

September 2000 Revised March 2002

74LCXH162244

Low Voltage 16-Bit Buffer/Line Driver with Bushold and 26 Ω Series Resistors in Outputs

General Description

The LCXH162244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

The LCXH162244 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

In addition, the outputs include equivalent 26 Ω (nominal) series resistors to reduce overshoot and undershoot and are designed to sink/source up to 12 mA at $V_{CC}=3.0V$.

The LCXH162244 is designed for low voltage (2.5V or 3.3V) $\rm V_{CC}$ applications with capability of interfacing to a 5V signal environment.

The LCXH162244 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant control inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- \blacksquare Outputs include equivalent series resistance of 26Ω to make external termination resistors unnecessary and reduce overshoot and undershoot
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- 5.3 ns t_{PD} max ($V_{CC} = 3.0V$), 20 $\mu A I_{CC}$ max
- Power down high impedance inputs and outputs
- ± 12 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V Machine model > 200V

Ordering Code:

Order Number	Package Number	Package Description
74LCXH162244MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [RAIL]
74LCXH162244MEX		48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TAPE and REEL]
74LCXH162244MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [RAIL]
74LCXH162244MTX		48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TAPE and REEL]

Connection Diagram

Pin Descriptions

Pin Names	Description
OE _n	Output Enable Input (Active LOW)
I ₀ -I ₁₅	Bushold Inputs
O ₀ -O ₁₅	Outputs

Truth Tables

Inp	uts	Outputs
OE ₁	I ₀ –I ₃	O ₀ -O ₃
L	L	L
L	Н	Н
н	X	Z

Inp	uts	Outputs
OE ₃ I ₈ -I ₁₁		O ₈ -O ₁₁
L	L	L
L	Н	Н
Н	Х	Z

Inp	Inputs		
ŌE₂	O ₄ -O ₇		
L	L	L	
L	Н	Н	
Н	Х	Z	

ınp	นเธ	Outputs
ŌE₄	I ₁₂ –I ₁₅	O ₁₂ -O ₁₅
L	L	L
L	Н	Н
Н	Х	Z

X = Immaterial

Functional Description

The LCXH162244 contains sixteen non-inverting buffers with 3-STATE standard outputs. The LCXH162244 data inputs include active bushold circuitry eliminating the need for pull-up resistors to hold unused or floating data inputs at a valid logic level. The devise is also designed with 26Ω series resistors in the outputs. This design reduces line noise in applications such as memory address drivers, clock drivers and bus transceiver/transmitters. The device is nibble (4 bits) controlled with each nibble functioning

identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each nibble. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When \overline{OE}_n is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Logic Diagram

Z = High Impedance

H = HIGH Voltage Level L = LOW Voltage Level

Absolute Maximum Ratings(Note 1)

Symbol	Parameter	ī	Value	Conditions	Units	
V _{CC}	Supply Voltage		−0.5 to +7.0		V	
V _I	DC Input Voltage	ŌĒ	-0.5 to +7.0			
		I ₀ - I ₁₅	-0.5 to $V_{CC} + 0.5$		V	
Vo	DC Output Voltage		-0.5 to +7.0	Output in 3-STATE	V	
			-0.5 to $V_{CC} + 0.5$	Output in HIGH or LOW State (Note 2)	V	
I _{IK}	DC Input Diode Current		-50	V _I < GND	mA	
I _{OK}	DC Output Diode Curre	nt	-50	V _O < GND	mA	
				V _O > V _{CC}	IIIA	
Io	DC Output Source/Sink Current		±50		mA	
I _{CC}	DC Supply Current per	Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin		±100		mA	
T _{STG}	Storage Temperature		-65 to +150		°C	

Recommended Operating Conditions (Note 3)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
V _I	Input Voltage		0	V _{CC}	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±12	
		$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±8	mA
		$V_{CC} = 2.3V - 2.7V$		±4	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40$ °C to $+85$ °C		Units
Зуппон	Parameter	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 – 3.6		8.0	
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.3 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.3	1.8		V
		$I_{OH} = -4 \text{ mA}$	2.7	2.2		
		$I_{OH} = -6 \text{ mA}$	3.0	2.4		V
		$I_{OH} = -8 \text{ mA}$	2.7	2.0		
		I _{OH} = -12 mA	3.0	2.0		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 – 3.6		0.2	
		I _{OL} = 4 mA	2.3		0.6	
		I _{OL} = 4 mA	2.7		0.4	V
		I _{OL} = 6 mA	3.0		0.55	V
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3.0		0.8	

