

S treaming Bus
7 8 1 4 /7 8 5 1 /7 8 5 4

A p p lic a tio n N o te

 7814/7851/7854 Streaming Bus

Page 2 AN-0045-01 APPLICATION NOTE

Hifn™ supplies the Internet’s most important raw materials for the creation of
intelligent and secure networks: compression, encryption, and flow
classification. This is central to the growth of the Internet, helping to make
electronic mail, web browsing, Internet shopping and multimedia
communications better, faster and more secure.

750 University Avenue
Los Gatos, CA 95032
info@hifn.com
http://www.hifn.com
Tel: 408-399-3500
Fax: 408-399-3501

For technical support, please contact your local Hifn sales office,
representative or distributor. For locations check: www.hifn.com.

Disclaimer

Hifn reserves the right to make changes to its products or to discontinue any semiconductor product
or service without notice, and advises its customers to obtain the latest version of relevant
information to verify, before placing orders, that the information being relied on is current.

Hifn warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Hifn's standard warranty. Testing and other quality
control techniques are utilized to the extent Hifn deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage ("Critical Applications").

HIFN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Hifn products in such critical applications is understood to be fully at the risk of the
customer. Questions concerning potential risk applications should be directed to Hifn through a local
sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Hifn does not warrant that its products are free from infringement of any patents, copyrights or other
proprietary rights of third parties. In no event shall Hifn be liable for any special, incidental or
consequential damages arising from infringement or alleged infringement of any patents, copyrights
or other third party intellectual property rights.

“Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals,” must be validated for each customer application by customer’s technical experts.

The use of this product in stateful compression protocols (for example,. PPP or multi-history
applications) with certain configurations may require a license from Motorola. In such cases, a
license agreement for the right to use Motorola patents may be obtained through Hifn or directly
from Motorola.

AN-0045-01 (05/02)  2002 by Hi/fn®, Inc., including one or more U.S. patents No.:
4,701,745, 5,003,307, 5,016,009, 5,126,739, 5,146,221, 5,414,425, 5,414,850, 5,463,390,
5,506,580, 5,532,694. Other patents pending. Hi/fn and LZS® are registered
trademarks of Hi/fn, Inc. Hifn is a trademark of Hi/fn, Inc. All other trademarks
are the property of their respective holders.

This product must be exported from the United States in accordance with the
Export Administration Regulations. Diversion contrary to U.S. law prohibited.

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 3

Table of Contents
1 Overview..4

1.1 Scope of this Document ..4
1.2 Streaming Bus Description ...4

2 Designing with the Streaming Bus...7

2.1 Choosing between the PCI and Streaming Interface.........................7
2.2 Multi-chip Streaming Bus Applications..7
2.3 Streaming Mode Boot Sequence...8
2.4 Session Management in Streaming Bus Mode..................................8

2.4.1 Using the Trap Queues for Session Management...............9
2.5 Private Processor Interface in Streaming Bus Mode.........................9
2.6 Load Balancing with multiple 78xx devices10
2.7 Signaling Considerations in Streaming Bus Mode11

2.7.1 Deasserting the sync_write signal mid-stream..................11
2.7.2 FIFO level signals...12
2.7.3 Overflow and Underflow..14

2.8 Commands and Headers..15
2.8.1 Zero Length Source Descriptors15
2.8.2 Pass a Header Through the 78xx15

3 HSP in Streaming Bus Mode ...16

3.1 The Security Boundary ...17

4 Streaming Bus Example ...19

4.1 Streaming Bus Initialization..19
4.2 Writing the Command and Source Fragments21
4.3 Reading the Result Message and Destination Data.........................23

 7814/7851/7854 Streaming Bus

Page 4 AN-0045-01 APPLICATION NOTE

1 Overview

1.1 Scope of this Document
This application note contains information about the 7814, 7851, and 7854
streaming bus interface which may be helpful in understanding the streaming
bus and determining its suitability for a particular application. Interface
architectures and system level design considerations discussed within this
document are intended for use as a general guide when designing with the 78xx
security processors.

Hifn introduced the streaming bus host interface beginning with the 7851
security processor. Subsequently, the entire 78xx family of security processors
adopted the streaming bus interface. The 7814, 7851, and 7854 all share a
common architecture, a common package, and a common pinout.

The reader is assumed to have a general knowledge of the architecture of the
7814, 7851 and 7854. Refer to the 7814_7851_7854 Device Specification, DS-
0030 for more information on these devices.

1.2 Streaming Bus Description
The streaming bus is a synchronous FIFO based interface that contains two
independent 32-bit buses, one for input and one for output. The interface is
designed so that a host network processor may interface to as many as four 78xx
devices which may share a common streaming bus interface. From the host
processors perspective, the 78xx streaming bus interface is a bus slave.

Outbound Flow Control

Inbound Sync Bus

32

ASIC / FPGA
or Network
Processor
(master)

78XX Security
Processor

(slave)

Outbound Sync Bus

32

Outbound Parity

Inbound Parity

Inbound Flow Control

Sync. Clock

Figure 1. The Streaming Bus Interface

In 78xx security processors the streaming bus interface is considered an
alternate to the PCI bus since both interfaces share common pins. Only one
interface can be active at the same time. If the streaming bus is enabled, packets
must flow over the streaming interface. Otherwise, they flow across PCI,
controlled by the inbound and outbound DMA units.

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 5

Since only one interface may be used at a time, there are bound to be unused
pins in the 78xx application. In streaming bus mode the unused PCI inputs
should be pulled to their inactive state or pulled up to VDD through resistors.
Any value between 1K and 50K ohms will work. The unused outputs may be
left unconnected.

The most important distinction between the streaming bus interface and the PCI
or private CPU interface is that the streaming bus is a specialized mechanism for
transferring packets and requests to the security processor. The streaming bus
does not directly support read or write access to processor registers, private
memory, or the public-key core. Unlike the PCI interface, the streaming bus
does not contain DMA units.

The following figure illustrates how data flows through the Inbound and
Outbound ports of the 78xx streaming bus interface. Incoming packets ingress
through the Inbound streaming port and consist of a command message,
followed by source descriptors, and source data fragments. The processed
packets egress through the Outbound port and consist of a result messages
followed by destination data. Notice that the command message contains a field
NS which defines the number of source fragments in the packet.

Hi/fn 7851

Command 1 : NS = 1

Result 1

Destination Data 1

Result 2

Destination Data 2Source Fragment 1

Source Descriptor 1

Command 2 : NS = 2

Source Descriptor 2.1

Source Fragment 2.1

Source Descriptor 2.2

Source Fragment 2.2

Processed
Packet #1

Processed
Packet #2

Inbound Outbound

Packet #1

Packet #2

Notice that the
Result Data is

contiguous, subject
to the MTU

configuration.

Figure 2. Packet Flow in Streaming Bus Mode

In streaming bus mode, the inbound bus is designed to transfer command
messages and unprocessed packet data into the 78xx processor. The outbound
bus transfers the processed packet data and result messages back to the host.
The streaming bus interface is considered to be high-speed since it eliminates

 7814/7851/7854 Streaming Bus

Page 6 AN-0045-01 APPLICATION NOTE

the overhead of PCI and supports simultaneous bi-directional data transfer. The
figure below depicts a single 7854 application using the streaming bus interface.

Hi/fn 78xx
Security

Processor

Private Memory
Security Subsystem

64

Sync Bus
32 32

Packet Flow

Session
Management

Private CPU
Interface

X-bus Streaming
Bus FPGA

or ASIC

Host Network
Porcessor

Host Memory

Figure 3. 78xx Application with Streaming Bus Interface

In this figure packets flow over the Inbound and Outbound streaming bus while
session management takes place over the private CPU interface. In streaming
bus applications the private processor interface should be used to initialize 78xx
registers, load DPU programs, perform all session management functions, and
handle security processor exceptions. In 7854 and 7814 streaming bus
applications the private processor interface should also be used for host access
to the public key engine.

The following sections of this document will discuss architectural
considerations which apply to 78xx systems which may utilize the streaming
bus interface. These considerations include host interface methodology, the
placement of the FIPS security boundary, optional use of the private processor,
options for Hifn’s HSP session management software, and recommendations for
implementing multiple 78xx devices on a shared streaming bus interface. This
document also contains information about streaming bus interface signaling,
flow control, and session setup. The last section of this document contains a
streaming bus example.

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 7

2 Designing with the Streaming Bus

2.1 Choosing between the PCI and Streaming Interface
System performance and host interface architecture are the primary
considerations when choosing between either the PCI or streaming bus modes.
Systems which employ PCI architectures may naturally lend themselves toward
using the PCI interface. On the other hand, systems which require several 78xx
security processors and performance beyond PCI may be better suited for using
a shared streaming bus.

In PCI systems packets ingress and egress over the same bus. In streaming bus
systems packets simultaneously flow through separate 32-bit wide Inbound and
Outbound data paths at speeds up to 2 Gigabits per second (4 Gigabits/sec. full
duplex) maximum at 66 Mhz. Additionally, the streaming bus is a fully
dedicated interface. Packets flow on demand. And, unlike PCI, there is no bus
arbitration.

Either the streaming bus or PCI may be used in multi-chip 78xx systems.
Systems with more than two 78xx processors may be forced to use the
streaming bus mode. Of course this assumes that multiple 78xx processors will
share either a single PCI or streaming bus. While multiple PCI and/or streaming
busses could be used in the system, a single shared bus is assumed to be more
desirable.

2.2 Multi-chip Streaming Bus Applications
Applications which require higher overall performance may connect up to four
78xx devices to a single streaming bus interface. The Outbound streaming bus
interface is tri-statable and the Inbound bus is inactive if the sync_write signal is
not asserted. The following figure contains an example application which
utilizes multiple 78xx processors which share a single streaming bus interface.

Hi/fn 7854
Security

Processor

Private Memory

32 32
Host Network

Porcessor

Hi/fn 7854
Security

Processor

Private Memory

Hi/fn 7854
Security

Processor

Private Memory

Hi/fn 78XX
Security

Processor

Private Memory

Host Memory

Private CPU
Interface

Security Subsystem

Session
Management

Chip Select
Logic

Session
Logic

Bus Mux /
Address Logic

Address Bus

Data Bus

Customer Logic (FPGA or ASIC)

Sync
Bus

Figure 4. Multichip Application with shared Streaming Bus Interface

 7814/7851/7854 Streaming Bus

Page 8 AN-0045-01 APPLICATION NOTE

Shared streaming bus applications require some provision for the host to address
individual devices on the shared bus. This may be accomplished several ways.
The two most common ways are to memory map the individual 78xx devices (as
shown) or utilize the pass-through field in the command message. Again, host
architecture may lend itself more strongly toward one or the other. If the host
interface to FPGA/ASIC is similar to the streaming bus, the host could easily
embed an address into the pass-through field. These bits could subsequently be
decoded by glue logic and used to select a 78xx device from the shared
streaming bus by asserting the sync_read and sync_write signals for the desired
target. If the host interface to FPGA/ASIC is a traditional address and data bus,
a memory mapped addressing mechanism may be more appropriate.

2.3 Streaming Mode Boot Sequence
In streaming bus mode the host is required to perform all of the private
processor functions including the 78xx device initialization sequence. As with
session management in streaming bus mode, the initialization process takes
place over the private processor interface. This process must be performed
before any sessions are opened in 78xx private memory. The sequence involves
programming all 78xx registers to their desired operating state, which may reset,
enable, and disable certain logic blocks. Then all required DPU programs must
be loaded into private memory.

The actual register initialization values are application specific. Refer to the
7814_7851_7854 Device Specification for register descriptions. Also, the 7851
Verilog Model Application Note, AN-0022 and the 7814/7854 Verilog Model
Application Note, AN-0048 provide complete examples of initialization and
packet processing in both PCI and streaming modes.

2.4 Session Management in Streaming Bus Mode
 This section describes how session handling may be accomplished over the
streaming bus interface (without a private processor). Session setup must be
performed by either the private processor or the host network processor.
Session setup is never performed by the 78xx. The following session setup
tasks must be performed before any packets for the session are sent across the
streaming bus :

• An unused session number must be allocated to the session.
• The session context must be initialized to appropriate values. Session

context resides in private SDRAM memory and consists of small
session context and optional large session and compression context(s).

• The DPU program(s) that are going to process the packets in the
session must be loaded into private memory. This task is typically
done only once at the beginning of several similar sessions.

These tasks will all take place through the private processor interface. They
are essentially made up of private memory reads and writes which take place
through the private processor interface. For this to be accomplished in a
streaming bus application, interface logic between the host and 78xx device
must drive memory transactions through the private processor interface. In the
most basic sense, this may be accomplished through the generation of address,
data, and control signals which mimic session handling as it would be
performed by a private processor. The following figure illustrates the concept
of a host interface to 78xx private processor interface through a FPGA device.

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 9

Customer
Logic

(FPGA)

Host Network
Porcessor

Host Memory

Pr
iv

at
e

Pr
oc

es
so

r I
nt

er
fa

ce

Streaming
Bus Interface

Read/Write
Private Memory

Read/Write
Registers

Interrupts

Core
Descriptors

SDRAM

Registers

Internal Interrupt
Reset

Core Descriptor Mgt.
Commands
Results

CPU Address
/ Data Signals

CPU Control
Signals

78xx Security
Processor

Figure 5. Host Interface to 78xx Private Processor Interface

2.4.1 Using the Trap Queues for Session Management
The Trap_out_q and Trap_in_q registers are designed for moving core
descriptor indexes to and from the private processor and 78xx DPU core. These
queues enable the private processor to transfer and receive security/compression
tasks to and from the 78xx DPU core.

