

- **Members of the Texas Instruments Widebus™ Family**
- **Inputs Are TTL-Voltage Compatible**
- **Parity Error Flag With Parity Generator/Checker**
- **Register for Storage of the Parity Error Flag**
- **Flow-Through Architecture Optimizes PCB Layout**
- **Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise**
- **EPIC™ (Enhanced-Performance Implanted CMOS) 1- μ m Process**
- **500-mA Typical Latch-Up Immunity at 125°C**
- **Package Options Include 300-mil Shrink Small-Outline (DL) Packages Using 25-mil Center-to-Center Pin Spacings and 380-mil Fine-Pitch Ceramic Flat (WD) Packages Using 25-mil Center-to-Center Pin Spacings**

description

The 'ACT16833 consist of two noninverting 8-bit to 9-bit parity bus transceivers and are designed for communication between data buses. For each transceiver, when data is transmitted from the A bus to the B bus, an odd-parity bit is generated and output on the parity I/O pin (1PARITY or 2PARITY). When data is transmitted from the B bus to the A bus, 1PARITY or 2PARITY is configured as an input and combined with the B-input data to generate an active-low error flag if odd parity is not detected.

The error ($1\overline{ERR}$ or $2\overline{ERR}$) output is configured as an open-collector output. The B-to-A parity error flag is clocked into $1\overline{ERR}$ or $2\overline{ERR}$ on the low-to-high transition of the clock (1CLK or 2CLK) input. $1\overline{ERR}$ or $2\overline{ERR}$ is cleared (set high) by taking the clear ($1\overline{CLR}$ or $2\overline{CLR}$) input low.

The output-enable (\overline{OEA} and \overline{OEB}) inputs can be used to disable the device so that the buses are effectively isolated. When both \overline{OEA} and \overline{OEB} are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

The 74ACT16833 is packaged in TI's shrink small-outline package, which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54ACT16833 is characterized for operation over the full military temperature range of -55°C to 125°C . The 74ACT16833 is characterized for operation from -40°C to 85°C .

54ACT16833 . . . WD PACKAGE
74ACT16833 . . . DL PACKAGE
(TOP VIEW)

1OEB	1	56	1OEA
1CLK	2	55	1CLR
1ERR	3	54	1PARITY
GND	4	53	GND
1A1	5	52	1B1
1A2	6	51	1B2
V _{CC}	7	50	V _{CC}
1A3	8	49	1B3
1A4	9	48	1B4
1A5	10	47	1B5
GND	11	46	GND
1A6	12	45	1B6
1A7	13	44	1B7
1A8	14	43	1B8
2A1	15	42	2B1
2A2	16	41	2B2
2A3	17	40	2B3
GND	18	39	GND
2A4	19	38	2B4
2A5	20	37	2B5
2A6	21	36	2B6
V _{CC}	22	35	V _{CC}
2A7	23	34	2B7
2A8	24	33	2B8
GND	25	32	GND
2ERR	26	31	2PARITY
2CLK	27	30	2CLR
2OEB	28	29	2OEA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1996, Texas Instruments Incorporated

54ACT16833, 74ACT16833 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

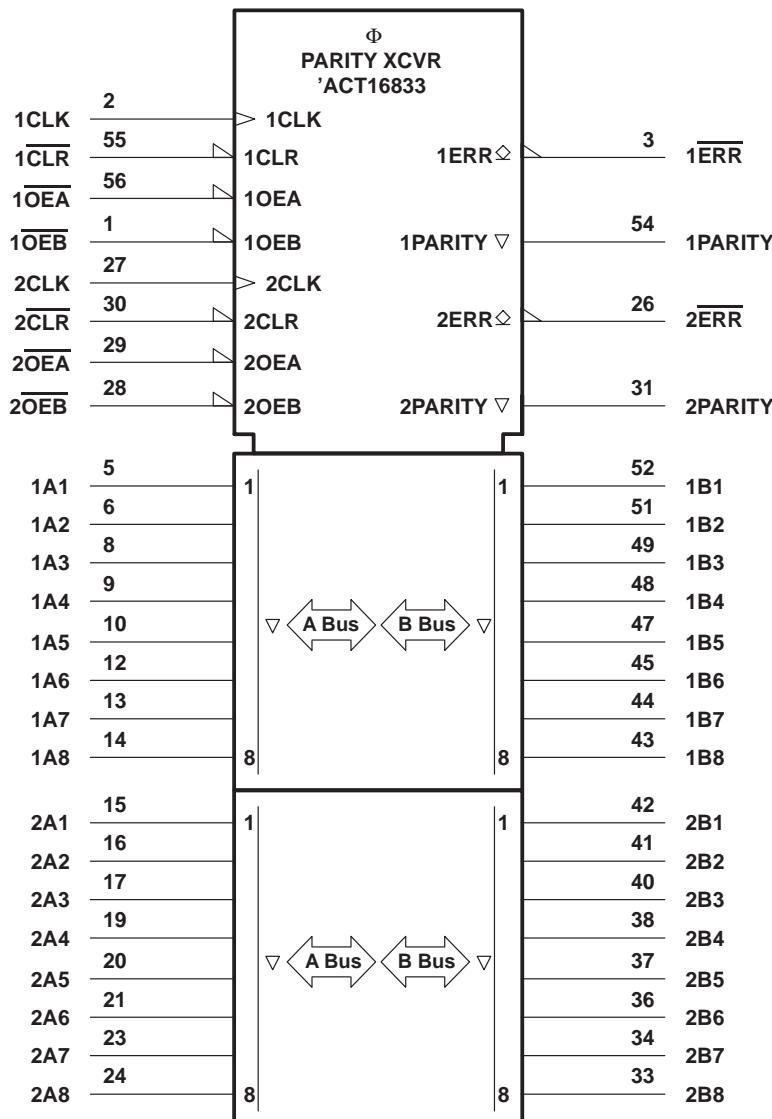
SCAS166A – JUNE 1990 – REVISED APRIL 1996

FUNCTION TABLE

INPUTS						OUTPUT AND I/O				FUNCTION
<u>OEB</u>	<u>OEA</u>	<u>CLR</u>	CLK	Σ OF H	Σ OF H	A	B	PARITY	<u>ERR</u> ‡	
L	H	X	X	Odd Even	NA	NA	A	L H	NA	A data to B bus and generate parity
H	L	H	↑	NA	Odd Even	B	NA	NA	H L	B data to A bus and check parity
X	X	L	X	X	X	X	NA	NA	H	Check error-flag register
H	H	H	No↑	X				NC		Isolation§
		L	No↑	X					H	
		H	↑	Odd	X	Z	Z	Z	H	
		H	↑	Even					L	
L	L	X	X	Odd Even	NA	NA	A	H L	NA	A data to B bus and generate inverted parity

NA = not applicable, NC = no change, X = don't care

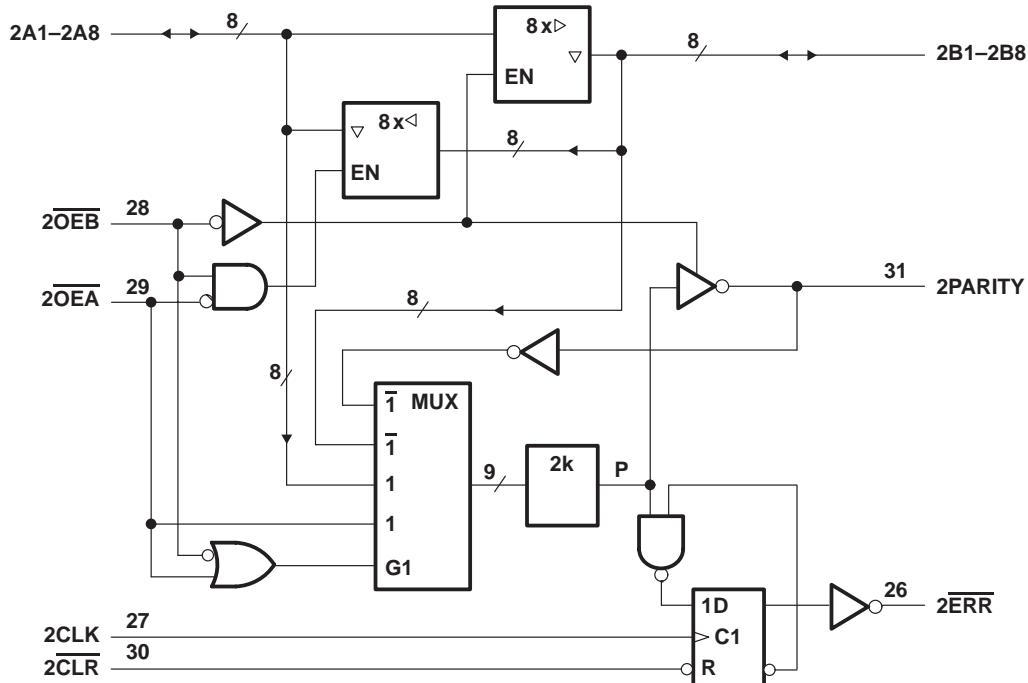
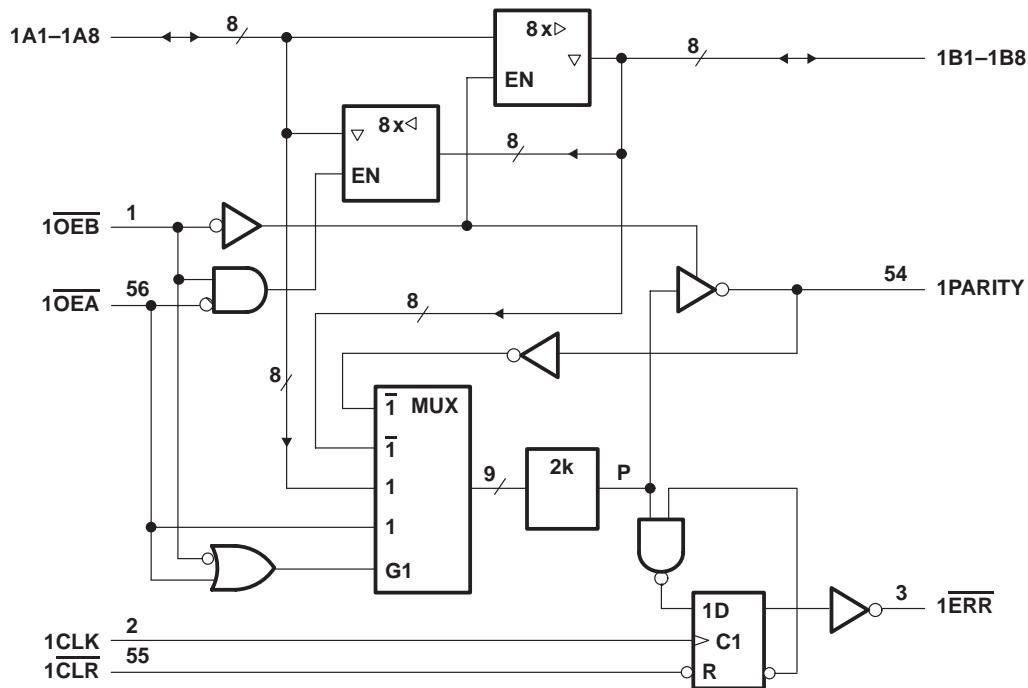
† Summation of high-level inputs includes PARITY along with Bi inputs.


‡ Output states shown assume ERR was previously high.

§ In this mode, ERR (when clocked) shows inverted parity of the A bus.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

logic symbol†

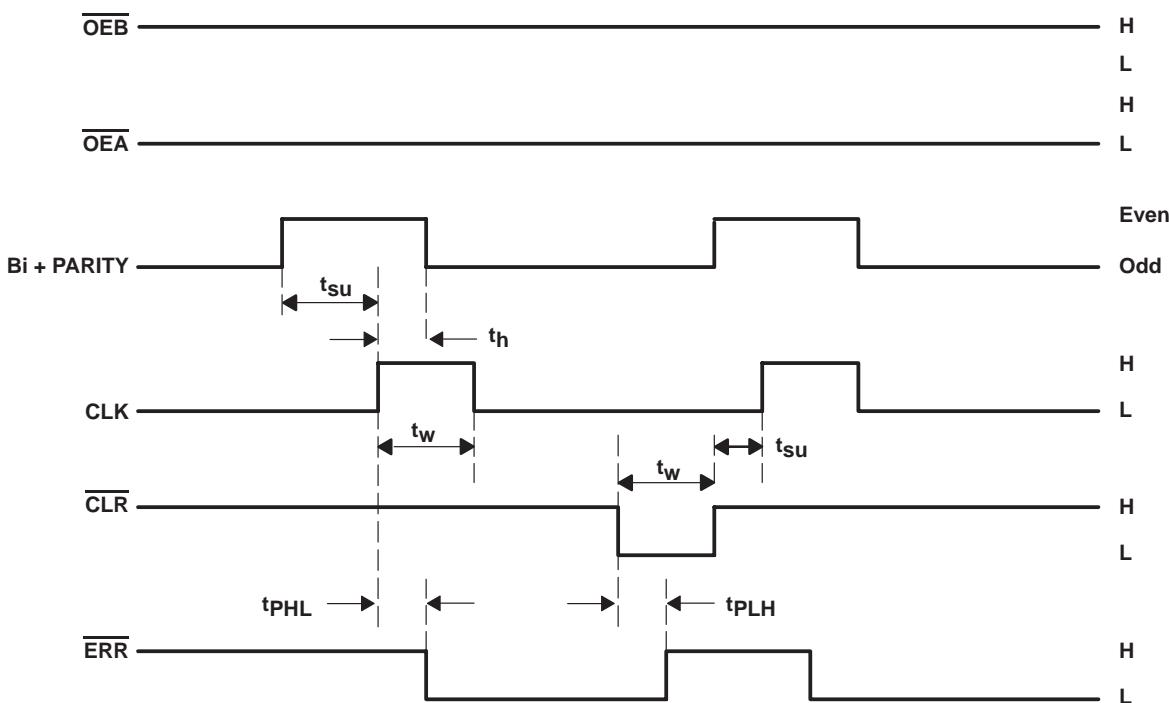



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

54ACT16833, 74ACT16833 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

SCAS166A – JUNE 1990 – REVISED APRIL 1996

logic diagram (positive logic)


ERROR FLAG FUNCTION TABLE

INPUTS		INTERNAL TO DEVICE	OUTPUT PRE-STATE	OUTPUT ERR	FUNCTION
CLR	CLK	POINT P‡	$\overline{ERR}_{n-1}^{\dagger}$		
H	↑	H	H	H	
H	↑	X	L	L	Sample
H	↑	L	X	L	
L	X	X	X	H	Clear

† The state of \overline{ERR} before any changes at CLR, CLK, or point P

‡ Location of point P is shown on local diagram.

timing waveforms, error flag

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_I (see Note 1)	-0.5 V to $V_{CC} + 0.5$ V
Output voltage range, V_O (see Note 1)	-0.5 V to $V_{CC} + 0.5$ V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	± 20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	± 50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	± 50 mA
Continuous current through V_{CC} or GND	± 450 mA
Maximum power package dissipation at $T_A = 55^\circ\text{C}$ (in still air) (see Note 2): DL package	1.4 W
Storage temperature range, T_{stg}	-65°C to 150°C

§ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

54ACT16833, 74ACT16833 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

SCAS166A – JUNE 1990 – REVISED APRIL 1996

recommended operating conditions (see Note 3)