Note 2: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics (Continued)

Parameter		Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
			(V)	Min	Max	Offics
Input Leakage Current	Data	$V_I = V_{CC}$ or GND	2.3 – 3.6		±5.0	μА
	Control	$0 \le V_1 \le 5.5$	2.3 – 3.6		±5.0	μΛ
Bushold Input Minimum		V _{IN} = 0.7V	2.2	45		
Drive Hold Current		V _{IN} = 1.7V	2.3	-45		μА
		$V_{IN} = 0.8V$	3.0	75		μΑ
		V _{IN} = 2.0V	3.0	-75		
Bushold Input Over-Drive Current to Change State		(Note 4)	2.7	300		μА
		(Note 5)	2.7	-300		
		(Note 4)	3.6	450		μΑ
		(Note 5)	3.0	-450		1
3-STATE Output Leakage		$0 \le V_O \le 5.5V$	22 26		+ 5 0	
		$V_I = V_{IH}$ or V_{IL}	2.3 – 3.0		±3.0	μΑ
Power-Off Leakage Current		V _O = 5.5V	0		10	μΑ
Quiescent Supply Current		$V_I = V_{CC}$ or GND	2.3 – 3.6		20	μΑ
Increase in I _{CC} per Input		$V_{IH} = V_{CC} - 0.6V$	2.3 – 3.6		500	μΑ
	Input Leakage Current Bushold Input Minimum Drive Hold Current Bushold Input Over-Drive Current to Change State 3-STATE Output Leakage Power-Off Leakage Current Quiescent Supply Current	Input Leakage Current Data Control Bushold Input Minimum Drive Hold Current Bushold Input Over-Drive Current to Change State 3-STATE Output Leakage Power-Off Leakage Current Quiescent Supply Current		$ \begin{array}{ c c c c } \hline \textbf{Parameter} & \textbf{Conditions} & \textbf{(V)} \\ \hline \textbf{Input Leakage Current} & \textbf{Data} & \textbf{V}_1 = \textbf{V}_{CC} \text{ or GND} & 2.3 - 3.6 \\ \hline \textbf{Control} & 0 \leq \textbf{V}_1 \leq 5.5 & 2.3 - 3.6 \\ \hline \textbf{Bushold Input Minimum} & \textbf{V}_{IN} = 0.7V & 2.3 \\ \hline \textbf{V}_{IN} = 1.7V & \hline \textbf{V}_{IN} = 0.8V & 3.0 \\ \hline \textbf{Sushold Input Over-Drive} & \textbf{(Note 4)} & 2.7 \\ \hline \textbf{Current to Change State} & \textbf{(Note 4)} & 2.7 \\ \hline \textbf{(Note 5)} & \hline \textbf{(Note 5)} & 3.6 \\ \hline \textbf{3-STATE Output Leakage} & 0 \leq \textbf{V}_O \leq 5.5V & 2.3 - 3.6 \\ \hline \textbf{Power-Off Leakage Current} & \textbf{V}_O = 5.5V & 0 \\ \hline \textbf{Quiescent Supply Current} & \textbf{V}_I = \textbf{V}_{CC} \text{ or GND} & 2.3 - 3.6 \\ \hline \end{array} $	$ \begin{array}{ c c c c c } \hline \textbf{Parameter} & \textbf{Conditions} & \textbf{(V)} & \hline \textbf{Min} \\ \hline \textbf{Input Leakage Current} & \textbf{Data} & \textbf{V}_1 = \textbf{V}_{CC} \text{ or GND} & 2.3 - 3.6 \\ \hline \textbf{Control} & 0 \leq \textbf{V}_1 \leq 5.5 & 2.3 - 3.6 \\ \hline \textbf{Bushold Input Minimum} & \textbf{V}_{IN} = 0.7V & 2.3 & 45 \\ \hline \textbf{Drive Hold Current} & \textbf{V}_{IN} = 1.7V & 2.3 & 75 \\ \hline \textbf{V}_{IN} = 0.8V & 3.0 & 75 \\ \hline \textbf{V}_{IN} = 2.0V & 3.0 & 75 \\ \hline \textbf{Current to Change State} & \textbf{(Note 4)} & 2.7 & 300 \\ \hline \textbf{(Note 4)} & 3.6 & 450 \\ \hline \textbf{(Note 5)} & 3.6 & 450 \\ \hline \textbf{3.STATE Output Leakage} & 0 \leq \textbf{V}_O \leq 5.5V & 2.3 - 3.6 \\ \hline \textbf{Power-Off Leakage Current} & \textbf{V}_O = 5.5V & 0 \\ \hline \textbf{Quiescent Supply Current} & \textbf{V}_1 = \textbf{V}_{CC} \text{ or GND} & 2.3 - 3.6 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c } \hline \textbf{Parameter} & \textbf{Conditions} & \textbf{(V)} & \hline \textbf{Min} & \textbf{Max} \\ \hline \textbf{Input Leakage Current} & \textbf{Data} & \textbf{V}_1 = \textbf{V}_{CC} \text{ or GND} & 2.3 - 3.6 & \pm 5.0 \\ \hline \textbf{Control} & 0 \leq \textbf{V}_1 \leq 5.5 & 2.3 - 3.6 & \pm 5.0 \\ \hline \textbf{Bushold Input Minimum} & \textbf{V}_{IN} = 0.7V & 2.3 & 45 \\ \hline \textbf{V}_{IN} = 1.7V & 2.3 & -45 \\ \hline \textbf{V}_{IN} = 0.8V & 3.0 & 75 \\ \hline \textbf{V}_{IN} = 2.0V & 3.0 & 75 \\ \hline \textbf{Current to Change State} & \textbf{(Note 4)} & 2.7 & 300 \\ \hline \textbf{(Note 5)} & -300 & -300 \\ \hline \textbf{(Note 5)} & -450 & -450 \\ \hline \textbf{3.STATE Output Leakage} & 0 \leq \textbf{V}_{O} \leq 5.5V & 2.3 - 3.6 & \pm 5.0 \\ \hline \textbf{Power-Off Leakage Current} & \textbf{V}_{O} = 5.5V & 0 & 10 \\ \hline \textbf{Quiescent Supply Current} & \textbf{V}_{I} = \textbf{V}_{CC} \text{ or GND} & 2.3 - 3.6 & 20 \\ \hline \end{array} $

Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH.

AC Electrical Characteristics

	_		$T_A = -40$ °C to $+85$ °C, $R_L = 500 \Omega$					
Symbol		$\textrm{V}_{\textrm{CC}}=\textrm{3.3V}\pm\textrm{0.3V}$		$V_{CC} = 2.7V$		$\textrm{V}_{\textrm{CC}}=\textrm{2.5V}\pm\textrm{0.2V}$		Units
	Parameter	C _L =	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF	
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.0	5.3	1.0	6.0	1.0	6.4	
t _{PLH}	Data to Output	1.0	5.3	1.0	6.0	1.0	6.4	ns
t _{PZL}	Output Enable Time	1.0	6.3	1.0	7.1	1.0	8.2	
t _{PZH}		1.0	6.3	1.0	7.1	1.0	8.2	ns
t _{PLZ}	Output Disable Time	1.0	5.4	1.0	5.7	1.0	6.5	
t _{PHZ}		1.0	5.4	1.0	5.7	1.0	6.5	ns
toshl	Output to Output Skew (Note 6)		1.0					
toslh			1.0					ns

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$	Units
- Cyllibol	rarameter	Conditions	(V)	Typical	Onito
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.35	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.25	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.35	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.25	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V, V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}$	20	pF

Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)

V_{l}	CL
6V for $V_{CC} = 3.3V, 2.7V$	50 pF
V_{CC} * 2 for $V_{CC} = 2.5V$	30 pF

Waveform for Inverting and Non-Inverting Functions

3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and \mathbf{t}_{rec} Waveforms

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

FIGURE 2. Waveforms (Input Characteristics; f = 1MHz, $t_R = t_F = 3ns$)

Symbol	V _{CC}				
Symbol	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V		
V_{mi}	1.5V	1.5V	V _{CC} /2		
V_{mo}	1.5V	1.5V	V _{CC} /2		
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V		
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V		

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com