INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # 74HC/HCT7080 16-bit even/odd parity generator/checker Product specification File under Integrated Circuits, IC06 December 1990 ### 74HC/HCT7080 #### **FEATURES** - · Word-length easily expanded by cascading - Generates either even or odd parity for 16-data bits - · Output capability: standard - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT7080 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT7080 are 16-bit parity generators or checkers commonly used to detect errors in high-speed data transmission or data retrieval systems. The even and odd parity output is available for generating or checking even/odd parity up to 16-bits. The even/odd parity output (E/\overline{O}) is HIGH when an even number of data inputs $(I_0 \text{ to } I_{15})$ are HIGH and the cascade/even-odd-changing input (\overline{X}) is HIGH. Expansion to larger word sizes is accomplished by connecting the even/odd parity output (E/\overline{O}) to the cascade/even-odd-changing input (\overline{X}) of the final stage. #### **QUICK REFERENCE DATA** $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYP | UNIT | | |-------------------------------------|---|---|-----|------|----| | | PARAMETER | CONDITIONS | нс | нст | | | t _{PHL} / t _{PLH} | propagation delay | C _L = 15 pF; V _{CC} = 5 V | | | | | | I _n to E/O | | 29 | 32 | ns | | | X to E/O | | 12 | 15 | ns | | Cı | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per package | notes 1 and 2 | 24 | 25 | pF | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V ### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". ### 74HC/HCT7080 ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--|-----------------------------------|---------------------------------| | 1 | X | cascade/even-odd-changing input | | 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 | I ₀ to I ₁₅ | data inputs | | 10 | GND | ground (0 V) | | 19 | E/O | even/odd parity output | | 20 | V _{CC} | positive supply voltage | ### 74HC/HCT7080 ### **FUNCTION TABLE** | INP | UTS | OUTPUTS | |--------------|-------------------------|---------| | In | $\overline{\mathbf{x}}$ | E/O | | $\Sigma = E$ | H
L | H
L | | ∑≠E | H
L | L
H | ### Notes H = HIGH voltage level L = LOW voltage level E = even Philips Semiconductors Product specification # 16-bit even/odd parity generator/checker 74HC/HCT7080 ### DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI ### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|----------------|-----------------|------|-----------------|------|-----------------|------------------------|-------------------|--------------| | SYMBOL | PARAMETER | 74HC | | | | | | | | | | | STIVIBUL | | +25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | (', | | | t _{PHL} / t _{PLH} | propagation delay I _n to E/O | | 91
33
26 | 280
56
48 | | 350
70
60 | | 420
84
71 | ns | 2.0
4.5
6.0 | Fig.7 | | t _{PHL} / t _{PLH} | propagation delay X to E/O | | 41
15
12 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{THL} / t _{TLH} | output transition time | | 19
7
6 | 75
15
13 | | 95
19
16 | | 110
22
19 | ns | 2.0
4.5
6.0 | Figs 6 and 7 | Philips Semiconductors Product specification # 16-bit even/odd parity generator/checker 74HC/HCT7080 ### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI ### Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |-------|-----------------------| | In | 1.0 | | ΙX | 1.0 | #### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$ | SYMBOL | | T _{amb} (°C) | | | | | | UNIT | TEST CONDITIONS | | | |-------------------------------------|---|-----------------------|------|------------|------|-------------|------|------|------------------------|-----------|--------------| | | PARAMETER | 74HCT | | | | | | | | | | | | | +25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | (1) | | | t _{PHL} / t _{PLH} | propagation delay I _n to E/O | | 37 | 63 | | 79 | | 95 | ns | 4.5 | Fig.7 | | t _{PHL} / t _{PLH} | propagation delay X to E/O | | 18 | 32 | | 40 | | 48 | ns | 4.5 | Fig.6 | | t _{THL} / t _{TLH} | output transition time | | 7 | 15 | | 19 | | 22 | ns | 4.5 | Figs 6 and 7 | ### 74HC/HCT7080 ### **AC WAVEFORMS** (1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V. Fig.6 Waveforms showing the cascade/even-odd-changing input (\overline{X}) to the even/odd parity output (E/\overline{O}) propagation delays and the output transition times. (1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V. Fig.7 Waveforms showing the data inputs (I_n) to the even/odd parity output (E/\overline{O}) propagation delays and the output transition times. ### 74HC/HCT7080 ### **TEST CIRCUIT AND WAVEFORMS** C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator. | FAMILY | AMPLITUDE | V _M | t _r ; t _f | | | | | |--------|-----------------|----------------|---------------------------------|-------|--|--|--| | PAWILI | AWIPLITODE | | f _{max} ; PULSE WIDTH | OTHER | | | | | 74HC | V _{CC} | 50% | < 2 ns | 6 ns | | | | | 74HCT | 3.0 V | 1.3 V | < 2 ns | 6 ns | | | | Fig.8 Test circuit for measuring AC performance. C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator. | FAMILY | AMPLITUDE | V _M | t _r ; t _f | | | | | |--------|-----------------|----------------|---------------------------------|-------|--|--|--| | FAMILY | AMPLITUDE | | f _{max} ; PULSE WIDTH | OTHER | | | | | 74HC | V _{CC} | 50% | < 2 ns | 6 ns | | | | | 74HCT | 3.0 V | 1.3 V | < 2 ns | 6 ns | | | | Fig.9 Input pulse definitions. ### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".