There can be hidden difficulties when using these queues in streaming bus
applications where the host is required to perform all of the regular private
processor duties. For example, assume that the host traps an operation to the
DPU core. The DPU then completes the required processing and initiates a trap
back to the private cpu (host processor in this example). If the host doesn’t
respond immediately, or mishandles the return trap, all processing for the
associated session may be stalled. As a result, Hifn strongly recommends that
our customers either do not try to manipulate the trap queues or use Hifn
reference software for these functions. Such software is subject to Hifn
availability. Contact your Hifn representative for more information.

2.5 Private Processor Interface in Streaming Bus Mode
The following diagram illustrates how host interface logic may be connected to
the 78xx private processor interface. A bus controller must be generated in the
customer logic block if more than one 78xx device is being addressed on the
same private interface bus. Example bus control logic is shown.

 7814/7851/7854 Streaming Bus

Page 10 AN-0045-01 APPLICATION NOTE

Customer Logic Hifn 78xx

MIPS_INT[2:0]#

MIPS_CLK
MIPS_VCCOK
MIPS_COLDRESER#
MIPS_RESET#
MIPS_SYSAD[31:0]
MIPS_SYSADC[3:0]
MIPS_SYSCMD[8:0]
MIPS_SYSCMDP
MIPS_VALIDOUT#

BusClk
VccOK*

ColdReset*
Reset*

SysAD[31:0]
SysADC[3:0]
SysCmd[8:0]

SysCmdP
VialidOut*

W rRDY*

RdRDY*

BusCtl_W RRDY*
BusCtl_RDRDY*

BusCtl_VALIDIN*

MIPS_VALIDIN#

MIPS_W RRDY_EXT#

MIPS_W RRD_RDY#

MIPS_RDRDY_EXT#

ValidIn*

VDD

Figure 6. Private Processor Interface in Streaming Bus Mode

2.6 Load Balancing with multiple 78xx devices
When multiple 78xx security processors share a single streaming bus, various
load balancing schemes may be used to help ensure a high degree of overall
system utilization. One of the simplest load balancing methods is to statically
assign certain blocks of session numbers to each 78xx device on the shared
streaming bus. Using this method, incoming packet session numbers are used to
route entire packets to the appropriate 78xx device. This method alone may be
sufficient for systems which have no requirement for the ordering of processed
packets.

In some systems it may be necessary to export packets in the same order they
are received. In this situation the host may build and maintain an index table
whereby Inbound packets may be assigned an identifier which records which
packet processor was assigned each particular command. Head and tail pointers
in the index table may be used to read result messages and retire packets in the
same order they are received. And, if the pass through field in the command
message contains the index number, the result message, which will also contain
that index number, may be used as an error checking mechanism to ensure
synchronicity is maintained with the stream. Other more elaborate methods
exist, but depend largely on the software and hardware capabilities of the end
application.

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 11

2.7 Signaling Considerations in Streaming Bus Mode

2.7.1 Deasserting the sync_write signal mid-stream
Streaming bus operation and timing requirements are described in the
7814_7851_7854 Device Specification, DS-0030. Streaming bus writes can be
contiguous or non-contiguous. For example, when the host processor is writing
words that make up a command descriptor it is not necessary to deassert the
write signal before writing data words. It is, however, acceptable to pause mid-
cycle by deasserting the write signal. The write process may resume on any
future clock cycle by reasserting the write signal.

The following figure illustrates a typical write cycle for a command message. In
this example one of the SYNC_IN_LEVEL signals indicates that the Inbound
FIFO has reached some predefined threshold after the first word is written. The
host subsequently deasserts the write signal and waits for the Inbound level
indicator to transition back to zero and signify that there is room in the Inbound
FIFO for writing additional words. In the given example, the
SYNC_IN_LEVEL signal may be assumed to be set at some unknown arbitrary
value. Also, it is assumed that a sufficient amount of data has already been
written to the Inbound FIFO so that the threshold for the level signal is met or
exceeded by the first word of the write transaction. The next section describes
the FIFO level signals in greater detail.

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00020000 00000002 00000002 80CB0000

The host write is delayed while the Inbound
FIFO level indicates a full FIFO.

cdef

Set to >= 60
32-bit dwords

Figure 7. Example Streaming Bus WRITE with 3-cycle pause.

The same conditions apply to reading data from the streaming bus. The read
signal may be deasserted at any time during the sequence when words are being
read. The read process may resume once the read signal is reasserted at a later
time. The following figure illustrates a typical streaming bus read transaction

 7814/7851/7854 Streaming Bus

Page 12 AN-0045-01 APPLICATION NOTE

where the Outbound FIFO level signals are used to gate single and multi cycle
read sequences.

SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0]
0000000A 00000002

SYNC_READ

0000

Set to >= 0
32-bit dwords

Set to >= 2
32-bit dwords

Notice the FIFO level signals are
used to gate sync reads on and off.

Figure 8. Example Streaming Bus READ with pause.

Notice that the read signal is asserted for one cycle and then deasserted for 5
subsequent cycles. In this example the Outbound FIFO initially has only one
word available, which is read at cycle 4. Later, the SYNC_READ signal is
reasserted in cycle 8 since the FIFO level signals, which are described in the
next section, indicate that there are more words in the Outbound FIFO.

2.7.2 FIFO level signals
The host may use register programmable FIFO fullness signals to determine
when there is data in the Inbound or Outbound FIFOs. The 78xx provides 3
signals for Inbound FIFO level detection and 3 signals for Outbound FIFO level
detection. These signals may be used by the host to gate inbound and outbound
read and write bursts for maximum throughput with minimum host intervention.
A typical implementation may program one level signal to indicate a FIFO full
condition which would gate off all host transfers to prevent FIFO overrun. A
second FIFO level indicator may be programmed to signal that the FIFO is at
some intermediate fullness which may correspond to the maximum burst
transfer size of the host. Then the third FIFO fullness signal could be
programmed to signal a FIFO empty condition that may interrupt the host and
trigger a burst read or write so that the 78xx processor achieves 100%
utilization.

It is important to recognize that there is a cycle delay between a level change in
the Outbound FIFO and the update to the associated level signal(s). On the
Inbound FIFO there is a 3-cycle delay between writing a dword and any updates
to the associated FIFO level signals. Assuming the output enable is active, on
every clock in which the read signal is active, data is read from the Outbound
FIFO and is driven onto the output pins two cycles later. The Outbound FIFO

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 13

levels are driven three cycles after the sync_read is asserted. See the 78xx
device spec for the timing diagram of a Sync read.

Software routines that service the Inbound and Outbound FIFOs should be
written so that command, source and destination data, and result messages are
written and read in their entirety. Since destination data length is independent
of the command or source data length, Outbound read routines should not be
written solely for fixed length multi-word block reads. For optimum Outbound
efficiency, it may be helpful to program one of the Outbound FIFO level
indicators to four (level=4) and another to one (level=0). The host may read
blocks of four when the level=4 signal is asserted. When the level=4 signal
subsides, the host may poll the level=1 signal to finish up reading the result
message. This may prevent a single destination word from remaining in the
Outbound FIFO without being read by the host.

Managing the Outbound level indicator signals and associated read cycles may
be somewhat more complicated than those of the Inbound side. This is because
it is generally easier to write large blocks to the Inbound FIFO at one time
without having to manage individual dword write sequences. In fact the host
may make burst writes to the Inbound FIFO until it is gated off by the
SYNC_IN_LEVEL signal(s). The Outbound FIFO works the same way except
that the host must take into consideration that there are delays between asserting
the read signal and reading from the Outbound FIFO and the update to the
Outbound FIFO level signal(s). The following figure illustrates how the
Outbound FIFO level signals may be used to gate a block read and subsequent
individual read cycles.

SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0] 01234567 89abcdef

SYNC_READ

Set to >= 0
32-bit dwords

Set to >= 4
32-bit dwords

Notice it takes 3 cycles for
sync_out_level[0] to update
 after the read was asserted.

def 89abcdef 01234567

3 cyc.

Figure 9. Example use of Outbound FIFO level signals.

Notice in cycle 1, the SYNC_OUT_LEVEL[1] signal transitions low to tell the
host that there are 3 or less dwords remaining in the Outbound FIFO. Since
there is a cycle delay between a FIFO level change and an update to the FIFO
level signal, this condition must have began on the last cycle, which was a read

 7814/7851/7854 Streaming Bus

Page 14 AN-0045-01 APPLICATION NOTE

cycle. In response, the host must immediately deassert the read signal (in cycle
2) to prevent a read underflow condition. The last two dwords are read in
cycles 3 and 4 due to the 2-cycle delay between deasserting the read signal and
the final word being read. In this particular situation the
SYNC_OUT_LEVEL[1] signal gated off the host read process just in time to
read all of the data from the Outbound FIFO. In cycle 6 the
SYNC_OUT_LEVEL[0] signal tells the host that there is at least one more
dword waiting in the Outbound FIFO. It is read in cycle 9. Also notice that it
takes 3 cycles for the SYNC_OUT_LEVEL[0] signal to update from the time
the read signal was asserted by the host.

The Inbound FIFO level signaling is slightly simpler. There is a 3-cycle delay
between writing the data and the update to the level signal(s). The following
figure illustrates how the Inbound FIFO level signals may be used to gate off a
burst write to the 78xx device.

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00020000 00000002 00000000 80CB0000

Set to >= 58
32-bit dwords

Since the level signal is programmed for 58 dwords and we know
the Inbound FIFO has 64 total spaces, the host may safely write the

additional dwords (shown) before deasserting the write signal.

78ab

Figure 10. Example use of an Inbound FIFO level signal.

2.7.3 Overflow and Underflow
Inbound FIFO overflow and Outbound FIFO underflow both require a reset of
the internal FIFO control logic. A status bit in the pci_stat register is set if the
host tries to write data to the Inbound FIFO when it is full. If enabled in the
pci_int_mask register, this status bit will generate an interrupt on the
sync_interrupt pin to signal the overflow. Reading an empty outbound FIFO is
handled the same way. When the host tries to read from an empty Outbound
FIFO, a separate status bit is set in the pci_stat register.

Data is lost when the host tries to write to an already full Inbound FIFO.
Similarly, invalid stale data will be read from a empty Outbound FIFO. In both
situations, the internal pointing mechanism of the FIFO becomes corrupt and
must be reset by writing to the appropriate reset bit in the Inbound and

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 15

Outbound control registers. For the Inbound FIFO this bit is located in the
Cmd_ring_ctl register. For the Outbound FIFO this bit is located in the
Rslt_ring_ctl register.

2.8 Commands and Headers

2.8.1 Zero Length Source Descriptors
A command message may contain zero associated source descriptors (NS=0).
In this situation the command has no data and may immediately be followed by
a new command. However, on Inbound FIFO writes it is important to realize
that the number of bytes in a source descriptor cannot be zero. Software write
routines that are designed to handle blocks of source fragments should not be
written in such a way that zero sized source descriptors are used to fill up
remaining words to finish out a block transfer or fill a boundary.

2.8.2 Pass a Header Through the 78xx
Some applications require in band communications between subsystems. In
streaming bus mode, a 78xx DPU program could allow a variable length header
to pass through the security processor unprocessed. Such software is subject to
Hifn availability. Contact your Hifn representative for more details. The
following diagram illustrates a customer header which is surrounded by
command and packet data.

CmdSrcHeader

78xxHost

SYNC_IN_D[31:0]Packet

Header Rslt Msg Packet SYNC_OUT_D[31:0]

Figure 11. Example Header Use

 7814/7851/7854 Streaming Bus

Page 16 AN-0045-01 APPLICATION NOTE

3 HSP in Streaming Bus Mode
For most 78xx streaming bus implementations, customers will use Hifn’s
Software Development Kit (SDK).

78xx HSP software is designed only for PCI applications. When using HSP, the
private processor is responsible for performing session setup and management
through the private processor interface. Session setup involves programming
session context into private memory prior to the security processor ever
receiving or processing packets associated with the new sessions. This
alleviates a significant amount of processing from the host CPU.

In some 78xx streaming bus applications it may be possible to use HSP. In this
situation session management communications would likely flow through the
private processor bus. However, HSP software in this type of application is
subject to Hifn availability. Contact your Hifn representative for more
information. The following diagram illustrates this type of system. To protect
the security boundary afforded by HSP, the private processor interface block on
the FPGA or ASIC should be designed to be a slave only. If it were a master
block with arbitration, the security boundary would encompass the host network
processor since it would have access to key material.

Security Processor

FPGA or
ASIC

Streaming
Bus

32 32

Host Network
Porcessor

Hi/fn 78xx
Security

Processor

Private Memory

Host Memory

X-Bus

Private
Processor

Figure 12. 78xx Streaming Bus w/ Private Processor and HSP

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 17

3.1 The Security Boundary
The private CPU and HSP software make a security boundary possible and
offload exception processing and session setup and teardown overhead from the
host. It also simplifies the host software by encapsulating most of the security
software in the security subsystem. The following figure highlights a FIPS 140-
1 security boundary in a streaming bus application which uses one 78xx device
with private processor present.

FIPS 140-1
Security Boundary

FPGA or
ASIC

Streaming
Bus

32 32

Host Network
Porcessor

Hi/fn 78xx
Security

Processor

Private Memory

Host Memory

X-Bus

Private
Processor

Figure 13. 78xx Security boundary (with private processor present)

The private processor, running HSP software, would have direct access to
private memory session context, including key material. Assuming the private
processor is present, this sensitive information is contained within the security
boundary as shown. However, HSP in this type of application is subject to Hifn
availability. Contact your Hifn representative for more information.

If the private processor is not present, the host is required to perform all of the
private processor tasks. In this situation the security boundary expands to
include the host CPU, host memory, and any interface logic, which is used to
connect to the private processor interface. In applications without the private
processor the host CPU and host memory will have access to session context
and contain key materials. The following figure shows how the security
boundary is expanded in systems which have no private processor.

 7814/7851/7854 Streaming Bus

Page 18 AN-0045-01 APPLICATION NOTE

FIPS 140-1 Security Boundary

Streaming
Bus FPGA

32 32

Host Network
Porcessor

Host Memory

Hi/fn 7854
Security

Processor

Private Memory

Hi/fn 7854
Security

Processor

Private Memory

Hi/fn 7854
Security

Processor

Private Memory

Hi/fn 78xx
Security

Processor

Private MemoryPrivate Processor
Interface

Streaming
Bus

Figure 14. Security boundary (without a private processor present)

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 19

4 Streaming Bus Example
The 78xx streaming bus is described in this section using an example.

We assume the 78xx is configured in Streaming bus mode, is out of reset and a
session is set up in the SDRAM for the desired compression or encryption
operation. We assume the required DPU program is loaded in SDRAM at
function code offset 0. We assume that all Sync interrupts are disabled and we
ignore parity.

4.1 Streaming Bus Initialization
Initialization of the Sync Interface requires register writes to cmd_ring_ctl and
rslt_ring_ctl.

cmd_ring_ctl is written with 32’h7C3C_0018. Referring to the device
specification we see that this value means the Inbound FIFO is out of reset, the
command message endian is set to 32-bit big and the Inbound FIFO is enabled.
Inbound parity is disabled and the inbound bus mode is 32. In_FIFO_Level_0 =
31, In_FIFO_Level_1 = 15 and In_FIFO_Level_2 = 0.

In_FIFO_Level_0 = 31 means SYNC_IN_LEVEL[0] is 0 when the Inbound FIFO
is empty. It is not used in this example.

In_FIFO_Level_2 = 0 means SYNC_IN_LEVEL[2] is 0 when the Inbound FIFO is
not full. It is not used in this example.

In_FIFO_Level_1 = 15 means SYNC_IN_LEVEL[1] is 0 when the Inbound FIFO
has >= 30 dwords of free space in it. It is used in the following write rule:

• If SYNC_IN_LEVEL[1] = 0 then write, else do not write.

This rule ensures that we can burst 16 qwords (32 dwords) to the 78xx without
Inbound FIFO overflow. This is just one example. Many other write rules could
be designed.

rslt_ring_ctl is written with 32’h0008_7C18. Referring to the device
specification we see that this value means the Outbound FIFO is out of reset, the
result data endian is set to 32-bit big and the Outbound FIFO is enabled.
Outbound parity is ignored and the outbound bus mode is 32.
Out_FIFO_Level_0 = 0, Out_FIFO_Level_1 = 2 and Out_FIFO_Level_2 = 31.

Out_FIFO_Level_2 = 31 means SYNC_OUT_LEVEL[2] is 0 when the Outbound
FIFO is full. It is not used in this example.

Out_FIFO_Level_1 = 2 means SYNC_OUT_LEVEL[0] is 0 when the Outbound
FIFO contains 4 or more 32-bit dwords in it.

Out_FIFO_Level_0 = 0 means SYNC_OUT_LEVEL[1] is 0 when the Outbound
FIFO is not empty. SYNC_OUT_LEVEL[1] will be 1 when the Outbound FIFO is
empty. This signal is polled to prevent read underflow when the host is reading
out the last dwords from the FIFO.

The read rule is:

• If SYNC_OUT_LEVEL[1] = 0 then read and do not wait.

• Else if SYNC_OUT_LEVEL[0] = 0 then read and wait 2 clocks.

 7814/7851/7854 Streaming Bus

Page 20 AN-0045-01 APPLICATION NOTE

• Else do not read.

This rule ensures that we can perform continuous reads while there are in excess
of 2 dwords from the 7851 without the danger of reading from an empty FIFO.
When there is only one dword in the Outbound FIFO, we only allow the host to
read a single dword, wait for 2 cycles, and poll the level signals again. Again
this prevents the host from reading from an empty FIFO. This is just one
example. Many other read rules could be designed.

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 21

4.2 Writing the Command and Source Fragments
An operation begins by the host writing a command message over the Sync bus
to the Inbound FIFO. Let the command message be given by

128’h0002_0000_0000_0002_0000_0000_80CB_0000

Referring to the device specification, we see that, for this command, the number
of source descriptors, NS, is 2, the overflow bit is zero, the Session Number is
2, the Command Parameter is 0, the Valid Bit is 1, the Function Code is 0, and
the pass through value is 8’hCB. The following figure shows the Sync Bus
signals during this command write.

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00020000 00000002 00000000 80CB0000

Set to >= 30
32-bit dwords In this example the write is gated

off when the free space in the
Inbound FIFO falls below 34

dwords (64-30=34) .

Figure 15. Host writes command.

The host then writes the first of the 2 source descriptors followed by its data,
and then the second of the 2 source descriptor followed by its data. Let the first
source descriptor be given by

64’h0000_0000_1000_0003

Referring to the device spec we see that, for this source descriptor, the byte
alignment is 0, the source data endian is 32-bit big and the fragment size is 3
bytes. The following figure shows the Sync Bus signals during the write of the
source descriptor and the 3 bytes of data given by

24’h1234_56

 7814/7851/7854 Streaming Bus

Page 22 AN-0045-01 APPLICATION NOTE

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00000000 10000003 123456xx

Set to >= 30
32-bit dwords

This write is continuous since the
FIFO level does not exceed its

threshold during the write sequence.

Figure 16. Host writes first source descriptor and 3 bytes of data.

Let the second source descriptor be given by

64’h0000_0003_3000_0005

Referring to the device spec we see that, for this source descriptor, the 32-bit
byte alignment is 3, the source data endian is 32-bit little and the fragment size
is 5 bytes. The following figure gives the timing diagram for the write of the
second source descriptor and data given by

40’habcd_ef01_23

which is 40’h80F7_B3D5_C4 in 32-bit little endian format

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 23

SYNC_CLK

SYNC_WRITE

1 3 42 65 87

SYNC_DATA_IN[31:0]

SYNC_IN_LEVEL[1]

00000003 30000005 xxxxxx80 F7B3D5C4

Set to >= 30
32-bit dwords

The wrie signal doesn't have
to be deasserted after this data is
written. The next command cound

immediately follow.

Even though the FIFO level indicator
transitions high in the first cycle, the
host may continue writing up to 34

dwords before the FIFO is actually full.

xxxxx

Figure 17. Host writes second source descriptor and 5 bytes of
data.

4.3 Reading the Result Message and Destination Data
In parallel to writing, the host may read result and destination data from the
Outbound FIFO as it becomes available.

The following figure gives the timing diagram for reading the result message:

128’h0000_0014_0000_0002_0000_0000_00CB_0000

Referring to the device spec this result message has Total Destination Count =
20, Session Number = 2, Result Parameter = 0, a pass through value of 8’hCB,
A = 0, C = 0, Result Flags = 0 and Result Code = 0.

 7814/7851/7854 Streaming Bus

Page 24 AN-0045-01 APPLICATION NOTE

SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0] 00000014 00000002

SYNC_READ

00000000 00CB0000

Set to >= 0
32-bit dwords

Set to >= 4
32-bit dwords

Only one byte is read at this time since
the level signals indicate there is
between 1 and 3 dwords waiting .

Here it becomes safe to read up to 4 consecutive
dwords since the level signals indicate there are at

lease 4 dwords in the Outbound FIFO.

Figure 18. Host reads result message.

Figure 18 illustrates how the level signals are used to determine how many
dwords are waiting to be read from the Outbound FIFO. In the first cycle the
level signals indicate that there are between 1 and 3 dwords waiting to be read.
To prevent a read underflow situation, the host reads a single dword and waits 2
cycles before polling the level signals again to determine if the FIFO is empty.
Since the SYNC_OUT_LEVEL[1] signal transitions low for cycle 4, the 78xx
must have dumped more dwords into the Outbound FIFO while the host was
performing the single read. In this situation it safe for the host to start reading
consecutive dwords since the FIFO level is greater than 3.

The result message is followed by destination data. The following figure
illustrates the timing diagram for reading the data:

160’h0123_4567_89ab_cdef_0123_4567_89ab_cdef_0123_4567

 7814/7851/7854 Streaming Bus

AN-0045-01 APPLICATION NOTE Page 25

SYNC_CLK

1 3 42 65 7 8 9 10 11

SYNC_OUT_LEVEL[0]

SYNC_OUT_LEVEL[1]

SYNC_OE_n

SYNC_DATA_OUT[31:0]

SYNC_READ

Set to >= 0
32-bit dwords

Set to >= 4
32-bit dwords The host polls SYNC_OUT_LEVEL[0]

on this cycle to determine if the
Outbound FIFO is empty.

0123456789abcdef4567 89abcdef 01234567

Now there are 3 or
less dwords

waiting to be read.

This is a single read since there are
between 1 and 3 dwords waiting.

No more reads
arre allowed. The

FIFO is empty.

Figure 19. Host reads data.

Figure 19 illustrates how the level signals may be used to empty out the FIFO
without reading while it is empty. The read process began prior to the first
cycle and all of the result data is not shown in the figure. When
SYNC_OUT_LEVEL[1] transitions high there are less than 4 dwords waiting to
be read from the outbound FIFO. Since the level signals are updated one cycle
after a change in the FIFOs, the host must deassert the read signal and begin
reading only a dword at a time until the FIFO is empty or until there are 4 or
more dwords in the FIFO. In this situation there was only one more dwords
waiting to be read from the Outbound FIFO. Notice that after reading the single
dword, the host must wait 2 cycles before polling the level signals to determine
if there are any remaining dwords to be read.

