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Hifn™ supplies the Internet’s most important raw materials for the creation of 
intelligent and secure networks: compression, encryption, and flow 
classification. This is central to the growth of the Internet, helping to make 
electronic mail, web browsing, Internet shopping and multimedia 
communications better, faster and more secure. 
 
750 University Avenue 
Los Gatos, CA  95032 
info@hifn.com 
http://www.hifn.com 
Tel: 408-399-3500 
Fax: 408-399-3501 
 
For technical support, please contact your local Hifn sales office, 
representative or distributor. For locations check: www.hifn.com. 
 

Disclaimer 

Hifn reserves the right to make changes to its products or to discontinue any semiconductor product 
or service without notice, and advises its customers to obtain the latest version of relevant 
information to verify, before placing orders, that the information being relied on is current. 

Hifn warrants performance of its semiconductor products and related software to the specifications 
applicable at the time of sale in accordance with Hifn's standard warranty. Testing and other quality 
control techniques are utilized to the extent Hifn deems necessary to support this warranty. Specific 
testing of all parameters of each device is not necessarily performed, except those mandated by 
government requirements. 

Certain applications using semiconductor products may involve potential risks of death, personal 
injury, or severe property or environmental damage ("Critical Applications"). 

HIFN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, 
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, 
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. 

Inclusion of Hifn products in such critical applications is understood to be fully at the risk of the 
customer. Questions concerning potential risk applications should be directed to Hifn through a local 
sales office. 

In order to minimize risks associated with the customer's applications, adequate design and operating 
safeguards should be provided by the customer to minimize inherent or procedural hazards. 

Hifn does not warrant that its products are free from infringement of any patents, copyrights or other 
proprietary rights of third parties. In no event shall Hifn be liable for any special, incidental or 
consequential damages arising from infringement or alleged infringement of any patents, copyrights 
or other third party intellectual property rights. 

“Typical” parameters can and do vary in different applications. All operating parameters, including 
“Typicals,” must be validated for each customer application by customer’s technical experts.  

The use of this product in stateful compression protocols (for example,. PPP or multi-history 
applications) with certain configurations may require a license from Motorola. In such cases, a 
license agreement for the right to use Motorola patents may be obtained through Hifn or directly 
from Motorola. 

AN-0045-01 (05/02)  2002 by Hi/fn®, Inc., including one or more U.S. patents No.: 
4,701,745, 5,003,307, 5,016,009, 5,126,739, 5,146,221, 5,414,425, 5,414,850, 5,463,390, 
5,506,580, 5,532,694. Other patents pending. Hi/fn and LZS® are registered 
trademarks of Hi/fn, Inc. Hifn is a trademark of Hi/fn, Inc. All other trademarks 
are the property of their respective holders. 

 
This product must be exported from the United States in accordance with the 
Export Administration Regulations. Diversion contrary to U.S. law prohibited. 
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1 Overview 

1.1 Scope of this Document 
This application note contains information about the 7814, 7851, and 7854 
streaming bus interface which may be helpful in understanding the streaming 
bus and determining its suitability for a particular application.  Interface 
architectures and system level design considerations discussed within this 
document are intended for use as a general guide when designing with the 78xx 
security processors. 
 
Hifn introduced the streaming bus host interface beginning with the 7851 
security processor.  Subsequently, the entire 78xx family of security processors 
adopted the streaming bus interface.  The 7814, 7851, and 7854 all share a 
common architecture, a common package, and a common pinout. 
 
The reader is assumed to have a general knowledge of the architecture of the 
7814, 7851 and 7854.  Refer to the 7814_7851_7854  Device Specification, DS-
0030 for more information on these devices. 
 

1.2 Streaming Bus Description 
The streaming bus is a synchronous FIFO based interface that contains two 
independent 32-bit buses, one for input and one for output.  The interface is 
designed so that a host network processor may interface to as many as four 78xx 
devices which may share a common streaming bus interface.  From the host 
processors perspective, the 78xx streaming bus interface is a bus slave.   
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Figure 1. The Streaming Bus Interface 
 
In 78xx security processors the streaming bus interface is considered an 
alternate to the PCI bus since both interfaces share common pins.  Only one 
interface can be active at the same time.  If the streaming bus is enabled, packets 
must flow over the streaming interface. Otherwise, they flow across PCI, 
controlled by the inbound and outbound DMA units. 
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Since only one interface may be used at a time, there are bound to be unused 
pins in the 78xx application.  In streaming bus mode the unused PCI inputs 
should be pulled to their inactive state or pulled up to VDD through resistors.  
Any value between 1K and 50K ohms will work.  The unused outputs may be 
left unconnected. 
 
The most important distinction between the streaming bus interface and the PCI 
or private CPU interface is that the streaming bus is a specialized mechanism for 
transferring packets and requests to the security processor.  The streaming bus 
does not directly support read or write access to processor registers, private 
memory, or the public-key core.  Unlike the PCI interface, the streaming bus 
does not contain DMA units.   
 
 
The following figure illustrates how data flows through the Inbound and 
Outbound ports of the 78xx streaming bus interface.  Incoming packets ingress 
through the Inbound streaming port and consist of a command message, 
followed by source descriptors, and source data fragments.  The processed 
packets egress through the Outbound port and consist of a result messages 
followed by destination data.  Notice that the command message contains a field 
NS which defines the number of source fragments in the packet.       
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Figure 2.  Packet Flow in Streaming Bus Mode 
 
In streaming bus mode, the inbound bus is designed to transfer command 
messages and unprocessed packet data into the 78xx processor.  The outbound 
bus transfers the processed packet data and result messages back to the host.  
The streaming bus interface is considered to be high-speed since it eliminates 
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the overhead of PCI and supports simultaneous bi-directional data transfer.  The 
figure below depicts a single 7854 application using the streaming bus interface.   
 

Hi/fn 78xx
Security

Processor

Private Memory
Security Subsystem

64

Sync Bus
32 32

Packet Flow

Session
Management

Private CPU
Interface

X-bus Streaming
Bus FPGA

or ASIC

Host Network
Porcessor

Host Memory

 
Figure 3. 78xx Application with Streaming Bus Interface 
 
In this figure packets flow over the Inbound and Outbound streaming bus while 
session management takes place over the private CPU interface.  In streaming 
bus applications the private processor interface should be used to initialize 78xx 
registers, load DPU programs, perform all session management functions, and 
handle security processor exceptions.  In 7854 and 7814 streaming bus 
applications the private processor interface should also be used for host access 
to the public key engine.   
 
The following sections of this document will discuss architectural 
considerations which apply to 78xx systems which may utilize the streaming 
bus interface.  These considerations include host interface methodology, the 
placement of the FIPS security boundary, optional use of the private processor, 
options for Hifn’s HSP session management software, and recommendations for 
implementing multiple 78xx devices on a shared streaming bus interface.  This 
document also contains information about streaming bus interface signaling, 
flow control, and session setup.  The last section of this document contains a 
streaming bus example.   
 



 7814/7851/7854 Streaming Bus 
 

   
AN-0045-01  APPLICATION NOTE Page 7 

2 Designing with the Streaming Bus 

2.1 Choosing between the PCI and Streaming Interface 
System performance and host interface architecture are the primary 
considerations when choosing between either the PCI or streaming bus modes.  
Systems which employ PCI architectures may naturally lend themselves toward 
using the PCI interface.  On the other hand, systems which require several 78xx 
security processors and performance beyond PCI may be better suited for using 
a shared streaming bus. 
 
In PCI systems packets ingress and egress over the same bus.  In streaming bus 
systems packets simultaneously flow through separate 32-bit wide Inbound and 
Outbound data paths at speeds up to 2 Gigabits per second (4 Gigabits/sec. full 
duplex) maximum at 66 Mhz.  Additionally, the streaming bus is a fully 
dedicated interface.  Packets flow on demand.  And, unlike PCI, there is no bus 
arbitration.    
 
Either the streaming bus or PCI may be used in multi-chip 78xx systems.  
Systems with more than two 78xx processors may be forced to use the 
streaming bus mode.  Of course this assumes that multiple 78xx processors will 
share either a single PCI or streaming bus.  While multiple PCI and/or streaming 
busses could be used in the system, a single shared bus is assumed to be more 
desirable. 
 

2.2 Multi-chip Streaming Bus Applications 
Applications which require higher overall performance may connect up to four 
78xx devices to a single streaming bus interface.  The Outbound streaming bus 
interface is tri-statable and the Inbound bus is inactive if the sync_write signal is 
not asserted.  The following figure contains an example application which 
utilizes multiple 78xx processors which share a single streaming bus interface.   
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Figure 4. Multichip Application with shared Streaming Bus Interface 
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Shared streaming bus applications require some provision for the host to address 
individual devices on the shared bus.  This may be accomplished several ways.  
The two most common ways are to memory map the individual 78xx devices (as 
shown) or utilize the pass-through field in the command message.  Again, host 
architecture may lend itself more strongly toward one or the other.  If the host 
interface to FPGA/ASIC is similar to the streaming bus, the host could easily 
embed an address into the pass-through field.  These bits could subsequently be 
decoded by glue logic and used to select a 78xx device from the shared 
streaming bus by asserting the sync_read and sync_write signals for the desired 
target.  If the host interface to FPGA/ASIC is a traditional address and data bus, 
a memory mapped addressing mechanism may be more appropriate. 
 

2.3 Streaming Mode Boot Sequence 
In streaming bus mode the host is required to perform all of the private 
processor functions including the 78xx device initialization sequence.  As with 
session management in streaming bus mode, the initialization process takes 
place over the private processor interface.  This process must be performed 
before any sessions are opened in 78xx private memory.  The sequence involves 
programming all 78xx registers to their desired operating state, which may reset, 
enable, and disable certain logic blocks.  Then all required DPU programs must 
be loaded into private memory.   
 
The actual register initialization values are application specific.  Refer to the 
7814_7851_7854 Device Specification for register descriptions.  Also, the 7851 
Verilog Model Application Note, AN-0022 and the 7814/7854 Verilog Model 
Application Note, AN-0048 provide complete examples of initialization and 
packet processing in both PCI and streaming modes. 
 

2.4 Session Management in Streaming Bus Mode 
 This section describes how session handling may be accomplished over the 
streaming bus interface (without a private processor).  Session setup must be 
performed by either the private processor or the host network processor.  
Session setup is never performed by the 78xx.  The following session setup 
tasks must be performed before any packets for the session are sent across the 
streaming bus : 

• An unused session number must be allocated to the session. 
• The session context must be initialized to appropriate values.  Session 

context resides in private SDRAM memory and consists of small 
session context and optional large session and compression context(s). 

• The DPU program(s) that are going to process the packets in the 
session must be loaded into private memory.  This task is typically 
done only once at the beginning of several similar sessions.    

These tasks will all take place through the private processor interface.  They 
are essentially made up of private memory reads and writes which take place 
through the private processor interface.  For this to be accomplished in a 
streaming bus application, interface logic between the host and 78xx device 
must drive memory transactions through the private processor interface.  In the 
most basic sense, this may be accomplished through the generation of address, 
data, and control signals which mimic session handling as it would be 
performed by a private processor.  The following figure illustrates the concept 
of a host interface to 78xx private processor interface through a FPGA device.  
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Figure 5. Host Interface to 78xx Private Processor Interface 
 

2.4.1 Using the Trap Queues for Session Management 
The Trap_out_q and Trap_in_q registers are designed for moving core 
descriptor indexes to and from the private processor and 78xx DPU core.  These 
queues enable the private processor to transfer and receive security/compression 
tasks to and from the 78xx DPU core.   
 
There can be hidden difficulties when using these queues in streaming bus 
applications where the host is required to perform all of the regular private 
processor duties.  For example, assume that the host traps an operation to the 
DPU core.  The DPU then completes the required processing and initiates a trap 
back to the private cpu (host processor in this example).  If the host doesn’t 
respond immediately, or mishandles the return trap, all processing for the 
associated session may be stalled.  As a result, Hifn strongly recommends that 
our customers either do not try to manipulate the trap queues or use Hifn 
reference software for these functions.  Such software is subject to Hifn 
availability.  Contact your Hifn representative for more information. 
  

2.5 Private Processor Interface in Streaming Bus Mode 
The following diagram illustrates how host interface logic may be connected to 
the 78xx private processor interface.  A bus controller must be generated in the 
customer logic block if more than one 78xx device is being addressed on the 
same private interface bus.  Example bus control logic is shown.   
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Customer Logic Hifn 78xx
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ColdReset*
Reset*
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SysCmd[8:0]
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RdRDY*
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MIPS_VALIDIN#

MIPS_W RRDY_EXT#

MIPS_W RRD_RDY#

MIPS_RDRDY_EXT#
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VDD

 
Figure 6. Private Processor Interface in Streaming Bus Mode  

 
 
 

2.6 Load Balancing with multiple 78xx devices 
When multiple 78xx security processors share a single streaming bus, various 
load balancing schemes may be used to help ensure a high degree of overall 
system utilization.  One of the simplest load balancing methods is to statically 
assign certain blocks of session numbers to each 78xx device on the shared 
streaming bus.  Using this method, incoming packet session numbers are used to 
route entire packets to the appropriate 78xx device.  This method alone may be 
sufficient for systems which have no requirement for the ordering of processed 
packets. 
 
In some systems it may be necessary to export packets in the same order they 
are received.  In this situation the host may build and maintain an index table 
whereby Inbound packets may be assigned an identifier which records which 
packet processor was assigned each particular command.  Head and tail pointers 
in the index table may be used to read result messages and retire packets in the 
same order they are received.  And, if the pass through field in the command 
message contains the index number, the result message, which will also contain 
that index number, may be used as an error checking mechanism to ensure 
synchronicity is maintained with the stream.  Other more elaborate methods 
exist, but depend largely on the software and hardware capabilities of the end 
application. 
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2.7 Signaling Considerations in Streaming Bus Mode 
 

2.7.1 Deasserting the sync_write signal mid-stream  
Streaming bus operation and timing requirements are described in the 
7814_7851_7854 Device Specification, DS-0030.  Streaming bus writes can be 
contiguous or  non-contiguous.  For example, when the host processor is writing 
words that make up a command descriptor it is not necessary to deassert the 
write signal before writing data words.  It is, however, acceptable to pause mid-
cycle by deasserting the write signal.  The write process may resume on any 
future clock cycle by reasserting the write signal.   
 
The following figure illustrates a typical write cycle for a command message.  In 
this example one of the SYNC_IN_LEVEL signals indicates that the Inbound 
FIFO has reached some predefined threshold after the first word is written.  The 
host subsequently deasserts the write signal and waits for the Inbound level 
indicator to transition back to zero and signify that there is room in the Inbound 
FIFO for writing additional words.  In the given example, the 
SYNC_IN_LEVEL signal may be assumed to be set at some unknown arbitrary 
value.  Also, it is assumed that a sufficient amount of data has already been 
written to the Inbound FIFO so that the threshold for the level signal is met or 
exceeded by the first word of the write transaction.  The next section describes 
the FIFO level signals in greater detail. 
 

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00020000 00000002 00000002 80CB0000

The host write is delayed while the Inbound
FIFO level  indicates a full FIFO.

cdef

Set to >= 60
32-bit dwords

 
Figure 7. Example Streaming Bus WRITE with 3-cycle pause. 
 
 
The same conditions apply to reading data from the streaming bus.  The read 
signal may be deasserted at any time during the sequence when words are being 
read.  The read process may resume once the read signal is reasserted at a later 
time.  The following figure illustrates a typical streaming bus read transaction 
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where the Outbound FIFO level signals are used to gate single and multi cycle 
read sequences.    
 

SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0]
0000000A 00000002

SYNC_READ

0000

Set to >= 0
32-bit dwords

Set to >= 2
32-bit dwords

Notice the FIFO level signals are
used to gate sync reads on and off.

 
Figure 8. Example Streaming Bus READ with pause. 
 
Notice that the read signal is asserted for one cycle and then deasserted for 5 
subsequent cycles.  In this example the Outbound FIFO initially has only one 
word available, which is read at cycle 4.  Later, the SYNC_READ signal is 
reasserted in cycle 8 since the FIFO level signals, which are described in the 
next section, indicate that there are more words in the Outbound FIFO.    

2.7.2 FIFO level signals 
The host may use register programmable FIFO fullness signals to determine 
when there is data in the Inbound or Outbound FIFOs.  The 78xx provides 3 
signals for Inbound FIFO level detection and 3 signals for Outbound FIFO level 
detection.   These signals may be used by the host to gate inbound and outbound 
read and write bursts for maximum throughput with minimum host intervention.  
A typical implementation may program one level signal to indicate a FIFO full 
condition which would gate off all host transfers to prevent FIFO overrun.  A 
second FIFO level indicator may be programmed to signal that the FIFO is at 
some intermediate fullness which may correspond to the maximum burst 
transfer size of the host.  Then the third FIFO fullness signal could be 
programmed to signal a FIFO empty condition that may interrupt the host and 
trigger a burst read or write so that the 78xx processor achieves 100% 
utilization.  
 
It is important to recognize that there is a cycle delay between a level change in 
the Outbound FIFO and the update to the associated level signal(s).  On the 
Inbound FIFO there is a 3-cycle delay between writing a dword and any updates 
to the associated FIFO level signals.  Assuming the output enable is active, on 
every clock in which the read signal is active, data is read from the Outbound 
FIFO and is driven onto the output pins two cycles later. The Outbound FIFO 
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levels are driven three cycles after the sync_read is asserted.  See the 78xx 
device spec for the timing diagram of a Sync read.   
 
Software routines that service the Inbound and Outbound FIFOs should be 
written so that command, source and destination data, and result messages are 
written and read in their entirety.  Since destination data length is independent 
of the command or source data length, Outbound read routines should not be 
written solely for fixed length multi-word block reads.  For optimum Outbound 
efficiency, it may be helpful to program one of the Outbound FIFO level 
indicators to four (level=4) and another to one (level=0).  The host may read 
blocks of four when the level=4 signal is asserted.  When the level=4 signal 
subsides, the host may poll the level=1 signal to finish up reading the result 
message.  This may prevent a single destination word from remaining in the 
Outbound FIFO without being read by the host.   
 
Managing the Outbound level indicator signals and associated read cycles may 
be somewhat more complicated than those of the Inbound side.  This is because 
it is generally easier to write large blocks to the Inbound FIFO at one time 
without having to manage individual dword write sequences.  In fact the host 
may make burst writes to the Inbound FIFO until it is gated off by the 
SYNC_IN_LEVEL signal(s).  The Outbound FIFO works the same way except 
that the host must take into consideration that there are delays between asserting 
the read signal and reading from the Outbound FIFO and the update to the 
Outbound FIFO level signal(s).  The following figure illustrates how the 
Outbound FIFO level signals may be used to gate a block read and subsequent 
individual read cycles.    
 

SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0] 01234567 89abcdef

SYNC_READ

Set to >= 0
32-bit dwords

Set to >= 4
32-bit dwords

Notice it takes 3 cycles for
sync_out_level[0] to update
 after the read was asserted.

def 89abcdef 01234567

3 cyc.

 
Figure 9. Example use of Outbound FIFO level signals. 
 
Notice in cycle 1, the SYNC_OUT_LEVEL[1] signal transitions low to tell the 
host that there are 3 or less dwords remaining in the Outbound FIFO.  Since 
there is a cycle delay between a FIFO level change and an update to the FIFO 
level signal, this condition must have began on the last cycle, which was a read 
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cycle.  In response, the host must immediately deassert the read signal (in cycle 
2) to prevent a read underflow condition.  The last two dwords are read in 
cycles 3 and 4 due to the 2-cycle delay between deasserting the read signal and 
the final word being read.  In this particular situation the 
SYNC_OUT_LEVEL[1] signal gated off the host read process just in time to 
read all of the data from the Outbound FIFO.  In cycle 6 the 
SYNC_OUT_LEVEL[0] signal tells the host that there is at least one more 
dword waiting in the Outbound FIFO.  It is read in cycle 9.  Also notice that it 
takes 3 cycles for the SYNC_OUT_LEVEL[0] signal to update from the time 
the read signal was asserted by the host.    
 
The Inbound FIFO level signaling is slightly simpler.  There is a 3-cycle delay 
between writing the data and the update to the level signal(s).  The following 
figure illustrates how the Inbound FIFO level signals may be used to gate off a 
burst write to the 78xx device. 
 

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00020000 00000002 00000000 80CB0000

Set to >= 58
32-bit dwords

Since the level signal is programmed for 58 dwords and we know
the Inbound FIFO has 64 total spaces, the host may safely write the

additional dwords (shown) before deasserting the write signal.

78ab

 
Figure 10. Example use of an Inbound FIFO level signal. 
 

2.7.3 Overflow and Underflow 
Inbound FIFO overflow and Outbound FIFO underflow both require a reset of 
the internal FIFO control logic.  A status bit in the pci_stat register is set if the 
host tries to write data to the Inbound FIFO when it is full.  If enabled in the 
pci_int_mask register, this status bit will generate an interrupt on the 
sync_interrupt pin to signal the overflow.  Reading an empty outbound FIFO is 
handled the same way.  When the host tries to read from an empty Outbound 
FIFO, a separate status bit is set in the pci_stat register. 
 
Data is lost when the host tries to write to an already full Inbound FIFO.  
Similarly, invalid stale data will be read from a empty Outbound FIFO.  In both 
situations, the internal pointing mechanism of the FIFO becomes corrupt and 
must be reset by writing to the appropriate reset bit in the Inbound and 
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Outbound control registers.  For the Inbound FIFO this bit is located in the 
Cmd_ring_ctl register.  For the Outbound FIFO this bit is located in the 
Rslt_ring_ctl register.      

2.8 Commands and Headers 

2.8.1 Zero Length Source Descriptors 
A command message may contain zero associated source descriptors (NS=0).  
In this situation the command has no data and may immediately be followed by 
a new command.  However, on Inbound FIFO writes it is important to realize 
that the number of bytes in a source descriptor cannot be zero.  Software write 
routines that are designed to handle blocks of source fragments should not be 
written in such a way that zero sized source descriptors are used to fill up 
remaining words to finish out a block transfer or fill a boundary.   

2.8.2 Pass a Header Through the 78xx 
Some applications require in band communications between subsystems.  In 
streaming bus mode, a 78xx DPU program could allow a variable length header 
to pass through the security processor unprocessed.  Such software is subject to 
Hifn availability.  Contact your Hifn representative for more details.  The 
following diagram illustrates a customer header which is surrounded by 
command and packet data. 
 

 

CmdSrcHeader

78xxHost

SYNC_IN_D[31:0]Packet

Header Rslt Msg Packet SYNC_OUT_D[31:0]

 
Figure 11. Example Header Use 
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3 HSP in Streaming Bus Mode 
For most 78xx streaming bus implementations, customers will use Hifn’s 
Software Development Kit (SDK).   
 
78xx HSP software is designed only for PCI applications.  When using HSP, the 
private processor is responsible for performing session setup and management 
through the private processor interface.  Session setup involves programming 
session context into private memory prior to the security processor ever 
receiving or processing packets associated with the new sessions.  This 
alleviates a significant amount of processing from the host CPU.   
 
In some 78xx streaming bus applications it may be possible to use HSP.  In this 
situation session management communications would likely flow through the 
private processor bus.  However, HSP software in this type of  application is 
subject to Hifn availability.  Contact your Hifn representative for more 
information.  The following diagram illustrates this type of system.  To protect 
the security boundary afforded by HSP, the private processor interface block on 
the FPGA or ASIC should be designed to be a slave only.  If it were a master 
block with arbitration, the security boundary would encompass the host network 
processor since it would have access to key material. 
  
 

Security Processor

FPGA or
ASIC

Streaming
Bus

32 32

Host Network
Porcessor

Hi/fn 78xx
Security

Processor

Private Memory

Host Memory

X-Bus

Private
Processor

 
Figure 12. 78xx Streaming Bus w/ Private Processor and HSP 
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3.1 The Security Boundary 
The private CPU and HSP software make a security boundary possible and 
offload exception processing and session setup and teardown overhead from the 
host. It also simplifies the host software by encapsulating most of the security 
software in the security subsystem.  The following figure highlights a FIPS 140-
1 security boundary in a streaming bus application which uses one 78xx device 
with private processor present.     
 

FIPS 140-1
Security Boundary

FPGA or
ASIC

Streaming
Bus

32 32

Host Network
Porcessor

Hi/fn 78xx
Security

Processor

Private Memory

Host Memory

X-Bus

Private
Processor

 
Figure 13. 78xx Security boundary (with private processor present) 
 
The private processor, running HSP software, would have direct access to 
private memory session context, including key material.  Assuming the private 
processor is present, this sensitive information is contained within the security 
boundary as shown.  However, HSP in this type of application is subject to Hifn 
availability.  Contact your Hifn representative for more information.   
 
If the private processor is not present, the host is required to perform all of the 
private processor tasks.  In this situation the security boundary expands to 
include the host CPU, host memory, and any interface logic, which is used to 
connect to the private processor interface.  In applications without the private 
processor the host CPU and host memory will have access to session context 
and contain key materials.  The following figure shows how the security 
boundary is expanded in systems which have no private processor. 
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FIPS 140-1 Security Boundary
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Figure 14. Security boundary (without a private processor present) 
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4 Streaming Bus Example 
The 78xx streaming bus is described in this section using an example. 

We assume the 78xx is configured in Streaming bus mode, is out of reset and a 
session is set up in the SDRAM for the desired compression or encryption 
operation. We assume the required DPU program is loaded in SDRAM at 
function code offset 0. We assume that all Sync interrupts are disabled and we 
ignore parity. 

4.1 Streaming Bus Initialization 
Initialization of the Sync Interface requires register writes to cmd_ring_ctl and 
rslt_ring_ctl.    

cmd_ring_ctl is written with 32’h7C3C_0018. Referring to the device 
specification  we see that this value means the Inbound FIFO is out of reset, the 
command message endian is set to 32-bit big and the Inbound FIFO is enabled. 
Inbound parity is disabled and the inbound bus mode is 32. In_FIFO_Level_0 = 
31, In_FIFO_Level_1 = 15 and In_FIFO_Level_2 = 0.  

In_FIFO_Level_0 = 31 means SYNC_IN_LEVEL[0] is 0 when the Inbound FIFO 
is empty. It is not used in this example.  

In_FIFO_Level_2 = 0 means SYNC_IN_LEVEL[2] is 0 when the Inbound FIFO is 
not full. It is not used in this example. 

In_FIFO_Level_1 = 15 means SYNC_IN_LEVEL[1] is 0 when the Inbound FIFO 
has >= 30 dwords of free space in it. It is used in the following write rule: 

• If SYNC_IN_LEVEL[1] = 0 then write, else do not write. 

This rule ensures that we can burst 16 qwords (32 dwords) to the 78xx without 
Inbound FIFO overflow. This is just one example. Many other write rules could 
be designed. 

rslt_ring_ctl is written with 32’h0008_7C18. Referring to the device 
specification we see that this value means the Outbound FIFO is out of reset, the 
result data endian is set to 32-bit big and the Outbound FIFO is enabled. 
Outbound parity is ignored and the outbound bus mode is 32. 
Out_FIFO_Level_0 = 0, Out_FIFO_Level_1 = 2 and Out_FIFO_Level_2 = 31. 

Out_FIFO_Level_2 = 31 means SYNC_OUT_LEVEL[2] is 0 when the Outbound 
FIFO is full. It is not used in this example. 

Out_FIFO_Level_1 = 2 means SYNC_OUT_LEVEL[0] is 0 when the Outbound 
FIFO contains 4 or more 32-bit dwords in it.  

Out_FIFO_Level_0 = 0 means SYNC_OUT_LEVEL[1] is 0 when the Outbound 
FIFO is not empty.   SYNC_OUT_LEVEL[1] will be 1 when the Outbound FIFO is 
empty.  This signal is polled to prevent read underflow when the host is reading 
out the last dwords from the FIFO.    

 

The read rule is: 

• If SYNC_OUT_LEVEL[1] = 0 then read and do not wait. 

• Else if SYNC_OUT_LEVEL[0] = 0 then read and wait 2 clocks. 
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• Else do not read. 

This rule ensures that we can perform continuous reads while there are in excess 
of 2 dwords from the 7851 without the danger of reading from an empty FIFO.  
When there is only one dword in the Outbound FIFO, we only allow the host to 
read a single dword, wait for 2 cycles, and poll the level signals again.  Again 
this prevents the host from reading from an empty FIFO.  This is just one 
example. Many other read rules could be designed. 
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4.2 Writing the Command and Source Fragments 
An operation begins by the host writing a command message over the Sync bus 
to the Inbound FIFO. Let the command message be given by  

128’h0002_0000_0000_0002_0000_0000_80CB_0000 

Referring to the device specification, we see that, for this command, the number 
of source descriptors, NS, is 2, the overflow bit is zero, the Session Number is 
2, the Command Parameter is 0, the Valid Bit is 1, the Function Code is 0, and 
the pass through value is 8’hCB.  The following figure shows the Sync Bus 
signals during this command write.  

 

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00020000 00000002 00000000 80CB0000

Set to >= 30
32-bit dwords In this example the write is gated

off when the free space in the
Inbound FIFO falls below 34

dwords ( 64-30=34) .

 
Figure 15. Host writes command. 
 
The host then writes the first of the 2 source descriptors followed by its data, 
and then the second of the 2 source descriptor followed by its data. Let the first 
source descriptor be given by  

64’h0000_0000_1000_0003 

Referring to the device spec we see that, for this source descriptor, the byte 
alignment is 0, the source data endian is 32-bit big and the fragment size is 3 
bytes. The following figure shows the Sync Bus signals during the write of the 
source descriptor and the 3 bytes of data given by 

24’h1234_56 
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SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00000000 10000003 123456xx

Set to >= 30
32-bit dwords

This write is continuous  since the
FIFO level does not exceed its

threshold during the write sequence.

 
Figure 16. Host writes first source descriptor and 3 bytes of data. 
 

Let the second source descriptor be given by  

64’h0000_0003_3000_0005 

Referring to the device spec we see that, for this source descriptor, the 32-bit 
byte alignment is 3, the source data endian is 32-bit little and the fragment size 
is 5 bytes. The following figure gives the timing diagram for the write of the 
second source descriptor and data given by 

40’habcd_ef01_23   

which is 40’h80F7_B3D5_C4 in 32-bit little endian format 
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SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00000003 30000005 xxxxxx80 F7B3D5C4

Set to >= 30
32-bit dwords

The wrie signal doesn't have
to be deasserted after this data is
written.  The next command cound

immediately follow.

Even though the FIFO level indicator
transitions high in the first cycle, the
host may continue writing up to 34

dwords before the FIFO is actually full.

xxxxx

 
Figure 17. Host writes second source descriptor and 5 bytes of 
data. 
 

4.3 Reading the Result Message and Destination Data 
In parallel to writing, the host may read result and destination data from the 
Outbound FIFO as it becomes available.  

The following figure gives the timing diagram for reading the result message:  

128’h0000_0014_0000_0002_0000_0000_00CB_0000 

Referring to the device spec this result message has Total Destination Count = 
20, Session Number = 2, Result Parameter = 0, a pass through value of 8’hCB, 
A = 0, C = 0, Result Flags = 0 and Result Code = 0. 
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SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0] 00000014 00000002

SYNC_READ

00000000 00CB0000

Set to >= 0
32-bit dwords

Set to >= 4
32-bit dwords

Only one byte is read at this time since
the level  signals indicate there is
between 1 and 3 dwords waiting .

Here it becomes safe to read up to 4 consecutive
dwords since the level signals indicate there are at

lease 4  dwords in the Outbound FIFO.
 

Figure 18. Host reads result message. 
 

Figure 18 illustrates how the level signals are used to determine how many 
dwords are waiting to be read from the Outbound FIFO.  In the first cycle the 
level signals indicate that there are between 1 and 3 dwords waiting to be read.  
To prevent a read underflow situation, the host reads a single dword and waits 2 
cycles before polling the level signals again to determine if the FIFO is empty.  
Since the SYNC_OUT_LEVEL[1] signal transitions low for cycle 4, the 78xx 
must have dumped more dwords into the Outbound FIFO while the host was 
performing the single read.  In this situation it safe for the host to start reading 
consecutive dwords since the FIFO level is greater than 3.    

The result message is followed by destination data.  The following figure 
illustrates the timing diagram for reading the data: 

160’h0123_4567_89ab_cdef_0123_4567_89ab_cdef_0123_4567 
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SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0]

SYNC_READ

Set to >= 0
32-bit dwords

Set to >= 4
32-bit dwords The host polls SYNC_OUT_LEVEL[0]

on this cycle to determine if the
Outbound FIFO is empty.

0123456789abcdef4567 89abcdef 01234567

Now there are 3 or
less dwords

waiting to be read.

This is a single read since there are
between  1 and 3 dwords waiting.

No more reads
arre allowed.  The

FIFO is empty.

 
Figure 19. Host reads data. 
 
Figure 19 illustrates how the level signals may be used to empty out the FIFO 
without reading while it is empty.  The read process began prior to the first 
cycle and all of the result data is not shown in the figure.  When 
SYNC_OUT_LEVEL[1] transitions high there are less than 4 dwords waiting to 
be read from the outbound FIFO.  Since the level signals are updated one cycle 
after a change in the FIFOs, the host must deassert the read signal and begin 
reading only a dword at a time until the FIFO is empty or until there are 4 or 
more dwords in the FIFO.  In this situation there was only one more dwords 
waiting to be read from the Outbound FIFO.  Notice that after reading the single 
dword, the host must wait 2 cycles before polling the level signals to determine 
if there are any remaining dwords to be read.     


