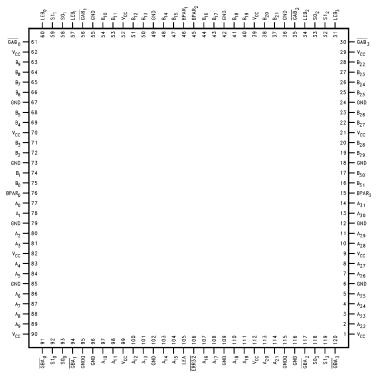
rity h arantee quie reshold per TO™ outpu

Parity Checker and Byte Multiplexing with TRI-STATE Outputs 4ACTQ3283T 32-Bit Latchable Transceiver with Parity Generator

74ACTQ3283T 32-Bit Latchable Transceiver with Parity Generator/Parity Checker and Byte Multiplexing with TRI-STATE® Outputs

General Description

The 'ACTQ3283T is a 32-bit latchable transceiver with parity checker/generator. The device can operate as a transceiver generating parity in the A-B direction and checking it in the B-A direction. It can be used to multiplex between data bytes, and provides an easy interface between 32-bit and 8-or 16-bit data busses. It has a guaranteed current sink/source capacity of 24 mA, and features reduced voltage swing outputs to improve output noise and EMI crosstalk.


The 'ACTQ3283T features independent latch enables for the B side, and a 32-bit latch enable for the A side. Each byte is selectable separately for complete byte-wide multiplex control.

Features

- Utilizes NSC Quiet Series technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Series™ features GTO™ output control for superior performance
- Reduced voltage swing outputs for lower EMI
- Latchable transceiver with 24 mA source/sink capability
- Even parity generation in A-B direction and 32-bit parity check in B-A direction
- Fully selectable byte multiplexing allows byte swapping, byte copying, and 32-bit to 8-bit/16-bit multiplexing
- Separate control logic for each byte

Connection Diagram

Pin Assignment for PQFP

TL/F/10979-1

TRI-STATE® is a registered trademark of National Semiconductor Corporation. FACT™, FACT Quiet Series™ and GTO™ are trademarks of National Semiconductor Corporation

Functional Description

The 'ACTQ3283T can operate in transparent or latched modes, with complete byte multiplexing selectable at every byte. For the following descriptions data byte will be referred to as A_n or B_n , the n refers to 0–3 thus representing bytes A_0 , A_1 , A_2 or A_3 .

- Byte A_n to B_n (Feedthrough mode), LEA is held HIGH to put latch in transparent mode. Parity is generated for each byte and select pins $S0_n$ and $S1_n$ select which data byte (A_0-A_3) is fed through.
- Byte B_n to A_n (Feedthrough mode), LEB $_n$ is held HIGH to put latch in transparent mode. Parity is checked for each byte and $\overline{ERR32}$ goes LOW if there is one or more parity errors. Select pins $S0_n$ and $S1_n$ select which data byte (B_0-B_3) is fed through.
- Independent Latch enables LEA, LEB₀, LEB₁, LEB₂ and LEB₃ provide means of latching data at the A bus or at any byte (B₀-B₃) on the B bus. Select pins S0_n and S1_n select which data byte output. See function table and select table for further information.

Pin Description

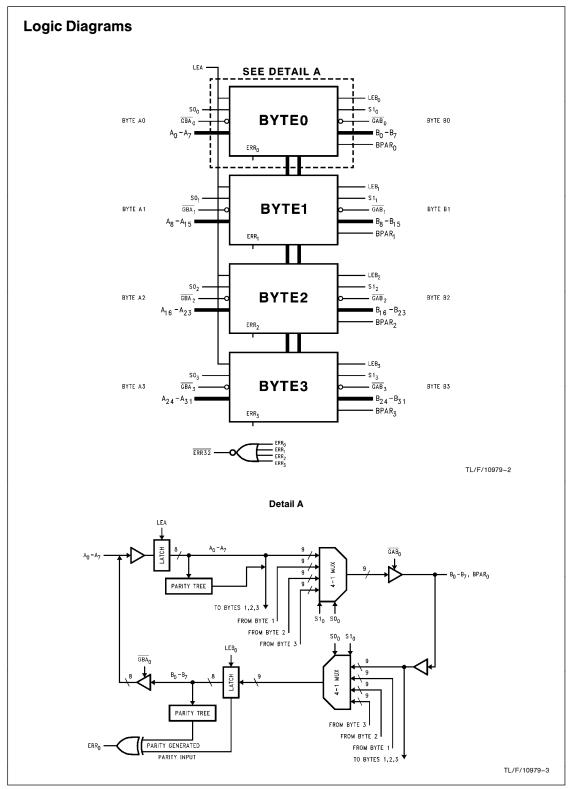
Pin Names	Description
$A_0 - A_7$	A ₀ Byte Inputs/Outputs
A ₈ -A ₁₅	A ₁ Byte Inputs/Outputs
A ₁₆ -A ₂₃	A ₂ Byte Inputs/Outputs
A ₂₄ -A ₃₁	A ₃ Byte Inputs/Outputs
$B_0 - B_7$	B ₀ Byte Inputs/Outputs
B ₈ -B ₁₅	B ₁ Byte Inputs/Outputs
B ₁₆ -B ₂₃	B ₂ Byte Inputs/Outputs
B ₂₄ -B ₃₁	B ₃ Byte Inputs/Outputs
$\overline{GAB}_0 - \overline{GAB}_3$	Output Enable for Byte
	B ₀ -B ₃ , Organized Byte
	Wide, Active LOW
$\overline{GBA}_0 - \overline{GBA}_3$	Output Enable for Byte
	A ₀ -A ₃ , Organized Byte
	Wide, Active LOW
LEA	Latch Enable for A ₀ ,
	A ₁ , A ₂ and A ₃ . HIGH
	for Transparent mode.
LEB ₀ -LEB ₃	Latch Enable for B ₀ -
	B ₃ Organized byte
	wide. HIGH for
	Transparent mode.
S0 ₀ -S0 ₃	Select Pins for Byte
S1 ₀ -S1 ₃	Multiplexing, Organized
• •	by Byte.
BPAR ₀ -BPAR ₃	Parity bit input/output,
0 0	one per byte B side
	only. LOW for EVEN
	parity.
ERR32	32-bit parity error,
	generated by bytes
	B_0-B_3 and $BPAR_0-$
	BPAR ₃ . LOW indicates
	parity error on ONE or
	MORE of B side bytes.

Select Table

Inp	uts	Operation
S1 _n	S0 _n	operation
0	0	Byte 0 Data Selected
0	1	Byte 1 Data Selected
1	0	Byte 2 Data Selected
1	1	Byte 3 Data Selected

Select pins for the 'ACTQ3283T are organized by byte, and allow for complete byte multiplexing of data. Two control pins S0 and S1 are available for each byte, and the data is selected as described in the Select Tabe for both the A–B and B–A direction.

Function Table


		Inpu	Operation			
GAB _n	GBAn	LEA	LEB _n	S1 _n	S0 _n	Operation
Н	Н	Х	Х	Х	Х	Busses A _n and B _n are in TRI-STATE
L	Н	Н	Х	L	L	Data on bus A_0 is fed through to B_n Parity $BPAR_n$ is generated from A_0
L	Н	н	Х	L	Н	Data on bus A_1 is fed through to B_n Parity BPAR _n is generated from A_1
L	Н	н	Х	Н	L	Data on bus A_2 is fed through to B_n Parity BPAR _n is generated from A_2
L	Н	н	Х	Н	Н	Data on bus A_3 is fed through to B_n Parity BPAR _n is generated from A_3
Н	L	X	Н	L	L	Data on bus B ₀ is fed through to A _n Parity is checked by B _n and BPAR _n ERR32 is pulled LOW on parity ERROR
Н	L	х	Н	L	Н	Data on bus B ₁ is fed through to A _n Parity is checked by B _n and BPAR _n ERR32 is pulled LOW on parity ERROR
Н	L	Х	Н	Н	L	Data on bus B ₂ is fed through to A _n Parity is checked by B _n and BPAR _n ERR32 is pulled LOW on parity ERROR
Н	L	х	Н	Н	Н	Data on bus B ₃ is fed through to A _n Parity is checked by B _n and BPARn ERR32 is pulled LOW on parity ERROR
L	Н	L	Х	х	х	Data on bus A is latched and output on B _n based on the select signals
Н	L	х	L	х	x	Data on bus B _n is latched and output on A _n based on the select signals

H = High Voltage Level
L = Low Voltage Level
X = Immaterial

 A_n - indicates byte $A_0,\,A_1,\,A_2$ or A_3

 B_n - indicates byte $B_0,\,B_1,\,B_2$ or B_3

 A_0 - indicates byte 0, or pins A_0 - A_7

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5V to +7.0VDC Input Diode Current (I_{IK})

 $V_{I} = -0.5V$ $V_{I} = V_{CC} + 0.5V$ -20 mA \pm 20 mA

DC Output Diode Current (I_{OK})

 $-20\,\text{mA}$ $V_O = -0.5V$ $V_O = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (VO) -0.5 V to $V_{\hbox{\footnotesize CC}} \,+\, 0.5 V$ DC Output Source/Sink Current (I_O) $\pm\,50~mA$

DC V_{CC} or Ground Current

per Output Pin $\pm\,50~mA$

Junction Temperature

PQFP +140°C

-65°C to +150°C Storage Temperature ESD Last Passing Voltage (Min)

 $\textbf{Note 1:} \ \textbf{Absolute maximum ratings are those values beyond which damage}$ to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V_{CC}) 'ACTQ

4.5V to 5.5V 0V to V_{CC} Input Voltage (V_I) Output Voltage (V_O) 0V to V_{CC}

Operating Temperature (T_A)

74ACTQ -40°C to +85°C

Minimum Input Edge Rate dV/dt

'ACTQ Devices 125 mV/ns V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

DC Electrical Characteristics for ACTQ Family Devices

			74	CTQ	74ACTQ			
Symbol	Parameter	V _{CC}	+ 25°C		-40°C to +85°C	Units	Conditions	
		(-,	Тур	Gua	ranteed Limits			
V _{IH}	Minimum High Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	$V_{OUT} = 0.1V$ or V_{OH}	
V _{IL}	Maximum Low Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	٧	$V_{OUT} = 0.1V$ or V_{OH}	
V _{OH}	Minimum High Output Voltage	4.5 5.5		3.15 3.85	3.15 3.85	٧	$I_{OUT} = -50 \mu A$	
		4.5 5.5		2.0 2.0	2.0 2.0	V	$\begin{aligned} V_{\text{IN}} &= V_{\text{IL}} \text{ or } V_{\text{IH}} \\ &- 24 \text{ mA} \\ I_{\text{OH}} &- 24 \text{ mA} \end{aligned}$	
V_{OL}	Maximum Low Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA	
		4.5 5.5		0.36 0.36	0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ I_{OL} 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	± 1.0	μΑ	$V_I = V_{CC}$, GND	
Ісст	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$	
lcc	Maximum Quiescent Supply Current	5.5		8.0	80.0	μΑ	$V_{IN} = V_{CC}$ or GND	
I _{OLD}	†Minimum Dynamic	5.5			63	mA	V _{OLD} = 0.8V Max	
I _{OHD}	Output Current	0.0			-40	mA	V _{OHD} = 2.0V Min	
lozt	Max I/O Leakage Current	5.5		±0.5	±5.0	μΑ	V_{I} (OE) = V_{IL} , V_{IH}	

 \dagger Maximum test duration 2.0 ms, one output loaded at a time.

DC Electrical Characteristics for ACTQ Family Devices (Continued)

			74A	CTQ	74ACTQ		
Symbol	Parameter	V _{CC} (V)	+ 2	!5°C	-40°C to +85°C	Units	Conditions
		(•)	Тур	Guara	nteed Limits		
V_{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	0.7	1.2		V	Figures 9, 10 (Notes 2, 3)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.7	-1.2		v	Figures 9, 10 (Notes 2, 3)
V _{OHP}	Maximum Overshoot	5.0	V _{OH} + 0.6	V _{OH} + 1.2		V	Figures 9, 10 (Notes 1, 3)
V _{OHV}	Minimum V _{CC} Droop	5.0	V _{OH} - 0.3	V _{OH} - 0.7		V	Figures 9, 10 (Notes 1, 3)
V_{IHD}	Minimum High Dynamic Input Voltage Level	5.0	1.7	2.0		V	(Notes 1, 4)
V _{ILD}	Maximum Low Dynamic Input Voltage Level	5.0	1.2	0.8		V	(Notes 1, 4)

Note 1: Worst case package.

AC Electrical Characteristics

				74ACTQ		74	ACTQ		
Symbol Parameter	Parameter	V _{CC} * (V)	+ 25°C 50 pF				to +85°C) pF	Units	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH} t _{PHL}	Propagation Delay A to B	5.0	3.5	7.6	9.7	3.5	10.8	ns	1
t _{PLH} t _{PHL}	Propagation Delay B to A	5.0	3.5	8.9	11.2	3.5	12.5	ns	1
t _{PLH} t _{PHL}	Propagation Delay A to BPAR _n	5.0	4.5	9.6	12.1	4.5	13.6	ns	3
t _{PLH} t _{PHL}	Propagation Delay B to ERR32	5.0	5.0	12.0	14.8	5.0	16.7	ns	4
t _{PLH} t _{PHL}	Propagation Delay BPAR _n to ERR32	5.0	3.5	10.5	13.2	3.5	14.8	ns	4
t _{PLH} t _{PHL}	Propagation Delay LEA to B _n	5.0	4.5	8.8	10.9	4.5	12.1	ns	2
t _{PLH} t _{PHL}	Propagation Delay LEA to BPAR _n	5.0	5.0	10.6	13.1	5.0	14.7	ns	2
t _{PLH} t _{PHL}	Propagation Delay LEB _n to A _n	5.0	4.5	8.7	10.9	4.5	12.3	ns	2
t _{PLH} t _{PHL}	Propagation Delay S0/S1 _n to A _n	5.0	4.5	9.3	11.6	4.5	12.9	ns	5
t _{PLH} t _{PHL}	Propagation Delay S0/S1 _n to B _n S0/S1 _n to BPARn	5.0	3.5	8.6	10.9	3.5	12.1	ns	5
t _{PZL} t _{PZH}	Enable Time	5.0	2.5	7.6	9.8	2.5	10.8	ns	6, 7
t _{PLZ} t _{PHZ}	Disable Time	5.0	1.0	4.5	6.6	1.0	7.2	ns	6, 7

^{*}Voltage range 5.0 is 5.0V ± 0.5 V.

Note 2: Maximum number of outputs that can switch simultaneously is n. (n-1) outputs are switched LOW and one output held LOW.

Note 3: Maximum number of outputs that can switch simultaneously is n. (n-1) outputs are switched HIGH and one output held HIGH.

Note 4: Maximum number of data inputs (n) switching. (n-1) input switching 0V to 3V ('ACTQ). Input under test switching 3V to threshold (V_{ILD}).

AC Operating Requirements

		V *	74ACTQ	74ACTQ	
Symbol	Parameter	(V)	Typical T _A = +25°C	Commercial $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	Units
t _s	Setup Time A _n to LEA	5.0	1.0	3.0	ns
t _s	Setup Time B _n , BPAR _n to LEB _n	5.0	1.0	3.0	ns
t _h	Hold Time A _n to LEA	5.0	1.0	1.5	ns
t _h	Hold Time B _n , BPAR _n to LEB _n	5.0	1.0	1.5	ns
t _w	Min Pulse Width LEA	5.0	1.5	4.0	ns
t _w	Min Pulse Width LEB _n	5.0	1.5	4.0	ns

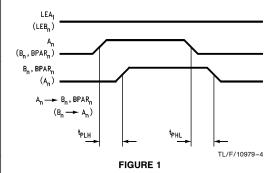
^{*}Voltage range 5.0 is 5.0V ± 0.5 V.

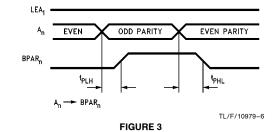
Extended AC Electrical Characteristics

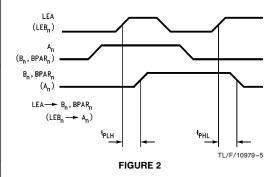
		74A	CTQ	74A	CTQ	74A	СТQ	
Symbol	Parameter	$ \begin{array}{c} T_A = \text{Com} \\ V_{CC} = \text{Com} \\ C_L = 50 \text{ pF} \\ 32 \text{ Outputs} \\ \text{Switching} \\ \text{(Note 1)} \end{array} $		V _{CC} = (No	$\begin{aligned} T_{A} &= -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ V_{CC} &= \text{Com} \\ C_{L} &= 250 \text{ pF} \\ \text{(Note 2)} \\ 1 \text{ Output Switching} \end{aligned}$		$\begin{aligned} T_{A} &= -40^{\circ}\text{C to } + 85^{\circ}\text{C} \\ V_{CC} &= \text{Com} \\ C_{L} &= 250 \text{ pF} \\ \text{(Notes 1, 2)} \\ 32 \text{ Outputs Switching} \end{aligned}$	
		Min	Max	Min	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation Delay A to B	4.5	11.8	5.0	14.5	6.0	15.5	ns
t _{PLH} t _{PHL}	Propagation Delay B to A	5.0	13.0	5.0	15.0	6.0	16.0	ns
t _{PLH} t _{PHL}	Propagation Delay A to BPAR _n	5.5	14.5	6.0	17.0	7.0	19.0	ns
t _{PLH} t _{PHL}	Propagation Delay B to ERR32	6.0	17.5	7.0	19.5	8.0	20.5	ns
t _{PLH} t _{PHL}	Propagation Delay BPAR _n to ERR32	4.5	15.5	5.0	17.5	6.0	19.5	ns
t _{PLH} t _{PHL}	Propagation Delay LEA to B _n	5.0	13.0	6.0	15.5	7.0	17.0	ns
t _{PLH} t _{PHL}	Propagation Delay LEA to BPAR _n	6.0	15.5	6.5	18.5	7.5	20.5	ns
t _{PLH} t _{PHL}	Propagation Delay LEB _n to A _n	5.0	14.0	5.5	16.0	7.0	18.0	ns
t _{PLH} t _{PHL}	Propagation Delay S0 _n /S1 _n to A _n	6.0	17.0	7.0	20.0	8.0	21.0	ns
t _{PLH} t _{PHL}	Propagation Delay S0 _n /S1 _n to B _n S0 _n /S1 _n to BPAR _n	5.0	13.0	5.5	16.5	6.0	18.0	ns
t _{PZL} t _{PZH}	Enable Time				(No	ote 3)		ns
t _{PLZ} t _{PHZ}	Disable Time				(No	ote 4)		ns

Note 1: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (ii.e., all low-to-high, high-to-low, etc.).

Note 2: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.


Note 3: TRI-STATE delays are load dominated and have been excluded from the datasheet.


Note 4: The Output Disable Time is dominated by the RC network (500 Ω , 250 pF) on the output and has been excluded from the datasheet.


Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Pin Capacitance	7.0	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	62	pF	$V_{CC} = 5.0V$

AC Path

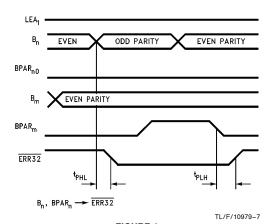
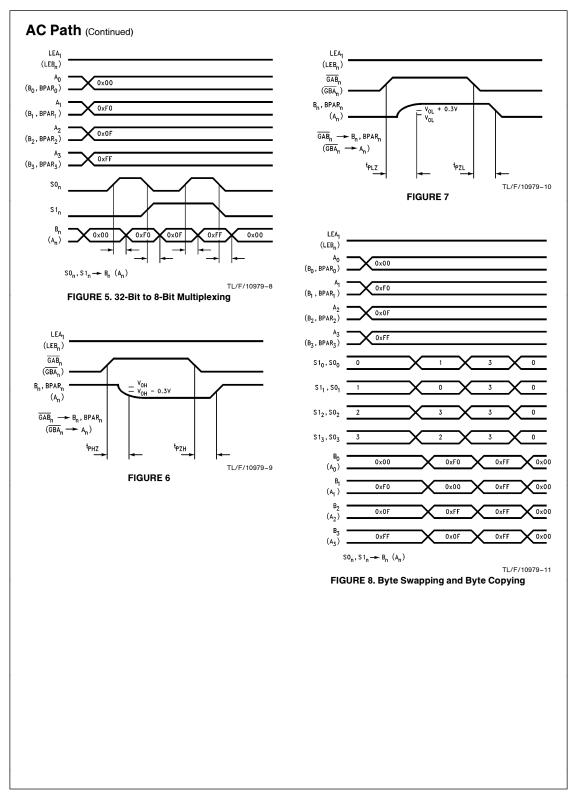
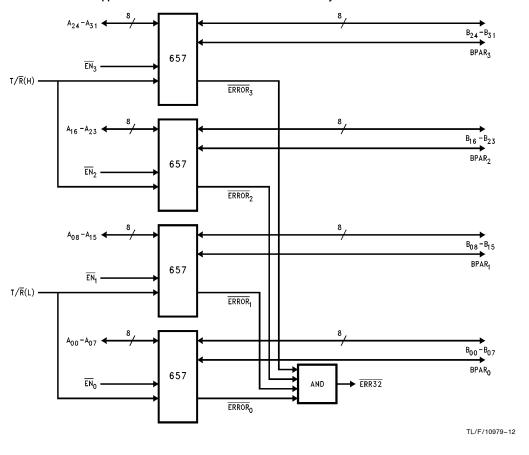



FIGURE 4

Application 1: 32-Bit or 2/16-Bit Data Buffer and Parity Generate/Check Detailed Pin Description

ACTQ3283T Symbol	Discrete Symbol	# of Pins	Type*	Function
A ₀ -A ₇ A ₈ -A ₁₅ A ₁₆ -A ₂₃ A ₂₄ -A ₃₁	A ₀₀ -A ₀₇ A ₀₈ -A ₁₅ A ₁₆ -A ₂₃ A ₂₄ -A ₃₁	8 8 8 8	1/0 1/0 1/0 1/0	One of the two 32-bit busses serviced by the 'ACTQ3283T. During transfer from A bus to B bus the signal associations are: $A_0-A_7 \qquad B_0-B_7$ $A_8-A_{15} \qquad B_8-B_{15}$ $A_{16}-A_{23} \qquad B_{16}-B_{23}$ $A_{24}-A_{31} \qquad B_{24}-B_{31}$
B ₀ -B ₇ B ₈ -B ₁₅ B ₁₆ -B ₂₃ B ₂₄ -B ₃₁	B ₀₀ -B ₀₇ B ₀₈ -B ₁₅ B ₁₆ -B ₂₃ B ₂₄ -B ₃₁	8 8 8 8	1/0 1/0 1/0 1/0	One of the two 32-bit busses serviced by the 'ACTQ3283T. During transfer from B bus to A bus the signal associations are: B ₀ -B ₇ A ₀ -A ₇ B ₈ -B ₁₅ A ₈ -A ₁₅ B ₁₆ -B ₂₃ A ₁₆ -A ₂₃ B ₂₄ -B ₃₁ A ₂₄ -A ₃₁
BPAR ₀ -BPAR ₃	BPAR ₀ -BPAR ₃	4	1/0	When data is transferred from the A side to the B side each parity bit will be generated to perform even parity for each byte. Data transferred from the B side to the A side will provide the parity bit which will be checked internally.
GAB ₀ −GAB ₃	<u>EN₀−EN3</u> T/R (L) T/R (H)	4	I	A output enables. When this signal is low the data on the A side, latched or active will be output to the B side. Signal associations are: GAB ₀ A ₀ -A ₇ B ₀ -B ₇ GAB ₁ A ₈ -A ₁₅ B ₈ -B ₁₅ GAB ₂ A ₁₆ -A ₂₃ B ₁₆ -B ₂₃ GAB ₃ A ₂₄ -A ₃₁ B ₂₄ -B ₃₁


^{*}I = Input, O = Output

Application 1: 32-Bit or 2/16-Bit Data Buffer and Parity Generate/Check

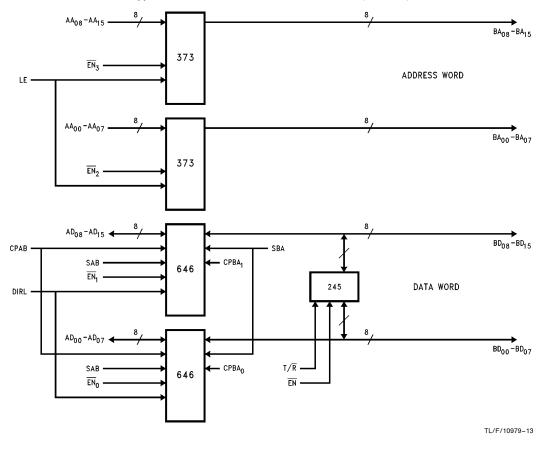
Detailed Pin Description (Continued)

'ACTQ3283T Symbol	Discrete Symbol	# of Pins	Туре	Function
GBA₀−GBA₃	EN ₀ −EN ₃ T/R (L) T/R (H)	4	I	B output enables. When this signal is low the data on the B side, latched or active will be output to the A side. Signal associations are: GAB ₀ B ₀ -B ₇ A ₀ -A ₇ GAB ₁ B ₈ -B ₁₅ A ₈ -A ₁₅ GAB ₂ B ₁₆ -B ₂₃ A ₁₆ -A ₂₃ GAB ₃ B ₂₄ -B ₃₁ A ₂₄ -A ₃₁
ERR32	ERR32	1	0	This pin indicates if any one or more bytes had a parity error.

Application 1: 32-Bit or 2/16-Bit Data Buffer and Parity Generate/Check

Application 2: 16-Bit Data and 16-Bit Address Buffer

Detailed Pin Description

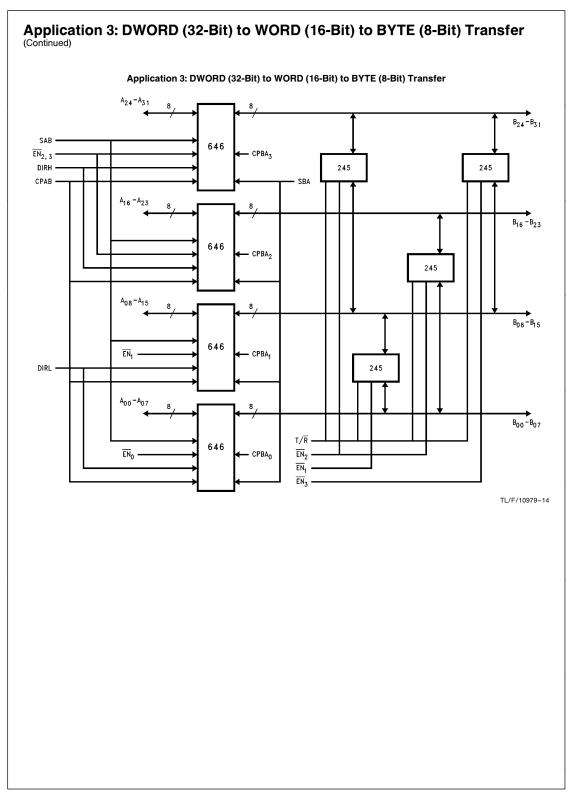

'ACTQ3283T Symbol	Discrete Symbol	# of Pins	Туре	Function
A ₀ -A ₇ A ₈ -A ₁₅ A ₁₆ -A ₂₃ A ₂₄ -A ₃₁	AD ₀₀ -AD ₀₇ AD ₀₈ -AD ₁₅ AA ₀₀ -AA ₀₇ AA ₀₈ -AA ₁₅	8 8 8 8	1/0 1/0 1/0 1/0	One of the two 32-bit busses serviced by the 'ACTQ3283T. During transfer from A bus to B bus the signal associations are: A ₀ -A ₇ B ₀ -B ₇ A ₈ -A ₁₅ B ₈ -B ₁₅ A ₁₆ -A ₂₃ B ₁₆ -B ₂₃
B ₀ -B ₇ B ₈ -B ₁₅ B ₁₆ -B ₂₃ B ₂₄ -B ₃₁	BD ₀₀ -BD ₀₇ BD ₀₈ -BD ₁₅ BA ₁₆ -BA ₂₃ BA ₂₄ -BA ₃₁	8 8 8 8	1/O 1/O 1/O 1/O	A ₂₄ -A ₃₁ B ₂₄ -B ₃₁ One of the two 32-bit busses serviced by the 'ACTQ3283T. During transfer from B bus to A bus the signal associations are: B ₀ -B ₇ A ₀ -A ₇ B ₈ -B ₁₅ A ₈ -A ₁₅ B ₁₆ -B ₂₃ A ₁₆ -A ₂₃
BPAR ₀ -BPAR ₃	BPAR ₀ -BPAR ₃	4	I/O	B ₂₄ -B ₃₁ A ₂₄ -A ₃₁ Each BPAR pin should be tied to V _{CC} through a suitable resistor if parity is not used.
GAB₀−GAB₃	EN ₀ −EN ₃ DIRL	4	I	A output enables. When this signal is low the data on the A side, latched or active will be output to the B side. Signal associations are: GAB ₀ A ₀ -A ₇ B ₀ -B ₇ GAB ₁ A ₈ -A ₁₅ B ₈ -B ₁₅ GAB ₂ A ₁₆ -A ₂₃ B ₁₆ -B ₂₃ GAB ₃ A ₂₄ -A ₃₁ B ₂₄ -B ₃₁
GBA ₀ −GBA ₃	EN ₀ −EN ₃ DIRL	4	I	B output enables. When this signal is low the data on the B side, latched or active will be output to the A side. Signal associations are: \[\begin{align*} \overline{GBA}_0 & B_0-B_7 & to A_0-A_7 \\ \overline{GBA}_1 & B_8-B_{15} & to A_8-A_{15} \\ \overline{GBA}_2 & Tied high for this app. \\ \overline{GBA}_3 & Tied high for this app. \end{align*}
LEA	LE CPAB	1	I	Will latch in the address and data.
LEB ₀ -LEB ₃	CPBA₀ CPBA₁	4	I	Individual B byte latch enable. When in high state, B data is transparent and if in low state, B data is latched LEB ₀ H or L LEB ₁ H or L LEB ₂ Low for this app. LEB ₃ Low for this app.

Application 2: 16-Bit Data and 16-Bit Address Buffer (Continued)

Detailed Pin Description (Continued)

ACTQ3283T Symbol	Discrete Symbol	# of Pins	Туре	Function
S0 ₀ -S0 ₃ S1 ₀ -S1 ₃	T/ F (245) EN (245)	8		These pins allow byte multiplexing, organized by byte, Each byte may be directed to any other byte by setting S0, S1 in a binary fashion to select the stimulus. For this application: $S1_0 = L S0_0 = L B_0 \text{ selected at } B_0 \\ S1_0 = L S0_0 = H B_1 \text{ selected at } B_0 \\ S1_1 = L S0_1 = L B_0 \text{ selected at } B_1 \\ S1_1 = L S0_1 = H B_1 \text{ selected at } B_1 \\ S1_2 = H S0_2 = L B_2 \text{ selected at } B_2 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H B_3 \text{ selected at } B_3 \\ S1_2 = H S0_3 = H S0_3 = H S0_3 = H \\ S1_2 = H S0_3 = H S0_3 = H \\ S1_2 = H S0_3 = H S0_3 = H \\ S1_2 = H S0_3 = H S0_3 = H \\ S1_2 = H S0_3 = H S0_3 = H \\ S1_2 = H S0_3 = H S0_3 = H \\ S1_3 = H S0_3 = H S0_3 = H \\ S1_2 = H S0_3 = H S0_3 = H \\ S1_3 = H S0_3 = H $
N/A	SAB SBA			Select of active byte or latched byte not available.

Application 2: 16-Bit Data and 16-Bit Address Buffer (Continued)


Application 3: DWORD (32-Bit) to WORD (16-Bit) to BYTE (8-Bit) Transfer Detailed Pin Description

'ACTQ3283T Symbol	Discrete Symbol	# of Pins	Туре	Function
A ₀ -A ₇ A ₈ -A ₁₅	AD ₀₀ -A ₀₇ AD ₀₈ -A ₁₅	8 8	I/O I/O	One of the two 32-bit busses serviced by the 'ACTQ3283T.
A ₁₆ -A ₂₃ A ₂₄ -A ₃₁	AA ₀₀ -A ₀₇ AA ₀₈ -A ₁₅	8 8	I/O I/O	During transfer from A bus to B bus the signal associations
				are: A ₀ -A ₇ B ₀ -B ₇ A ₈ -A ₁₅ B ₈ -B ₁₅ A ₁₆ -A ₂₃ B ₁₆ -B ₂₃ A ₂₄ -A ₃₁ B ₂₄ -B ₃₁
B ₀ -B ₇	BD ₀₀ -B ₀₇	8	1/0	One of the two 32-bit busses
B ₈ -B ₁₅	BD ₀₈ -B ₁₅	8	1/0	serviced by the 'ACTQ3283T.
B ₁₆ -B ₂₃	BA ₀₀ -B ₀₇	8	1/0	During transfer from B bus to
B ₂₄ -B ₃₁	BA ₀₈ -B ₁₅	8	1/0	A bus the signal associations are: $B_0-B_7 \qquad A_0-A_7$
				B ₈ -B ₁₅ A ₈ -A ₁₅ B ₁₆ -B ₂₃ A ₁₆ -A ₂₃ B ₂₄ -B ₃₁ A ₂₄ -A ₃₁
BPAR ₀ -BPAR ₃	BPAR ₀ -BPAR ₃	4	I/O	Each BPAR pin should be tied to V _{CC} through a suitable resistor if parity is not used.
GAB₀−GAB₃	EN ₀ −EN ₃ DIRL DIRH	4	I	A output enables. When this signal is low the data on the A side, latched or active will be output to the B side. Signal associations are:
GBA₀−GBA₃	EN ₀ -EN ₃ DIRL DIRH	4	I	B output enables. When this signal is low the data on the B side, latched or active will be output to the A side. Signal associations are:
LEA	СРВА	1	I	Will latch in the 32-bit A bus.
LEB ₀ -LEB ₃	CPBA ₀ CPBA ₁ CPBA ₂ CPBA ₃	4	I	Individual B byte latch enable. When in high state, B data is transparent and in low state B data is latched. LEB ₀ H or L LEB ₁ H or L LEB ₂ H or L LEB ₃ H or L

Application 3: DWORD (32-Bit) to WORD (16-Bit) to BYTE (8-Bit) Transfer (Continued)

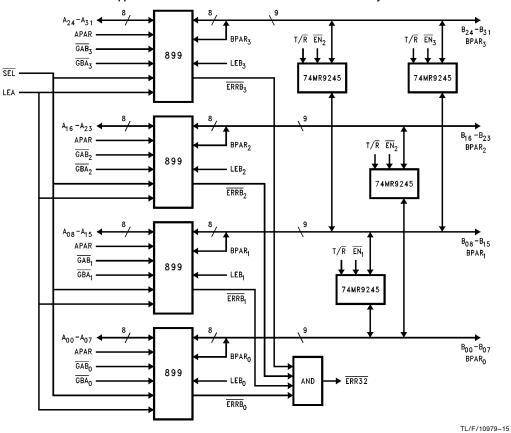
Detailed Pin Description (Continued)

ACTQ3283T Symbol	Discrete Symbol	# of Pins	Туре	Function
S0 ₀ -S0 ₃ S1 ₀ -S1 ₃	T/\(\overline{R}\) (245) \(\overline{EN}_1\) (245) \(\overline{EN}_2\) (245) \(\overline{EN}_3\) (245)	8	I	These pins allow byte multiplexing, organized by byte. Each byte may be directed to any other byte by setting S0, S1 in a binary fashion to select the stimulus. For this application: $S1_0 = L S0_0 = L A_0 \text{ selected at } B_0 B_0 \text{ selected at } A_0 S1_0 = L S0_0 = H A_1 \text{ selected at } A_0 B_1 s$
				S1 ₀ =H S0 ₀ =L A ₂ selected at B ₀ B ₂ selected at A ₀ S1 ₀ =H S0 ₀ =H A ₃ selected at B ₀
				B_3 selected at A_0
				S1 ₁ =L S0 ₁ =L A ₀ selected at B ₁ B ₀ selected at A ₁
				S1 ₁ =L S0 ₁ =L A ₁ selected at B ₁ B ₁ selected at A ₁
				$S1_1 = H$ $S0_1 = H$ A_3 selected at A_1 B_3 selected at A_1
				$S1_2 = L$ $S0_2 = L$ A_0 selected at B_2 B_0 selected at A_2
				$S1_2$ =H $S0_2$ =L A_2 selected at B_2 B_2 selected at A_2
				$S1_3 = L$ $S0_3 = L$ A_0 selected at B_3 B_0 selected at A_3
				$S1_3 = L$ $S0_3 = H$ A_1 selected at B_3 B_1 selected at A_3
				$S1_3$ =H $S0_3$ =H A_3 selected at B_3 B_3 selected at A_3

Application 4: DWORD (32-Bit) to WORD (16-Bit) to BYTE (8-Bit) Transfer with Parity Generator (A to B)/Check (B to A)

Detailed Pin Description

'ACTQ3283T Symbol	Discrete Symbol	# of Pins	Туре	Function
A ₀ -A ₇ A ₈ -A ₁₅ A ₁₆ -A ₂₃ A ₂₄ -A ₃₁	AD ₀₀ -A ₀₇ AD ₀₈ -A ₁₅ AA ₀₀ -A ₀₇ AA ₀₈ -A ₁₅	8 8 8 8	1/O 1/O 1/O 1/O	One of the two 32-bit busses serviced by the 'ACTQ3283T. During transfer from A bus to B bus the signal associations are: A ₀ -A ₇ B ₀ -B ₇ A ₈ -A ₁₅ B ₈ -B ₁₅ A ₁₆ -A ₂₃ B ₁₆ -B ₂₃ A ₂₄ -A ₃₁ B ₂₄ -B ₃₁
B ₀ -B ₇ B ₈ -B ₁₅ B ₁₆ -B ₂₃ B ₂₄ -B ₃₁	BD ₀₀ -BD ₀₇ BD ₀₈ -BD ₁₅ BA ₀₀ -BA ₀₇ BA ₀₈ -BA ₁₅	8 8 8 8	1/O 1/O 1/O 1/O	One of the two 32-bit busses serviced by the 'ACTQ3283T. During transfer from B bus to A bus the signal associations are: B ₀₋₇ A ₀₋₇ B ₈₋₁₅ A ₈₋₁₅ B ₁₆₋₂₃ A ₁₆₋₂₃ B ₂₄₋₃₁ A ₂₄₋₃₁
BPAR ₀ -BPAR ₃	BPAR₀-BPAR₃	4	I/O	When the A side data is received a parity bit is generated for each byte and output on the B bus when active. When data is input on the B bus the parity bit is an input which is checked against an internally generated parity bit. BPAR ₀ Byte 0 BPAR ₁ Byte 1 BPAR ₂ Byte 2 BPAR ₃ Byte 3
GAB₀−GAB₃	EN ₀ -EN ₃ DIRL DIRH	4	I	A output enables. When this signal is low the data on the A side, latched or active will be output to the B side. Signal associations are: GAB ₀ A ₀ -A ₇ to B ₀ -B ₇ GAB ₁ A ₈ -A ₁₅ to B ₈ -B ₁₅ GAB ₂ A ₁₆ -A ₂₃ to B ₁₆ -B ₂₃ GAB ₃ A ₂₄ -A ₃₁ to B ₂₄ -B ₃₁
GBA₀−GBA₃	EN _O -EN ₃ DIRL DIRH	4	I	B output enables. When this signal is low the data on the B side, latched or active will be output to the A side. Signal associations are: \[\begin{align*} \text{GBA}_0 & B_0 - B_7 & to A_0 - A_7 \\ \text{GBA}_1 & B_8 - B_{15} & to A_8 - A_{15} \\ \text{GBA}_2 & B_{16} - B_{23} & to A_{16} - A_{23} \\ \text{GBA}_3 & B_{24} - B_{31} & to A_{24} - A_{31} \end{align*}


Application 4: DWORD (32-Bit) to WORD (16-Bit) to BYTE (8-Bit) Transfer with Parity Generator (A to B)/Check (B to A) (Continued)

Detailed Pin Description (Continued)

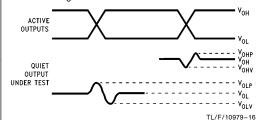
'ACTQ3283T Symbol	Discrete Symbol	# of Pins	Туре	Function
LEA	CPAB	1	I	Will latch in the 32-bit A bus.
ERR32	ERR32	1	0	Signal that indicates an error in one or more of the bytes.
LEB ₀ -LEB ₃	CPBA ₀ CPBA ₁ CPBA ₂ CPBA ₃	4	I	Individual B byte latch enable. When in high state B data is transparent and when in low state B data is latched. LEB ₀ H or L LEB ₁ H or L LEB ₂ H or L LEB ₃ H or L
S0 ₀ -S0 ₃ S1 ₀ -S1 ₃	T/R (245) EN ₁ (245) EN ₂ (245) EN ₃ (245)	8		These pins allow byte multiplexing, organized by byte, Each byte may be directed to any other byte by setting S0, S1 in a binary fashion to select the stimulus. For this application: S10=L S00=L A0 selected at B0 B0 selected at A0 S10=L S00=H A1 selected at B0 B2 selected at A0 S10=H S00=L A2 selected at B0 B2 selected at A0 S10=H S00=H A3 selected at B0 B3 selected at A0 S10=H S01=L A0 selected at B1 B0 selected at A1 S11=L S01=L A1 selected at B1 B1 selected at A1 S11=H S01=H A3 selected at B1 B3 selected at A1 S12=L S02=L A0 selected at B2 B0 selected at A2 S12=L S02=L A2 selected at B2 B2 selected at A3 S13=L S03=H A1 selected at B3 B3 selected at A3 S13=H S03=H A3 selected at B3 B3 selected at B3

Application 4: DWORD (32-Bit) to WORD (16-Bit) to BYTE (8-Bit) Transfer with Parity Generator (A to B)/Check (B to A) (Continued)

Application 4: DWORD to WORD to BYTE Transfer with Parity

/ = 1 byte = 1 byte + 1 parity bit

FACT Noise Characteristics


The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator PC-163A Test Fixture Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50 pF, 500Ω .
- 2. Deskew the word generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. Swap out the channels that have more than 150 ps of skew until all channels being used are within 150 ps. It is important to deskew the word generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- 4. Set V_{CC} to 5.0V.
- Set the word generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and affect the results of the measurement.

FIGURE 9. Quiet Output Noise Voltage Waveforms

Note A: V_{OHV} and V_{OLP} are measured with respect to ground reference. **Note B:** Input pulses have the following characteristics: f=1 MHz, $t_r=3$ ns, $t_f=3$ ns, skew < 150 ps.

6. Set the word generator input levels at 0V LOW and 3V HIGH. Verify levels with a digital volt meter.

VOLP/VOLV and VOHP/VOHV:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the HL transition. Measure V_{OHP} and V_{OHV} on the quiet output during the LH transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

VILD and VIHD:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next increase the input HIGH voltage level on the word generator, V_{IH} until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

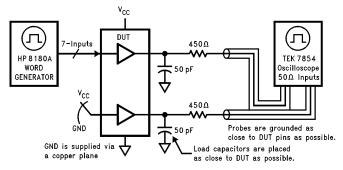
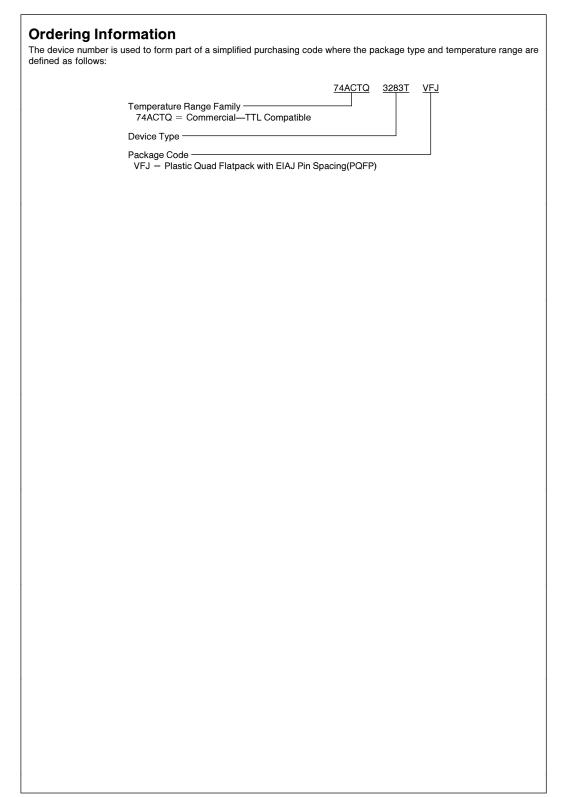
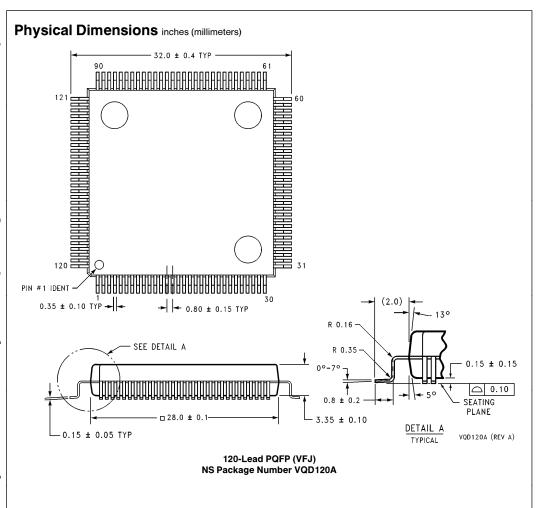




FIGURE 10. Simultaneous Switching Test Circuit

TL/F/10979-17

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998