
SCAS136 - D3608, JULY 1990 - REVISED APRIL 1993

- Inputs Are TTL-Voltage Compatible
- 3-State True Outputs
- Back-to-Back Registers for Storage
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C

description

This 8-bit registered transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch enable (LEAB or LEBA) and output enable (GAB or GBA) inputs are provided for each register to permit independent control in either direction of data flow.

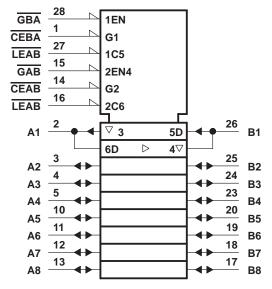
DW PACKAGE (TOP VIEW)

The A-to-B enable (CEAB) input must be low in order to enter data from A or to output data to B. Having CEAB low and LEAB low makes the A-to-B latches transparent; a subsequent low-to-high transition of LEAB puts the A latches in the storage mode. With CEAB and GAB both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B-to-A is similar, but requires the use of CEBA, LEBA, and GBA inputs.

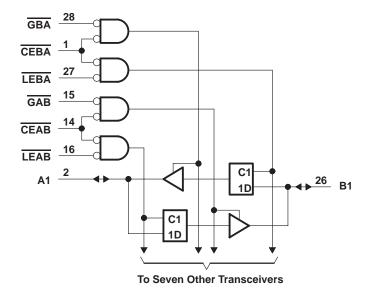
The 74ACT11543 is characterized for operation from -40° C to 85°C.

FUNCTION TABLE

	INPUTS		LATCH STATUS	OUTPUT BUFFERS
CEAB	LEAB	GAB	A TO BT	B1 THRU B8
Н	Х	Х	Storing	Z
Х	Н		Storing	
Х		Н		Z
L	L	L	Transparent	Current A Data
L	Н	L	Storing	Previous [‡] A Data


[†] A-to-B data flow is shown: B-to-A flow control is the same except uses CEBA, LEBA, and GBA.

EPIC is a trademark of Texas Instruments Incorporated.


[‡] Data present before low-to-high transition of LEAB.

SCAS136 - D3608, JULY 1990 - REVISED APRIL 1993

logic symbol†

logic diagram (positive logic)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, VO (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	± 20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	
Continuous output current, I_O ($V_O = 0$ to V_{CC})	± 50 mA
Continuous current through V _{CC} or GND	± 200 mA
Storage temperature range	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
VI	Input voltage	0		VCC	V
Vo	Output voltage	0		VCC	V
loh	High-level output current			-24	mA
lOL	Low-level output current			24	mA
Δt/Δν	Input transition rise or fall rate	0		10	ns/V
TA	Operating free-air temperature	- 40		85	°C

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

SCAS136 - D3608, JULY 1990 - REVISED APRIL 1993

electrical characteristics over recommended operating free-air temperature range

	ARAMETER	TEST CONDITIONS		T _A = 25°C		MIN	MAV	UNIT	
	ARAWETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	IVIIIV	0.1 0.44 0.44 1.65 ±1 ±5 80	UNIT
		ΙΟΗ = – 50 μΑ	4.5 V	4.4			4.4		
		ΙΟΗ = - 30 μΑ	5.5 V	5.4			5.4		
Vон		I _{OH} = - 24 mA	4.5 V	3.94			3.8		V
		10H = - 24 IIIA	5.5 V	4.94			4.8		
		I _{OH} = -75 mA [†]	5.5 V				3.85		
		lo. = 50 mA	4.5 V			0.1		0.1	
		I _{OL} = 50 μA	5.5 V			0.1		0.1	
VOL		lo 24 mA	4.5 V			0.36		0.44	V
		I _{OL} = 24 mA	5.5 V			0.36		0.44	
	_	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
Ц	Control inputs	$V_I = V_{CC}$ or GND	5.5 V			± 0.1		± 1	μΑ
loz	A or B ports‡	$V_O = V_{CC}$ or GND	5.5 V			± 0.5		± 5	μΑ
Icc		$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
Δlcc	§	One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1	mA
Ci	Control inputs	$V_I = V_{CC}$ or GND	5 V		4.5				pF
C _{io}	A or B ports	$V_O = V_{CC}$ or GND	5 V		12				pF

T Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

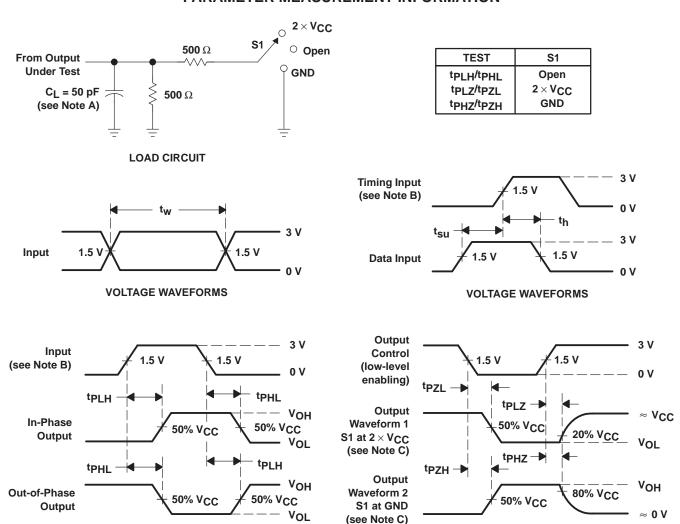
			T _A = 25°C		MIN	MAX	UNIT
					IVIIIN	IVIAA	UNIT
t _W	t _W Pulse duration, LEAB or LEBA low		4		4		ns
	Catura time	Data after LEAB or LEBA↑	2.5		2.5		ns
^t su	Setup time	Data before CEAB or CEBA	3		3		115
4.	Hold time	Data after LEAB or LEBA↑	2		2		20
th	noia time	Data after CEAB or CEBA↑	1.5		1.5		ns

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

[§] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or VCC.

74ACT11543 **OCTAL REGISTERED TRANSCEIVER** WITH 3-STATE OUTPUTS SCAS136 - D3608, JULY 1990 - REVISED APRIL 1993

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	T,	4 = 25°C	;	MIN	MAX	UNIT
FARAWETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	ONIT
^t PLH	A or B	B or A	3.5	6.2	9.1	3.5	10.2	ns
^t PHL		BOIA	3.2	6.5	10.8	3.2	12.1	115
^t PLH	LEBA or LEAB	A or B	3	6.1	10.1	3	11.2	ns
^t PHL		AOIB	3.7	7.2	11.7	3.7	13.2	115
^t PZH	CEBA or CEAB	A or B	3.5	6.7	11.1	3.5	12.2	ns
tpZL		AUIB	3.2	8.4	13.4	3.2	16	115
^t PHZ	CEBA or CEAB	A or B	4.8	7.3	10.1	4.8	11	ns
tPLZ	CEDA OI CEAD	AOIB	5.1	7.5	10.3	5.1	11.1	115
^t PZH	CDA or CAD	A or B	3.3	6.4	10.5	3.3	11.5	ns
tPZL	GBA or GAB	AUIB	3	8	12.8	3	15.3	115
^t PHZ		A or B	4.6	6.9	9.6	4.6	10.4	20
tpLZ	GBA or GAB	AUIB	5	7.1	9.8	5	10.5	ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CON	TYP	UNIT	
C _{pd}	Down discinction conscitones not transcrive	Outputs enabled	C: 50 pF	f 4 MILL	47	pF
	Power dissipation capacitance per transceiver	Outputs disabled	$C_L = 50 pF$,	f = 1 MHz	13	pr

VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

VOLTAGE WAVEFORMS

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated