
2

Technical Data

MCF 5272HDLCUG
Rev. 0, 2/2002

MCF5272 Soft HDLC
User’s Guide
High Level Data Link Control (HDLC) is a bit-oriented Open Systems Interconnection (OSI)
Layer 2 protocol commonly used in data communications systems. Many other common layer
2 protocols, for example, ISDN LAP-B, ISDN LAP-D, and Ethernet, are heavily based on
HDLC.

Motorola has developed a soft HDLC framer/deframer function which is designed to run on
an MCF5272 processor. The peripheral independent main software block is capable of
running on any ColdFire® Version 2 (V2) based processor; however, the software object
module, as delivered, assumes the presence of a number of tables in ROM, currently only
present on the MCF5272 device.

This document provides customers with information on how to use this software, and how to
integrate it into an MCF5272-based system. It describes the functionality and the interface
provided to the customer. In addition, this guide outlines the profiling tests performed and the
resulting performance analysis information.This document assumes familiarity with HDLC
and the architecture of the MCF5272 processor.

This document contains the following topics:

Topic Page

Part I, “Interface Description 2

1.1, “Software Functionality” 2

1.2, “HDLC Tx Driver” 3

1.3, “HDLC Rx Driver” 7

1.4, “Calling Sequence” 10

Part II, “Functional Tests 12

2.1, “ColdFire Unit Testing” 13

2.2, “Conformance Testing” 18

2.3, “MCF5272 Testing” 18

Part III, “Profiling Test 18

3.1, “Test Setup” 19

3.2, “HDLC Profiling Test Description” 19

3.3, “Standard Performances” 19

3.4, “Performances with Small Buffers” 20

3.5, “Performances with Different Memory Map” 21

3.6, “Performance with Different Frame Size” 2

Software Functionality

re the
livery
to the
quence

rface
nd test

tion.
Topic Page

3.7, “Modifying Parameters in the Profiling Program” 23

3.8, “Conclusion” 24

Table 1 shows the acronyms, abbreviations and their meanings used through out this document.

Table 2 lists the documents referenced in this report.

Part I Interface Description
The functional description provides a detailed overview of the MCF5272 SoftHDLC. Summarized a
software functionality, including the standard implemented HDLC Tx and HDLC Rx features, the de
format, and tools used. The HDLC Tx framing and HDLC Rx deframing drivers are broken down
parameter level, detailing the inputs and other parameters. Part I concludes with calling se
demonstrations for initializing a channel, a transmit call, and a receive.

1.1 Software Functionality
This section highlights the transmit and receive features of the SoftHDLC for the MCF5272 inte
control. Information regarding the delivery format is included. The tools used to compile the C code a
the SoftHDLC are also identified.

1.1.1 Standard Implemented
The soft HDLC function, as supplied by Motorola, implements an HDLC framer/deframer func
Following are lists of the HDLC transmit and receive features:

• HDLC Tx Features

Table 1. Acronyms and Abbreviations

Acronym Meaning

CPU Central Processing Unit

CRC Cyclic Redundancy Check

GCI General Circuit Interface

HDLC High Level Data Link Control

ISDN Integrated Services Digital Network

MIEL Motorola India Electronics Ltd.

OSI Open Systems Interconnection

Rx Receive

Tx Transmit

Table 2. References

Title Order Number

MCF5272 User’s Manual MCF5272UM/D

QMC Supplement to MPC68360 and MPC860 User’s Manual QMCSUPPLEMENT/D
2 MCF5272 Soft HDLC User’s Guide MOTOROLA

HDLC Tx Driver

dcast

nked
 and

5272

DLC
erate at

s and

— Operates at 56 or 64 Kbps

— CRC calculation option

— Aborts transmission at any frame boundary

— Fills output buffer with ones or flags as needed

• HDLC Rx Features

— Operates at 56 or 64 Kbps

— Enables or disables CRC checking

— Reports number of CRC errors and aborts to calling function

— Address recognition of up to three independent addresses per channel: two regular
independent addresses, one independent address associated with a mask, and the broa
address

— Recognizes 0-, 8-, or 16-bit addresses

— Restarts reception on any frame boundary

1.1.2 Delivery Format
The software is delivered to the customer in object format library (tixxx\libhdlc.a) ready to be li
together with the customer’s own software. It consists of two main functions: HDLC_Tx_Driver
HDLC_Rx_Driver.

1.1.3 Tools Used
A DIAB C compiler (V4.3 Rev D) assembled the C code. Testing was performed on an HSEVB MCF
platform, using an SDS debugger (7.4).

1.2 HDLC Tx Driver
This function performs the HDLC framing. It reads input from a location in memory, completes the H
framing, and writes the data to another location in memory. The software has the capability to op
two different bit rates (64 Kbps and 56 Kbps). The CRC calculation is optional at run-time.

Function prototype:

VOID HDLC_Tx_Driver (enumHdlcMessage eHdlcMessage,
 pstructHdlcTxChannelInfo psChannelInfo);

1.2.1 Parameters
This section identifies HDLC Tx driver parameters. Included are summaries of the main input
wModeControlWord, pstructHdlcStatus psHdlcStatus, and wStatusReturnWord.

1.2.1.1 Input
The two main inputs to this function are:

• eHDLCMessage—Indicates to the Tx driver the basic function to be performed

• psChannelInfo—A structure containing all the additional information required by the function
MOTOROLA MCF5272 Soft HDLC User’s Guide 3

HDLC Tx Driver

 by the
NOTE
All pointers and sizes passed to the function are assumed to be valid. No
validation is done within the function.

1.2.1.1.1 eHDLCMessage
The possible values which can be passed to the function in this message field, and their meaning, are listed
below:

• HDLC_INIT_CHANNEL—Initialize Tx HdlcContext parameters

• HDLC_SEND_PACKET—Prepare a bit stuffed HDLC packet

• HDLC_FILL_WITH_FLAGS—Fill the output buffer completely with flags

• HDLC_FILL_WITH_ONES—Fill the output buffer completely with ones

NOTE
The HDLC_Tx_Driver function must be called with
HDLC_INIT_CHANNEL before a channel is opened on the Tx side. It
should also be called when the operating bit rate is to be changed — it is
not possible to change the bit rate without re-initializing the channels.

1.2.1.1.2 psChannelInfo
The pointer, psChannelInfo, points to the structure containing all the additional information required
HDLC Tx driver function. The format of the structure is shown below.

typedef struct
{

unsigned char *pbInputBuffer;
unsigned short int wMaxInputbufferSize;
unsigned char *pbOutputBuffer;
unsigned short int wOutputBufferSize;
unsigned short int wModeControlWord;
void *psHdlcContext;
pstructHdlcStatus psHdlcStatus;
unsigned short int wCrcErrorCount;
unsigned short int wAbortErrorCount;

} structHdlcTxChannelInfo, *pstructHdlcTxChannelInfo;

Table 3 defines the structure items for the HDLC Tx driver.

Table 3. psChannelInfo Terminology Defined

Terminology Definition

unsigned char *pbInputBuffer Pointer to the input data which needs to be set up by calling function. Not
modified by HDLC_Tx_Driver function. If this pointer is NULL then output
buffer is filled with ones or flags, or returns without action (as defined in
1.2.1.1.3, “Tx wModeControlWord”).

unsigned short int wMaxInputbufferSize Maximum input data size. Value not altered by Tx function, number of
octets consumed is reflected in the status return structure.

unsigned char *pbOutputBuffer Pointer to output data buffer. Updated by HDLC_Tx_Driver on return from
function.
4 MCF5272 Soft HDLC User’s Guide MOTOROLA

HDLC Tx Driver
1.2.1.1.3 Tx wModeControlWord
The HDLC Tx driver wModeControlWord instruction format is defined in Figure 1.

Table 4 provides the Tx wModeControlWord field definitions.

unsigned short int wOutputBufferSize Output buffer capacity. Treated as a countdown counter and updated by
the Tx function on return.

unsigned short wModeControlWord 16-bit control word. Conveys modes of operation. See 1.2.1.1.3, “Tx
wModeControlWord.”

void pointer (32 bytes) *psHdlcContext 32-byte-pointer points to context structure which will be used by the
function to maintain context between calls.

pstructHdlcStatus psHdlcStatus Pointer to a structure containing status. See 1.2.1.1.4, “Tx
pstructHdlcStatus psHdlcStatus.”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— SF F/R P R A C BIT RATE

Figure 1. Tx wModeControlWord Instruction Format

Table 4. Tx wModeControlWord Field Definitions

Bits Field Description

15–10 — Reserved. Cleared to zero.

9 SF Share Frame.
0 Flag not shared between frames
1 Flag could be shared between frames

8 F/R Fill Return.
0 Return on completion of input
1 Fill wth pattern (1s or flags)

7 P Pointer.
0 Fill with flags
1 Fill with ones

Table 3. psChannelInfo Terminology Defined (continued)
MOTOROLA MCF5272 Soft HDLC User’s Guide 5

HDLC Tx Driver
1.2.1.1.4 Tx pstructHdlcStatus psHdlcStatus
The structure of the pstructHdlcStatus psHdlcStatus is defined below.

typedef struct
{

unsigned short int wStatusReturnWord;
unsigned short int wBufferUtilisation;

} structHdlcStatus, *pstructHdlcStatus;

Table 5 shows definitions of the related terminology.

1.2.1.1.5 Tx wStatusReturnWord
Figure 2 defines the Tx wStatusReturnWord instruction format.

6 R Restart.
0 Normal Operation
1 Restart Transmission

5 A Abort.
0 Normal Operation
1 Abort Frame

4 C CRC.
0 No CRC
1 CRC On

3–0 BIT RATE Bit Rate. Controls the bit rate of the Soft HDLC
transmitter

Table 5. Tx pstructHdlcStatus psHdlcStatus Terminology Defined

Terminology Definition

unsigned short int wBufferUtilisation Number of octets processed by the core. Must be reset to zero when a new
input buffer is provided.

unsigned short int wStatusReturnWord 16-bit word containing the return status. See 1.2.1.1.5, “Tx
wStatusReturnWord.”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— FA FC IF/OF

Figure 2. Tx wStatusReturnWord Instruction Format

Table 4. Tx wModeControlWord Field Definitions (continued)

Bits Field Description

Bit Rate Kbps

0000–0110 Invalid

0111 56

1000 64

1001–1111 Reserved
6 MCF5272 Soft HDLC User’s Guide MOTOROLA

HDLC Rx Driver

eaning.
Tx wStatusReturnWord fields are defined in Table 6.

1.3 HDLC Rx Driver
This driver performs the HDLC deframing. It reads input from a location in memory, completes the HDLC
deframing, and writes the data to another location in memory. The software is capable of operating at
several different bit rates.

Function prototype :

VOID HDLC_Rx_Driver (enumHdlcMessage eHdlcMessage,
 pstructHdlcRxChannelInfo psChannelInfo);

1.3.1 Parameters
This section identifies HDLC Rx driver parameters. Included are summaries of the main inputs and Rx
wModeControlWord, pstructHdlcStatus psHdlcStatus, and Rx wStatusReturnWord.

1.3.1.1 Input
This function’s two main inputs include:

• eHDLCMessage—Tells the HDLC_Rx_Driver which basic function to perform

• psChannelInfo—Contains all the additional information the function requires to execute

1.3.1.1.1 eHDLC Message
Below are the possible values which can be passed to the function in this message field, and their m

• HDLC_INIT_CHANNEL—Initialize Rx HdlcContext parameters.

• HDLC_SEND_PACKET—Prepare a bit stuffed HDLC packet.

NOTE
The HDLC_Rx_Driver function must be called with
HDLC_INIT_CHANNEL before a channel is opened on the Rx side. It
should also be called when the operating bit rate is to be changed — it is
not possible to change the bit rate without re-initializing the channels.

Table 6. Tx wStatusReturnWord Field Definitions

Bits Field Description

15–3 — Reserved.

2 FA Frame Abort.
0 Normal Operation
1 Frame Aborted

1 FC Frame Complete
0 Frame not completed
1 Frame completed (i.e. input buffer & CRC complete, closing

flag may or may not yet have been added)

0 IF/OF In Frame/Out Frame.
0 Begin a new frame
1 Midway through frame
MOTOROLA MCF5272 Soft HDLC User’s Guide 7

HDLC Rx Driver
1.3.1.1.2 psChannelInfo
The psChannelInfo pointer indicates a structure containing all the additional information required by the
HDLC Rx Driver function. The format of the structure is shown below.

typedef struct
{

unsigned char *pbInputBuffer;
unsigned short int w InputbufferSize;
unsigned char *pbOutputBuffer;
unsigned short int wMaxOutputBufferSize;
unsigned short int wModeControlWord;
unsigned short int awAddress [4];
void*psHdlcContext;
pstructHdlcStatus psHdlcStatus;
unsigned short int wCrcErrorCount;
unsigned short int wAbortErrorCount;

} structHdlcRxChannelInfo, *pstructHdlcRxChannelInfo;

Table 7 describes the psChannelInfo structure items for the HDLC Rx Driver.

1.3.1.1.3 Rx wModeControlWord
The HDLC Rx driver wModeControlWord instruction format is defined in Figure 3.

Table 7. psChannelInfo Terminology Defined

Terminology Definition

unsigned char *pbInputBuffer Pointer to the input data, must be set up by calling function. Updated by Rx
function on return.

unsigned short int wInputbufferSize Input data size. Decremented by the amount of data bytes processed by
the HDLC driver.

unsigned char *pbOutputBuffer Pointer to output data buffer. Unchanged by the HDLC Rx Driver function.

unsigned short int
wMaxOutputBufferSize

Maximun output buffer capacity. This variable must be at least one byte
more than the maximum expected frame size.

unsigned short wModeControlWord 16-bit control word. Conveys modes of operation. See 1.3.1.1.3, “Rx
wModeControlWord.”

unsigned short int awAddress[4] An array of bytes containing addresses 1, 2, 3 and mask for address 3.

void pointer (32 bytes) *psHdlcContext Pointer to context structure which will be used by the function to maintain
context between calls.

pstructHdlcStatus psHdlcStatus Pointer to a structure containing status. Described in 1.3.1.1.4, “Rx
pstructHdlcStatus psHdlcStatus.”

unsigned short int wCrcErrorCount Number of CRC errors detected. User can set this counter to zero at any
time. Permits user to monitor line quality.

unsigned short int wAbortErrorCount Number of aborts received. User can set this counter to zero at any time.
Permits user to monitor line quality.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— O ER AD SIZE — R — C BIT RATE

Figure 3. Rx wModeControlWord Instruction Format
8 MCF5272 Soft HDLC User’s Guide MOTOROLA

HDLC Rx Driver
Table 8 provides the Rx wModeControlWord field definitions.

1.3.1.1.4 Rx pstructHdlcStatus psHdlcStatus
The structure of the pstructHdlcStatus psHdlcStatus is defined below.

typedef struct
{

unsigned short int wStatusReturnWord;
unsigned short int wBufferUtilisation;

} structHdlcStatus, *pstructHdlcStatus;

Provided in Table 9 are definitions of the related terminology.

Table 8. Rx wModeControlWord Field Definitions

Bits Field Description

15–13 — Reserved. Cleared to 0.

12 O Overflow.
0 Do not return
1 Return on overflow

11 ER Error.
0 Do not return
1 Return on CRC error or Abort

10–9 AD SIZE Address Size. Specifies size of address field on each frame.
00 0
01 1
10 2
11 Reserved

8–7 — Reserved. Cleared to 0.

6 R Restart.
0 Normal Operation
1 Restart

5 — Reserved. Cleared to 0.

4 C CRC.
0 No CRC
1 CRC On

3–0 BIT RATE Bit Rate. Controls the bit rate of the Soft HDLC transmitter

Bit Rate Kbps

0000–0110 Invalid

0111 56

1000 64

1001–1111 Reserved
MOTOROLA MCF5272 Soft HDLC User’s Guide 9

Calling Sequence
1.3.1.1.5 Rx wStatusReturnWord
Figure 4 defines the Rx wStatusReturnWord instruction format.

.

The Rx wStatusReturnWord fields are defined in Table 10

1.4 Calling Sequence
The following section demonstrates how the modules should be called. The calling sequence is composed
of three steps: initializing a channel, transmitting, and receiving.

Table 9. Rx pstructHdlcStatus psHdlcStatus Terminology Defined

Terminology Definition

unsigned short int wBufferUtilisation Number of output octets written to the output buffer, updated by the
Rx function. Should be reset to zero, by calling function, when a new
output buffer pointer is given.

unsigned short int wStatusReturnWord 16-bit word containing the return status. See 1.3.1.1.5, “Rx
wStatusReturnWord.”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— O CE FA FC IF/OF

Figure 4. Rx wStatusReturnWord Instruction Format

Table 10. Rx wStatusReturnWord Field Definitions

Bits Field Description

15–5 — Reserved.

4 O Overflow.
0 Normal Operation
1 Output buffer overflow

3 CE CRC Error.
0 Normal Operation
1 CRC Error detected

2 FA Frame Abort.
0 Normal Operation
1 Frame Aborted

1 FC Frame Complete.
0 Frame not completed
1 Frame completed

0 IF/OF In frame/Out of Frame.
0 Out of frame
1 In frame
10 MCF5272 Soft HDLC User’s Guide MOTOROLA

Calling Sequence

ing a
1.4.1 Initializing a Channel
Before calling the HDLC Tx and Rx functions with the initialization flag, it is necessary to set up
*psHdlcContext, structTxHdlcChannelInfo, and structRxHdlcChannelInfo and set the bit rate in the
wModeControlWord. Below is a sample calling sequence which performs each of these tasks:

WORD wBitRate = 56;
structTxHdlcChannelInfo sTxChannelInfo;
structRxHdlcChannelInfo sRxChannelInfo;
void *psTxHdlcContext;
void *psRxHdlcContext;
psTxHdlcContext = malloc(40);
psRxHdlcContext = malloc(40);
sTxChannelInfo.psHdlcContext = psTxHdlcContext;
sRxChannelInfo.psHdlcContext = psRxHdlcContext;
sTxChannellnfo.wModeControlWord = wBitRate >> 3;
sRxChannelInfo.wModeControlWord = wBitRate >> 3;
HDLC_Tx_Driver (HDLC_INIT_CHANNEL,&sTxChannelInfo);
HDLC_Rx_Driver (HDLC_INIT_CHANNEL,&sRxChannelInfo);

1.4.2 Illustration of a Transmit Call
The HDLC_Tx_Driver needs to be initialized, as shown in 1.4.1, “Initializing a Channel,” before mak
call to bit stuff data.

WORD wBitRate = 56;
structTxHdlcChannelInfo sTxChannelInfo;
void *psTxHdlcContext;
structHdlcStatus sTxHdlcStatus;
char*pbInData, *pbOutData;
pbInData = malloc(32);
pbOutData = malloc(64);
sTxChannelInfo.psHdlcContext = psTxHdlcContext;
sTxChannellnfo.wModeControlWord = wBitRate >> 3;
sTxChannelInfo.psHdlcStatus = &sTxHdlcStatus;
sTxChannelInfo.wModeControlWord |=

(TX_CONTROL_INSERT_CRC | TX_CONTROL_FILL_WITH_FLAGS);
sTxChannelInfo.pbInputBuffer = pbInData;
sTxChannelInfo.pbOutputBuffer = pbOutData;
sTxChannelInfo.wMaxInputBufferSize = 32;
sTxChannlInfo.wOutputBufferSize = 64;

HDLC_Tx_Driver (HDLC_SEND_PACKET,&sTxChannelInfo);

In this call scenario, the status on return would be:

sTxChannelInfo.psHdlcStatus->wBufferUtilisation = 32;
sTxChannelInfo.psHdlcStatus->wStatusReturnWord = (STATUS_FRAME_COMPLETE);
sTxChannelInfo.wOutBufferSize = ZERO;

1.4.3 Illustration of a Receive
HDLC_Rx_Driver needs to be initialized before making a call to de-stuff data.

WORD wBitRate = 56;
structRxHdlcChannelInfo sRxChannelInfo;
MOTOROLA MCF5272 Soft HDLC User’s Guide 11

Calling Sequence

ance
tion is

on the

 both
pendent
tes, the
void *psRxHdlcContext;
structHdlcStatus sRxHdlcStatus;
char*pbInData, *pbOutData;
pbInData = malloc(64);
pbOutData = malloc(34);
sRxChannelInfo.psHdlcContext = psRxHdlcContext;
sTxChannellnfo.wModeControlWord = wBitRate >>3;
sRxChannelInfo.psHdlcStatus = &sRxHdlcStatus;
sRxChannelInfo.wModeControlWord |= (RX_CONTROL_CHECK_CRC |
RX_CONTROL_ADDRESS_SIZE_ZERO |
RX_CONTROL_RETURN_ON_OVERFLOW);

sRxChannelInfo.pbInputBuffer = pbInData;
sRxChannelInfo.pbOutputBuffer = pbOutData;
sRxChannelInfo.wInputBufferSize = 64;
sRxChannlInfo.wMaxOutputBufferSize = 34;

HDLC_Rx_Driver (HDLC_SEND_PACKET,
&sRxChannelInfo);

In this call scenario, the status on return would be:

sTxChannelInfo.psHdlcStatus->wBufferUtilisation = 34; (including 2 CRC
Octets)
sTxChannelInfo.psHdlcStatus->wStatusReturnWord = (STATUS_FRAME_COMPLETE);
sTxChannelInfo.wInputBufferSize = 24;

Part II Functional Tests
This section provides a summary of all testing completed on the SoftHDLC module for the MCF5272. In
addition to detailing the SoftHDLC for MCF5272 functionality tests, it documents the profiling, or
performance, testing conducted on the HDLC software developed by Motorola for the MCF5272 device.

The functionality test objective is to test all the implemented features of the SoftHDLC routine, with various
data patterns and buffer sizes, and also to test the routine with a hardware implementation of the HDLC
protocol, to verify conformity. Three distinct types of tests were performed, including:

• ColdFire unit testing (see Section 2.1)

• Conformance testing (see Section 2.2)

• MCF5272 testing (see Section 2.3)

The ColdFire unit testing was completed prior to the MCF5272 silicon release to verify the perform
with respect to the specification. The conformance testing ensures that the SoftHDLC implementa
operable with a ‘standard’ HDLC device. The MCF5272 testing verifies the operation of the code
MCF5272 device, including verification of the ROM look-up tables.

The profiling test objective (see Section Part III) was to determine CPU cycle consumption for
standard and non-standard scenarios. In addition to identifying routine performance standards, de
on bit rates of either 16, 56, and 64 Kbps and transmit output buffer sizes of either 16, 32, and 64 by
tests also evaluated performance in the following scenarios:

• Small buffer size

• Different memory map

• Different frame size
12 MCF5272 Soft HDLC User’s Guide MOTOROLA

ColdFire Unit Testing

nction.

flags,

om data
’s input

block of
utput
sert
ing and

turns on
ted.

smitted

 the test

 address
2.1 ColdFire Unit Testing
The SoftHDLC routine and the associated test routines were cross-compiled using the DIAB compiler. The
generated executable was loaded and executed on the target platform (MCF5206E Evaluation Board, Rev.
A 1.3) using the SDS single step on-chip tool. The ColdFire unit testing was performed with the SoftHDLC
routine operating in loopback mode — that is, rerouting the transmit routine output to the receive fu
A set of eight test cases were designed to test the various features.

2.1.1 Test Case 01
Test case 01 tests to confirm CRC insertion and verification, filling the remaining output buffer with
and a zero address size.

2.1.1.1 Features Tested
• Tx side—CRC insertion, fill with flags

• Rx side—CRC verification, address size zero

2.1.1.2 Description
This test case uses an input sequence of 1024 bytes, either set to all 0xFFs, 0x00s or any rand
patterns. The input sequence data is sent in small blocks to the transmit routine. The transmit routine
and output buffer sizes are fixed at equal size. If the previous data chunk is fully exhausted, a new
data is provided to the transmit function. The transmit routine is configured to fill the remaining o
buffer with HDLC flags if the input buffer is fully exhausted. The transmit routine is configured to in
CRC for every frame. The routine can either be configured with share flags between frames or open
closing flags inserted for every frame.

The receive routine configuration checks CRC for every frame, sets the address size to zero, and re
overflow. A “while” loop calls the receive routine until the buffer received from transmit is fully exhaus

When the receive routine receives a complete frame, the received frame is compared with the tran
frame.

2.1.1.3 Test Pass Criterion
The received frame data bytes must be identical to those in the transmitted frame for every frame in
sequence.

2.1.2 Test Case 02
Test case 02 tests to confirm CRC insertion and verification, broadcast address insertion, one 8-bit
size, and return on completion of the input buffer.

2.1.2.1 Features Tested
• Tx Side—CRC insertion, broadcast address insertion, return on completion of input buffer

• Rx Side—CRC verification, address size equals one (8-bit)
13 MCF5272 Soft HDLC User’s Guide MOTOROLA

ColdFire Unit Testing

’s input
block of
 of the
RC for

 closing

d returns
til the

 frame

.

a 16-bit

om data
’s input
lock of
t buffer
fully. A
ert CRC
pening
igures

, and the
outine

nsmitted
2.1.2.2 Description
This test case uses an input sequence of 1024 bytes, either set to all 0xFFs, 0x00s or any random data
patterns. The input sequence data is sent in small blocks to the transmit routine. The transmit routine
and output buffer sizes are fixed at equal size. If the previous data chunk is fully exhausted, a new
data is provided to the transmit function. The transmit routine is configured to return on completion
input buffer. A one-byte broadcast address is inserted in every frame. The transmit routine inserts C
every frame. The routine can either be configured with share flags between frames or opening and
flags inserted for every frame.

The receive routine configuration checks CRC for every frame, sets the address size to eight bits, an
on overflow. Broadcast address comparison is performed. A “while” loop calls the receive routine un
buffer received from transmit is fully exhausted.

Whenever receive routine receives a complete frame, the frame received is compared with the
transmitted to ensure data integrity.

2.1.2.3 Test Pass Criterion
The data bytes prior to transmission and bytes received after reception must match for every frame

2.1.3 Test Case 03
Test case 03 tests to confirm CRC insertion and verification, broadcast address insertion, and
address size.

2.1.3.1 Features Tested
• Tx Side—CRC insertion, broadcast address insertion, fill with ones

• Rx Side—CRC verification, address size two (16-bit)

2.1.3.2 Description
This test case uses an input sequence of 1024 bytes, either set to all 0xFFs, 0x00s or any rand
patterns. The input sequence data is sent in small blocks to the transmit routine. The transmit routine
and output buffer sizes are a fixed equal size. If the previous data chunk is fully exhausted, a new b
data is provided to the transmit function. When the input has been exhausted, the remaining outpu
space is filled with ones. In this test case, every input chunk requires two Tx calls to be exhausted
two-byte broadcast address is inserted in every frame. The transmit routine is also configured to ins
in every frame. Additional configuration options include inserting share flags between frames or an o
and closing flag for every frame. (The pre-processor switch, SHARED_FLAG, when defined, conf
Tx in shared flag mode.)

The receive routine configuration checks CRC for every frame, sets the address size to sixteen bits
returns on overflow. Broadcast address comparison is performed. A “while” loop calls the receive r
until the buffer received from transmit is fully exhausted.

When receive routine receives a complete frame, the frame received is compared with the frame tra
to ensure data integrity.
14 MCF5272 Soft HDLC User’s Guide MOTOROLA

ColdFire Unit Testing

’s input
lock of

ones,
ration
 frames

rror. A
s test
and ‘on’

 Rx side.

ed and

is two
.

om data
’s input
lock of

s to be
2.1.3.3 Test Pass Criterion
 The data bytes prior to transmission and bytes received after reception must match for every frame.

2.1.4 Test Case 04
Test case 04 confirms that a frame drop occurs when there is a CRC error on the Rx side.

2.1.4.1 Features Tested
Frame drop on CRC error on Rx side.

2.1.4.2 Description
This test case uses an input sequence of 1024 bytes, set to either all 0xFFs, 0x00s or any random data
patterns. The input sequence data is sent in small blocks to the transmit routine. The transmit routine
and output buffer sizes are a fixed equal size. If the previous data chunk is fully exhausted, a new b
data is provided to the transmit function. The Tx routine is configured to fill the output buffer with
when the input buffer is exhausted but the output buffer is not yet filled. The transmit routine configu
does not insert CRC for every frame. The routine can either be configured with share flags between
or opening and closing flags inserted for every frame.

The receive routine configuration checks CRC for every frame, and returns on either overflow or e
“while” loop calls the receive routine until the buffer received from transmit is fully exhausted. In thi
case, the Rx routine assumes the last two data bytes as CRC, since CRC is set to ‘off’ in Tx side
in Rx side, and CRC check fails for every frame.

When the complete input sequence is exhausted, the CRC error counts are compared for the Tx and

2.1.4.3 Test Pass Criterion
The error counts on the Tx and Rx sides must match, ensuring that each Tx frame is fully receiv
dropped.

Note: In this testcase, we have fixed the Tx input buffer at 32, for ZERO_INPUT. If the buffer size
(16 bits), the Rx side still receives a valid frame, even though CRC was not inserted on the Tx side

2.1.5 Test Case 05
Test case 05 confirms that a frame drop occurs when there is an abort on the Tx side.

2.1.5.1 Features Tested
Frame drop on Rx side due to abort on Tx side.

2.1.5.2 Description
This test case uses an input sequence of 1024 bytes, set to either all 0xFFs, 0x00s or any rand
patterns. The input sequence data is sent in small blocks to the transmit routine. The transmit routine
and output buffer sizes are a fixed equal size. If the previous data chunk is fully exhausted, a new b
data is provided to the transmit function. In this test case, every input chunk requires two Tx call
15 MCF5272 Soft HDLC User’s Guide MOTOROLA

ColdFire Unit Testing

ceive
ives no

 side.

 aborted

om data
r size is
ituation,
ter, a
e. The
rted for

turn on
it is

 frame

.

 address
exhausted fully. Before the second call, the Tx routine is configured to abort this particular frame and resets
on completion of a successful abort. The routine can either be configured with share flags between frames
or opening and closing flags inserted for every frame.

The receive routine is configured to return on either overflow or error. A “while” loop calls the re
routine until the buffer received from transmit is fully exhausted. In this test case the Rx routine rece
valid frame as each frame is aborted mid-way.

When the complete input sequence is exhausted, we compare the abort error counts on Tx and Rx

2.1.5.3 Test Pass Criterion
The abort error counts on Tx and Rx side need to match, ensuring that each Tx frame is successfully
and dropped.

2.1.6 Test Case 06
Test case 06 confirms transmission restart..

2.1.6.1 Features Tested
Restart transmission in Tx side

2.1.6.2 Description
This test case uses an input sequence of 1024 bytes, set to either all 0xFFs, 0x00s or any rand
patterns. The input sequence data is sent in small blocks to the transmit routine. The output buffe
selected to ensure that the entire input buffer is exhausted in one Tx call. To simulate a frame loss s
this buffer is not given to Rx. The next time the Tx routine is called with the same input poin
transmission restart is requested. The transmit routine is configured to insert CRC for every fram
routine can either be configured with share flags between frames or opening and closing flags inse
every frame.

The receive routine is configured to check CRC for every frame, and the routine is configured to re
either overflow or error. A “while” loop calls the receive routine until the buffer received from transm
fully exhausted.

Whenever the Rx routine receives a complete frame, the frame received is compared with the
transmitted to ensure data integrity.

2.1.6.3 Test Pass Criterion
The data bytes prior to transmission and bytes received after reception must match for every frame

2.1.7 Test Case 07
Test case 07 tests CRC insertion and verification, address insertion and comparison, Tx flag fill, and
size two.
16 MCF5272 Soft HDLC User’s Guide MOTOROLA

ColdFire Unit Testing

om data
’s input

block of
uffer
e prior
ther be

erflow.
ress size
fully

 frame

.

om data
t buffer
tine is

etween

ted to
uffer

sets the
2.1.7.1 Features Tested
• Tx Side—CRC insertion, address insertion, fill with flags

• RX Side—Address comparison, CRC verification, address size two

2.1.7.2 Description
This test case uses an input sequence of 1024 bytes, either set to all 0xFFs, 0x00s or any rand
patterns. The input sequence data is sent in small blocks to the transmit routine. The transmit routine
and output buffer sizes are fixed at equal size. If the previous data chunk is fully exhausted, a new
data is provided to the transmit function. The Tx routine is configured to fill the remaining output b
with HDLC flags if the input buffer is fully exhausted. Specific address bytes are added to each fram
to transmission.The transmit routine is configured to insert CRC for every frame. The routine can ei
configured with share flags between frames or opening and closing flags inserted for every frame.

The receive routine is configured to check CRC for every frame, and is configured to return on ov
The Rx is configured to receive frames with only those addresses inserted on the Tx side. The add
is fixed at 2. A “while” loop calls the receive routine until the buffer received from transmit is
exhausted.

Whenever the Rx routine receives a complete frame, the frame received is compared with the
transmitted to ensure data integrity.

2.1.7.3 Test Pass Criterion
The data bytes prior to transmission and bytes received after reception must match, for every frame

2.1.8 Test Case 08
Test case 08 tests the operation of the “continue on overflow” Rx feature.

2.1.8.1 Features Tested
“Continue on overflow” Rx feature.

2.1.8.2 Description
This test case uses an input sequence of 1024 bytes, either set to all 0xFFs, 0x00s or any rand
patterns. The input sequence data is sent in small blocks to the transmit routine. The transmit outpu
is selected to ensure that the entire input buffer is exhausted by one Tx call. The transmit rou
configured to insert CRC for every frame. The routine can either be configured with share flags b
frames or opening and closing flags inserted for every frame.

The receive routine is configured to continue on overflow. The receive output buffer size is selec
ensure that an overflow occurs for every Rx call. A “while” loop calls the receive routine until the b
received from transmit is fully exhausted.

As a result of output overflow, the Rx receives no frames, and a counter increments whenever Rx
overflow error in the status return word.
17 MCF5272 Soft HDLC User’s Guide MOTOROLA

Conformance Testing

ared. The

itten by
sults and
, bit rate

emory
ifying
2.1.8.3 Test Pass Criterion
The number of transmitted frames must match the overflow count.

2.2 Conformance Testing
To ensure conformance to the HDLC standard, the C code for this implementation was tested with an HDLC
capable device. The MPC860MH, a mature device used in many applications, was selected because it has
a hardware HDLC implementation as part of its communication core. This conformance test verified the bit
stuffing and un-stuffing functionality and the 16-bit CRC features. Address comparison functionality could
not be tested for conformance in this test environment.

To make use of existing hardware, the C code for this implementation was compiled for a DSP56300, and
this DSP communicated with an MPC860MH using HDLC protocol. This test sequence is shown in
Figure 5., “Conformance Test Sequence.

Figure 5. Conformance Test Sequence

For each test sequence, the input data, intermediate data, and output data were logged and comp
recorded data was identical at each of these three test points.

2.3 MCF5272 Testing
All of the above tests have been verified on the MCF5272.

Part III Profiling Test
This section defines the test setup for the performance tests conducted on the HDLC software wr
MIEL. The features tested are identified, the test case and test pass criterion described, and test re
comments are listed. In addition to determining standard performance counts, based on buffer size
and the number of calls per second, counts were determined for small buffer performance, different m
map performance, and different frame size performance. Also provided is information regarding mod
parameters in the profiling program and the conclusion reached by the testers.

Software HDLC
Deframer

Software HDLC
Framer

Hardware HDLC
Deframer

Hardware HDLC
Framer

MPC860MH

DSP56300

Input Data Intermediate Data Output Data
18 MCF5272 Soft HDLC User’s Guide MOTOROLA

Test Setup

st. See
led test

tine for
ts.
3.1 Test Setup
The SoftHDLC routine and the associated test routines were cross-compiled using the DIAB tools (version
4.3 release d). The generated executable was loaded and executed on the MCF5272 silicon evaluation
board using the single-step debugger (SDS), version 7.4. The routine was profiled using modified versions
of test case 07 (hdlctest07.c) and the profiling program (hdlcprof.c, hdlctst.h). The HDLC Profiling Test,
written in C, was used with the parameters listed below.

Default assumptions:

• Cache on

• On-chip ROM look-up tables

Unless otherwise stated, the following parameters also apply:

• Bit rate is 64 Kbps

• Address size = 2

• Transmitted data = $00 for no bit stuffing (set by default in the profiling program)

• Memory configuration per the following:

— Context data—internal SRAM (Read/Write: 1 CPU cycle)

— Framed data—internal SRAM (Read/Write: 1 CPU cycle)

— Unframed data—SDRAM (Write: (7 + 1 + 1 + 1) - Read: (9 + 1 + 1 + 1) ÷ maximum wait state
– for example, case of page miss)

3.2 HDLC Profiling Test Description
Test case 07, originally designed for the functionality test phase, was used for the HDLC profiling te
2.1.7.1, “Features Tested” for a list of the features tested. Refer to 2.1.7.2, “Description” for a detai
case description and to 2.1.7.3, “Test Pass Criterion” for the pass criterion used.

3.3 Standard Performances
This test’s goal is to determine the CPU cycle consumption for standard scenarios of the HDLC rou
different bit rates and different Tx output buffer sizes. Table 11 lists the standard performance resul

Table 11. Standard Performance Results

Buffer
Size

(Bytes) 1
Bit Rate
(Kbps) 2

Number of
Calls per
Second 3

Tx Count
per Call

(Cycles) 4

Rx Count
per Call

(Cycles) 5

Tx Count
@ R Kbps

(MCycles) 6

Rx Count @
R Kbps

(MCycles)

Total Count (Tx +
Rx) @ R Kbps

(MCycles) 7

16 56 437.50 2837 2750 1.24 1.20 2.44

64 500.00 3153 3118 1.58 1.56 3.14

16 125.00 0.39 0.39 0.78

32 56 218.75 3770 4307 0.82 0.94 1.77

64 250.00 4270 4638 1.07 1.16 2.23
19 MCF5272 Soft HDLC User’s Guide MOTOROLA

Performances with Small Buffers

ption.
3.3.1 Comments
Note that the CPU cycle consumption for bit rate equal to 16 Kbps is the CPU cycle consumption for bit
rate equal to 64 Kbps divided by 4.

For a 2B + D data link, with buffers size equal to 32 byte and bit rate equal to 56 for B channels, the CPU
cycle consumption is: 1.77 × 2 + 0.56 = 4.1 megacycles.

For a 2B + D data link, with buffers size equal to 32 byte and bit rate equal to 64 for B channels, the CPU
cycle consumption is: 2.23 × 2 + 0.56 = 5.02 megacycles.

For both, it represents less than 10% for a 66 MHz clocked silicon.

3.4 Performances with Small Buffers
This test’s goal is to evaluate the influence of a very small Tx output buffer on the CPU cycle consum
Table 12 details the small buffer test results.

16 62.50 0.27 0.29 0.56

64 56 109.38 4316 4514 0.47 0.49 0.97

64 125.00 4270 4638 0.53 0.58 1.11

16 31.25 0.13 0.14 0.28

1 Size (in bytes) of the output Tx driver
2 Bit rate of the HDLC channel
3 Calculated as follows: (bit rate) ÷ (8 × buffer size)
4 Maximum CPU cycle for one call to the Tx driver
5 Maximum CPU cycle for one call to the Rx driver
6 Calculated as follows: (number of calls per second) × (Tx count per call), it represents the CPU cycle

consumption for the Tx driver, at R Kbps (R = 16, 56, or 64)
7 CPU cycle consumption for both Tx and Rx drivers, at R Kbps (R = 16, 56, or 64)

Table 12. Performances with Small Buffers Results

Buffer
(Frame)

Size

Bit Rate
(Kbps)

Number of
Calls per
Second

Tx Count
per Call
(Cycles)

Rx Count
per Call
(Cycles)

Tx Count
@ R Kbps
(MCycle)

Rx Count
@ R Kbps
(MCycle)

Total Count (Tx +
Rx) @ R Kbps

(MCycle)

6 56 1166.67 1933 1329 2.26 1.55 3.81

Address 64 1333.33 2004 1594 2.67 2.13 4.80

Size = 2 16 333.33 0.67 0.53 1.20

5 56 1400.00 1892 1315 2.65 1.84 4.49

Address 64 1600.00 1959 1511 3.13 2.42 5.55

Size = 1 16 400.00 0.78 0.60 1.39

Table 11. Standard Performance Results

Buffer
Size

(Bytes) 1
Bit Rate
(Kbps) 2

Number of
Calls per
Second 3

Tx Count
per Call

(Cycles) 4

Rx Count
per Call

(Cycles) 5

Tx Count
@ R Kbps

(MCycles) 6

Rx Count @
R Kbps

(MCycles)

Total Count (Tx +
Rx) @ R Kbps

(MCycles) 7
20 MCF5272 Soft HDLC User’s Guide MOTOROLA

Performances with Different Memory Map
3.4.1 Comments
Worst case conditions are simulated by setting the buffers as small as possible because the Tx and Rx
drivers are output driven.

In addition, to force all operations to be performed (flag detection, address comparison, bit (un)stuffing,
CRC calculation) in the call to the routine, the frame size is set equal to the buffer size.

As the worst case scenario, for a 2B + D link, with B at 64 Kbps, then the global CPU cycle consumption
is: 5.55 × 2 + 1.39 equal to 12.49 megacycles, which represents 19% of the CPU resources.

A test using both a buffer size and frame size of four can also be performed, but it is not considered a valid
scenario since the CRC check is removed because the CRC calculation has the largest impact on the CPU
clock usage.

3.5 Performances with Different Memory Map
In this test, the Tx and Rx drivers routine are profiled for different memory scenarios, as shown in
Figure 6.

Figure 6. Memory Map Scenarios

Tx
Context

HDLC
Encoded Tx

Buffer

HDLC
Encoded Rx

Buffer

HDLC
Decode

Rx
Context

HDLC
Encode

Transmit
Buffer

Receive
Buffer

Scenario A: On-chip SRAM On-chip SRAM On-chip SRAM
Scenario B: SDRAM SDRAM SDRAM
Scenario C: SDRAM On-chip SRAM On-chip SRAM
21 MCF5272 Soft HDLC User’s Guide MOTOROLA

Performance with Different Frame Size
The scenarios were executed with the following the configuration:

Tx output buffer size = 32
“Data field” = 27
= 32 bytes of buffer – 5 bytes of structure (1 for the flag, 2 for the
address, 2 for the CRC).

Table 13 details the results achieved.

3.5.1 Comments
The memory utilization given here concerns the profiling program only and is not linked to the routines
themselves.

Scenario C is suggested because it offers the best compromise between low occupation internal memory
utilization and low CPU cycle consumption.

3.6 Performance with Different Frame Size
This test evaluates the influence of a variable frame size and a fixed buffer size on the CPU cycle
consumption. A frame is composed of a flag, an address field, a data field, and a CRC field.

With a buffer size equal to 32 bytes, that is, equal to or greater than 250 packets, and frames ranging from
6 to 128 bytes, the matrix shown in Table 14 results.

Table 13. Performances with Different Memory Map Results

Operation
Scenario

Memory Utilization
A B C

Unframed Data int SRAM SDRAM SDRAM 2 × 512 = 1024 bytes

Context Data int SRAM SDRAM int SRAM 2 × 28 = 56 bytes

Framed Data int SRAM SDRAM int SRAM 2 × 32 bytes 1

1 Framed data occupies only 1 × 32 bytes in the HDLC test case 07 because of the
loopback.

Tx MAX 3466 4338 3942

Tx CPU count 0.87 1.08 0.99

Rx CPU count 0.95 1.21 1.01

Rx + Tx CPU count 1.81 2.29 1.99

Table 14. Performance with Different Frame Size Results

Operation
Frame Size

6 16 24 32 64 96 128

Tx count per call 2268 2937 3412 3824 3663 3637 3639
22 MCF5272 Soft HDLC User’s Guide MOTOROLA

Modifying Parameters in the Profiling Program
3.6.1 Comments
When the frame size is smaller than the buffer size, all the operations are done in the call routine. In this
situation, the Tx output buffer contains the frame and the balance of the buffer is filled with flags or ones.

When the frame size is greater than the buffer size, the CRC calculation is greater. And as the CRC
calculation dominates the CPU cycles count, for a frame size equal to either 64, 96, or 128, the CPU cycle
consumption remains effectively constant as shown in Table 14.

Thus the worst case occurs when the frame size is exactly equal to the buffer size because of the following
two phenomena.

1. Since D channel packets tend to be short, CPU cycle consumption could be modeled by the short
frames scenario (6 or 16 bytes). As D channel packets are infrequent, Rx buffer processing is
dominated by buffers containing all ones.

2. Since B channel packets tend to be longer, CPU cycle consumption could be modeled by the long
frames scenario (64, 96, or 128 bytes).

3.7 Modifying Parameters in the Profiling Program
Detailed here are directions for modifying the various buffer sizes, the data field size, bit rate, address size,
and the memory configuration.

3.7.1 Modifying the Buffer Size
In the profiling program, three buffers are used: input data buffer, loopback data buffer, and output data
buffer. Referring to Figure 6 on page 21, for this test, the HDLC Encoded Tx Buffer equals the HDLC
Encoded Rx Buffer and acts as the loopback buffer. The data goes from the input buffer through the
loopback buffer to the output buffer. Only the size of the loopback buffer has an impact on the CPU cycle
consumption.

The size of these three buffers can be modified at the beginning of the file in
“/hdlc/code/hdlctest/include/hdlctst.h”.