		54ACT16833			74ACT16833			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
V _I	Input voltage	0	V _{CC}		0	V _{CC}		V
V _O	Output voltage	0	V _{CC}		0	V _{CC}		V
I _{OH}	High-level output current			-24			-24	mA
I _{OL}	Low-level output current			24			24	mA
Δt/Δv	Input transition rise or fall rate	0	10		0	10		ns/V
T _A	Operating free-air temperature	-55		125	-40		85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	T _A = 25°C			54ACT16833		74ACT16833		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
I _{OH}	ERR	V _O = V _{CC}	5.5 V		0.5		5		5	μA
V _{OH}	All outputs except ERR	I _{OH} = -50 μA	4.5 V	4.4		4.4		4.4		V
			5.5 V	5.4		5.4		5.4		
	I _{OH} = -24 mA	4.5 V	3.94		3.8		3.8			
		5.5 V	4.94		4.8		4.8			
	I _{OH} = -75 mA†	5.5 V			3.85		3.85			
V _{OL}	I _{OL} = 50 μA	4.5 V		0.1		0.1		0.1		V
		5.5 V		0.1		0.1		0.1		
		I _{OL} = 24 mA	4.5 V		0.36		0.44		0.44	
			5.5 V		0.36		0.44		0.44	
	I _{OL} = 75 mA†	5.5 V				1.65		1.65		
I _I	A or B ports	V _I = V _{CC} or GND	5.5 V		±0.1		±1		±1	μA
I _{OZ} ‡	Control inputs	V _O = V _{CC} or GND	5.5 V		±0.5		±5		±5	μA
I _{CC}	V _I = V _{CC} or GND, I _O = 0	5.5 V			8		80		80	μA
ΔI _{CC} §	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			0.9		1		1	mA
C _i	Control inputs	V _I = V _{CC} or GND	5 V		3.5					pF
C _{io}	A or B ports, PARITY	V _O = V _{CC} or GND	5 V		11.5					pF

† Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

‡ For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

54ACT16833, 74ACT16833
DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

SCAS166A – JUNE 1990 – REVISED APRIL 1996

**timing requirements over recommended operating free-air temperature range,
 $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1 and timing waveforms)**

			$T_A = 25^\circ\text{C}$		54ACT16833		74ACT16833		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_W	Pulse duration		CLK high or low	4	4	4	4	4	ns
			CLR low	4	4	4	4	4	
t_{SU}	Setup time before CLK^\uparrow		Bi + PARITY	7.5	7.5	7.5	7.5	7.5	ns
			CLR inactive	1.5	1.5	1.5	1.5	1.5	
t_H	Hold time, Bi + PARITY low after CLK^\uparrow			0	0	0	0	0	ns

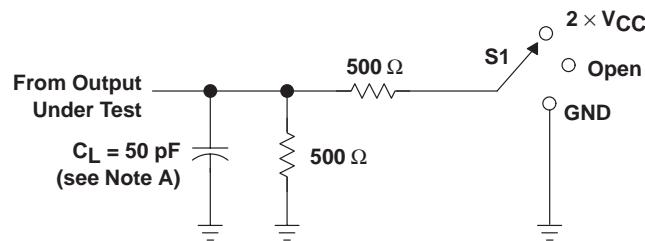
**switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1 and timing waveforms)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^\circ\text{C}$			54ACT16833		74ACT16833		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t_{PLH}	A or B	B or A	4	7.2	9.2	4	10.4	4	10.4	ns
t_{PHL}			3.2	6.6	9.6	3.2	10.7	3.2	10.7	
t_{PLH}	A	PARITY	3.9	7.9	12	3.9	13.5	3.9	13.5	ns
t_{PHL}			4.2	8.3	12.4	4.2	13.8	4.2	13.8	
t_{PZH}	\overline{OEB} or \overline{OEA}	A or B	3.1	6.7	10.1	3.1	11.2	3.1	11.2	ns
t_{PZL}			3.8	7.9	11.6	3.8	13	3.8	13	
t_{PHZ}	\overline{OEB} or \overline{OEA}	A or B	5.5	7.8	10	5.5	10.8	5.5	10.8	ns
t_{PLZ}			5	7.1	9.3	5	10.1	5	10.1	
t_{PLH}	\overline{CLR}	\overline{ERR}	10.7	13.1	15.4	10.7	15.8	10.7	15.8	ns
t_{PHL}	CLK		4.6	7.8	10.3	4.6	11.6	4.6	11.6	
t_{PLH}	\overline{OEA}	PARITY	4	8	11.8	4	13.2	4	13.2	ns
t_{PHL}			4.3	8.5	12.3	4.3	13.6	4.3	13.6	
t_{PZH}	\overline{OEB}	PARITY	2.6	5.7	8.5	2.6	9.5	2.6	9.5	ns
t_{PZL}			3.4	6.8	9.8	3.4	10.7	3.4	10.7	
t_{PHZ}	OEB	PARITY	5.6	7.9	9.5	5.6	10.2	5.6	10.2	ns
t_{PLZ}			5.1	7.2	9.1	5.1	9.7	5.1	9.7	

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$

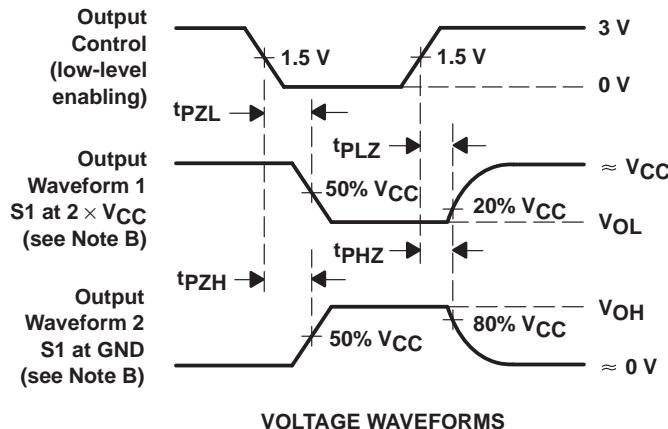
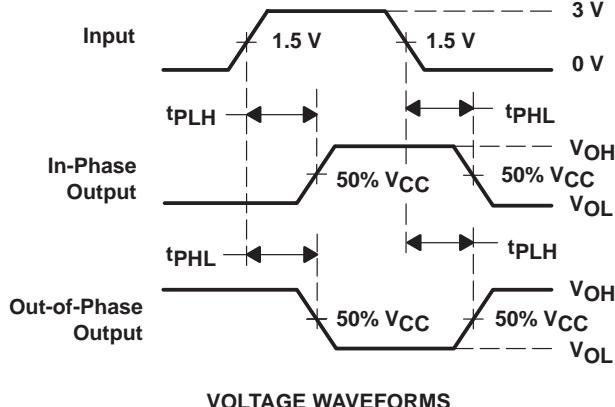
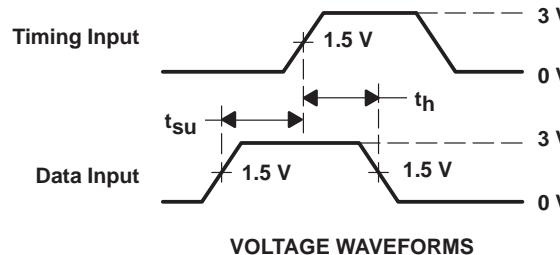
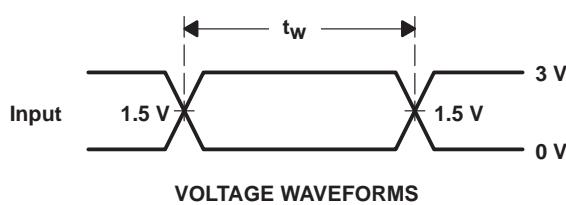
PARAMETER				TEST CONDITIONS		UNIT
	Outputs enabled	A to B	B to A	CL = 50 pF, f = 1 MHz	64	
		B to A	A to B		72	
		A to B	B to A		6	
C_{pd}	Power dissipation capacitance per transceiver				10.5	pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.



POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

54ACT16833, 74ACT16833 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS





SCAS166A – JUNE 1990 – REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	$2 \times V_{CC}$
t_{PHZ}/t_{PZH}	GND

LOAD CIRCUIT

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, $Z_O = 50 \Omega$, $t_r = 3$ ns, $t_f = 3$ ns.
- The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated