RXBE0	D04	RXWM2	B16	TXD21	R16	VCC	T09
REGA2	R03	RXBE1	C04	SCLK	D15	TXD22	P15		
REGA3	P03	RXBE2	B04	TAP	E02	TXD23	R15		


Package Mechanical Dimensions

The 8101 Gigabit Ethernet Controller is available in the 208-pin Plastic Quad Flat Pack (PQFP) as shown in Figure 17. and the 8104 Ball Grid Array Package as shown in Figure 6.14

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing.

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code HG.

Notes

Sales Offices and Design Resource Centers

LSI Logic Corporation Corporate Headquarters Tel: 408.433.8000 Fax: 408.433.8989

NORTH AMERICA

California Irvine ♦ Tel: 949.809.4600 Fax: 949.809.4444

Pleasanton Design Center Tel: 925.730.8800 Fax: 925.730.8700

San Diego Tel: 858.467.6981 Fax: 858.496.0548

Silicon Valley ◆ Tel: 408.433.8000 Fax: 408.954.3353

Wireless Design Center Tel: 858.350.5560 Fax: 858.350.0171

Colorado Boulder ♦ Tel: 303.447.3800 Fax: 303.541.0641

Colorado Springs Tel: 719.533.7000 Fax: 719.533.7020

Fort Collins Tel: 970.223.5100 Fax: 970.206.5549

Florida Boca Raton Tel: 561.989.3236

Fax: 561.989.3237 Georgia

Alpharetta Tel: 770.753.6146 Fax: 770.753.6147 Illinois Oakbrook Terrace Tel: 630.954.2234 Fax: 630.954.2235

Kentucky Bowling Green Tel: 270.793.0010 Fax: 270.793.0040

Maryland Bethesda Tel: 301.897.5800 Fax: 301.897.8389

Massachusetts Waltham ♦ Tel: 781.890.0180 Fax: 781.890.6158

Burlington - Mint Technology Tel: 781.685.3800 Fax: 781.685.3801

Minneapolis ♦ Tel: 612.921.8300 Fax: 612.921.8399

New Jersey Red Bank Tel: 732.933.2656 Fax: 732.933.2643

Cherry Hill - Mint Technology Tel: 856.489.5530 Fax: 856.489.5531

New York Fairport Tel: 716.218.0020 Fax: 716.218.9010

North Carolina Raleigh Tel: 919.785.4520 Fax: 919.783.8909

Oregon Beaverton Tel: 503.645.0589 Fax: 503.645.6612 **Texas** Austin Tel: 512.388.7294 Fax: 512.388.4171

Plano ♦ Tel: 972.244.5000 Fax: 972.244.5001

> Houston Tel: 281.379.7800 Fax: 281.379.7818

Canada Ontario Ottawa ♦ Tel: 613.592.1263 Fax: 613.592.3253

INTERNATIONAL

France Paris LSI Logic S.A. Immeuble Europa ♦ Tel: 33.1.34.63.13.13

Fax: 33.1.34.63.13.19

Germany Munich LSI Logic GmbH ♦ Tel: 49.89.4.58.33.0

Fax: 49.89.4.58.33.108

Stuttgart ♦ Tel: 49.711.13.96.90 Fax: 49.711.86.61.428

Italy Milan LSI Logic S.P.A.

♦ Tel: 39.039.687371 Fax: 39.039.6057867

Japan Tokyo LSI Logic K.K. ♦ Tel: 81.3.5463.7821 Fax: 81.3.5463.7820

Osaka ♦ Tel: 81.6.947.5281 Fax: 81.6.947.5287 Korea Seoul LSI Logic Corporation of Korea Ltd Tel: 82.2.528.3400 Fax: 82.2.528.2250

The Netherlands Eindhoven LSI Logic Europe Ltd Tel: 31.40.265.3580 Fax: 31.40.296.2109

Singapore Singapore LSI Logic Pte Ltd Tel: 65.334.9061 Fax: 65.334.4749

Sweden Stockholm LSI Logic AB ♦ Tel: 46.8.444.15.00 Fax: 46.8.750.66.47

Taiwan Taipei LSI Logic Asia, Inc. Taiwan Branch Tel: 886.2.2718.7828 Fax: 886.2.2718.8869

United Kingdom Bracknell LSI Logic Europe Ltd ◆ Tel: 44.1344.426544

► Tel: 44.1344.426544 Fax: 44.1344.481039

 Sales Offices with Design Resource Centers

To receive product literature, visit us at http://www.lsilogic.com

ISO 9000 Certified

Printed on Recycled Paper

IF Printed in USA Order No. R15011 Doc. No. DB08-000134-00

The LSI Logic logo design is a registered trademark of LSI Logic Corporation. All other brand and product names may be trademarks of their respective companies.

LSI Logic Corporation reserves the right to make changes to any products and services herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase, lease, or use of a product or service from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or of third parties.