#define LOOPBACK_BUFFER_SIZE 32

#define INPUT_BUFFER_SIZE 1024

#define OUTPUT_BUFFER_SIZE 1024

Rx count per call 1777 2675 3302 4021 4007 4014 4002

Tx CPU cycles count 0.57 0.73 0.85 0.96 0.92 0.91 0.91

Rx CPU cycles count 0.44 0.67 0.83 1.01 1.00 1.00 1.00

Rx + Tx CPU count 1.01 1.40 1.68 1.96 1.92 1.91 1.91

Table 14. Performance with Different Frame Size Results (continued)

Operation
Frame Size

6 16 24 32 64 96 128
23 MCF5272 Soft HDLC User’s Guide MOTOROLA

Conclusion

only

ternal
the

lease

 allow
3.7.2 Modifying the Size of the Data Field
Also called CHUNK_SIZE in the code, the data field value can be modified at the beginning of the file in
“/hdlc/code/hdlctest/include/hdlctst.h.”

The parameter INPUT_CHUNK_SIZE will not affect the behavior of the profiling program since it is
used in the functional test program to set the maximum data field in HDLC frames.

#define CHUNK_SIZE 24

3.7.3 Modifying the Bit Rate and Address Size
These two parameters can be modified in the file “/hdlc/code/hdlctest/src/hdlcprof.c.”

WORD wBitRate = 56;

WORD wAddressSize = 2;

3.7.4 Modifying the Memory Configuration
To force a variable, or place a buffer to a defined memory map location (internal SRAM or ex
SDRAM), add the following line before the C code declaration at the beginning of
“/hdlc/code/hdlctest/src/hdlcprof.c” file.

#pragma section SECTION_NAME far-absolute RW address=0x[Address in hexa]

By default, all variables and buffers are located in the external SDRAM. For more information, p
contact SDS-DIAB support at http://www/windriver/com/.

3.8 Conclusion
The profiling test results met Motorola’s expectations. CPU cycle consumption is small enough to
for other software functions, even under worst case conditions.
24 MCF5272 Soft HDLC User’s Guide MOTOROLA

Conclusion
THIS PAGE INTENTIONALLY LEFT BLANK
25 MCF5272 Soft HDLC User’s Guide MOTOROLA

Conclusion
THIS PAGE INTENTIONALLY LEFT BLANK
26 MCF5272 Soft HDLC User’s Guide MOTOROLA

Conclusion
THIS PAGE INTENTIONALLY LEFT BLANK
27 MCF5272 Soft HDLC User’s Guide MOTOROLA

MCF 5272HDLCUG
Rev. 0, 2/2002

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

DOCUMENT COMMENTS:

FAX (512) 933-2625
Attn: RISC Applications Engineering

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.

Motorola makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does Motorola assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be provided in

Motorola data sheets and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals” must be validated

for each customer application by customer’s technical experts. Motorola does not convey any

license under its patent rights nor the rights of others. Motorola products are not designed,

intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized

application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

	Table�1. Acronyms and Abbreviations
	Table�2. References
	Part�I Interface Description
	1.1 Software Functionality
	1.1.1 Standard Implemented
	1.1.2 Delivery Format
	1.1.3 Tools Used

	1.2 HDLC Tx Driver
	1.2.1 Parameters
	1.2.1.1 Input
	1.2.1.1.1 eHDLCMessage
	1.2.1.1.2 psChannelInfo
	Table�3. psChannelInfo Terminology Defined�

	1.2.1.1.3 Tx wModeControlWord
	Figure�1. Tx wModeControlWord Instruction Format
	Table�4. Tx wModeControlWord Field Definitions�

	1.2.1.1.4 Tx pstructHdlcStatus psHdlcStatus
	Table�5. Tx pstructHdlcStatus psHdlcStatus Terminology Defined

	1.2.1.1.5 Tx wStatusReturnWord
	Figure�2. Tx wStatusReturnWord Instruction Format
	Table�6. Tx wStatusReturnWord Field Definitions

	1.3 HDLC Rx Driver
	1.3.1 Parameters
	1.3.1.1 Input
	1.3.1.1.1 eHDLC Message
	1.3.1.1.2 psChannelInfo
	Table�7. psChannelInfo Terminology Defined�

	1.3.1.1.3 Rx wModeControlWord
	Figure�3. Rx wModeControlWord Instruction Format
	Table�8. Rx wModeControlWord Field Definitions�

	1.3.1.1.4 Rx pstructHdlcStatus psHdlcStatus
	Table�9. Rx pstructHdlcStatus psHdlcStatus Terminology Defined

	1.3.1.1.5 Rx wStatusReturnWord
	Figure�4. Rx wStatusReturnWord Instruction Format
	Table�10. Rx wStatusReturnWord Field Definitions

	1.4 Calling Sequence
	1.4.1 Initializing a Channel
	1.4.2 Illustration of a Transmit Call
	1.4.3 Illustration of a Receive

	Part�II Functional Tests
	2.1 ColdFire Unit Testing
	2.1.1 Test Case 01
	2.1.1.1 Features Tested
	2.1.1.2 Description
	2.1.1.3 Test Pass Criterion

	2.1.2 Test Case 02
	2.1.2.1 Features Tested
	2.1.2.2 Description
	2.1.2.3 Test Pass Criterion

	2.1.3 Test Case 03
	2.1.3.1 Features Tested
	2.1.3.2 Description
	2.1.3.3 Test Pass Criterion

	2.1.4 Test Case 04
	2.1.4.1 Features Tested
	2.1.4.2 Description
	2.1.4.3 Test Pass Criterion

	2.1.5 Test Case 05
	2.1.5.1 Features Tested
	2.1.5.2 Description
	2.1.5.3 Test Pass Criterion

	2.1.6 Test Case 06
	2.1.6.1 Features Tested
	2.1.6.2 Description
	2.1.6.3 Test Pass Criterion

	2.1.7 Test Case 07
	2.1.7.1 Features Tested
	2.1.7.2 Description
	2.1.7.3 Test Pass Criterion

	2.1.8 Test Case 08
	2.1.8.1 Features Tested
	2.1.8.2 Description
	2.1.8.3 Test Pass Criterion

	2.2 Conformance Testing
	Figure�5. Conformance Test Sequence

	2.3 MCF5272 Testing

	Part�III Profiling Test
	3.1 Test Setup
	3.2 HDLC Profiling Test Description
	3.3 Standard Performances
	Table�11. Standard Performance Results
	3.3.1 Comments

	3.4 Performances with Small Buffers
	Table�12. Performances with Small Buffers Results
	3.4.1 Comments

	3.5 Performances with Different Memory Map
	Figure�6. Memory Map Scenarios
	Table�13. Performances with Different Memory Map Results�
	3.5.1 Comments

	3.6 Performance with Different Frame Size
	Table�14. Performance with Different Frame Size Results�
	3.6.1 Comments

	3.7 Modifying Parameters in the Profiling Program
	3.7.1 Modifying the Buffer Size
	3.7.2 Modifying the Size of the Data Field
	3.7.3 Modifying the Bit Rate and Address Size
	3.7.4 Modifying the Memory Configuration

	3.8 Conclusion

