
W562XXX DESIGN GUIDE

2-tone Melody+ADPCM Voice Synthesizer

(BandDirectorTM Family)

Publication Release Date: Nov. 1999
- 1 - Revision A3

INTRODUCTION
The W562xxx is a family of multi-engine speech synthesizers. These synthesizers incorporate
part of the following parts into a single chip: a simple 4-bit uC core (including RAM, register file,
timer, interrupt control logic, ALU, and stack), speech synthesizers and Dual tone melody
generator.

W528x

W523x

W581xx

W583xx

W529xx

Performance

Cost W56xxxx
 Family

Figure 0-1. Speech Synthesizer Spectrum

As shown in Figure 0-1, the W56xxx satisfies those applications of parallel processing
requirements and especially of good quality melody effects. On the other hand, customers select
PowerSpeech series (W528x, W523x, W581xx, W583xx, and W529xx) for the sake of cost
issues.

Also noted in Figure 0-1, the W56xxx family shows the same performance while spans into a
wide range of cost structure. That's because the different components selected for a certain
family member to fit specific applications.

Typical applications for the W56xxx family are listed below:
• Talking clocks
• Toys
• Direct-Mail Advertisements
• Computer-aided instruction
• Games
• Edutainment toys
• Gifts
• Warning Systems

W562XXX DESIGN GUIDE

- 2 -

Winbond supports the development for the W56xxx family as usual -- user friendly developing
environment. Several development tools are provided in order to cut the time required to
develop a code. They are ICE (In Circuit Emulator), Speech Coding System Version 7.53.2, and
demo boards.

The W56000 chip is used for the In Circuit Emulation for all of the family members. All of the
derivatives of this family is a sub-set of the W56000 chip.

GENERAL DESCRIPTION

The W562xxx is a sub-set of the W56000. It consists of a 4-bit uC, two ADPCM synthesizer and
one dual tone Melody generator. The internal 4-bit uC is composed of a 64-nibble RAM, and an
8-bit timer.

The W562xxx is one of the derivatives of the W56000 family (the MIDI speech products with
multi-engine capability). It is capable of processing µC, speech synthesis, and dual tone
Melody generation in parallel. The internal 4-bit µC is a simple engine to execute instructions
of up to 12 KIPS (Kilo-Instructions Per Second). Other engines are activated in parallel with
the µC to implement specific tasks, like speech syntheses and dual tone Melody generation.
The dual channel operations (synth1 and synth2, or synth and dual tone Melody) is
implemented by dedicated H/W only with the help of synth interrupts for concatenating voice
segments and melody phrases automatically. The efforts in programming the speech
equation is much like that of the PowerSpeech. User-friendly programming style is thus
preserved under Winbond's speech coding system.
The W562xxx is equipped with the W56000 ICE system, customers' programs can be
debugged efficiently and effectively than ever.

PART NO. W562S08 W562S10 W562S12 W562S15 W562S20 W562S25 W562S30
Sec. 8 10 12 15 20 25 30

ROM (Kbit) 256 288 320 480 576 672 768
PART NO. W562S40 W562S50 W562S60 W562S80 W562S99 W562M02 -

Sec. 40 50 60 80 100 120 -
ROM (Kbit) 1216 1376 1536 2304 2688 3072 -

There are 2 bodies in W562M-xx family for two chip solution, list as following.

Product # Duration ROM Chip Set Configuration

W562M-04 4 minutes 6 Mbits W56000 + W55M06

W562M-05 5 minutes 8 Mbits W56000 + W55M08

Possible applications are:
• Programmed voice synthesis with background music or speech.
• I/O interactive voice synthesis to accompany with background music or speech.
• Q&A games.
• Edutainment toys.

FEATURE

• Multi-engine processor parallel management with µC, speech and Dual Tone Melody.

 − µC // (Synthesizer1 or Dual Tone Melody) // Synthesizer2 (//: in parallel)

W562XXX DESIGN GUIDE

- 3 -

 − µC, with basic ALU, 64-nibble RAM (including 8 working registers) and an 8-bit timer.

 − Synthesizer1 capable of voice syntheses with Sample rate @ 4.8/6/8/12 KHz

 − Synthesizer2, same as synthesizer1.

 − Dual-tone Melody D/A output with 3 level volume control

• Wide operating voltage range: 2.4 to 5.5 volts

• Low power consumption (VDD = 5 Volt)

 − Standby current < 1 µA

 − Operating current < 1 mA

• Main oscillator: 3 MHz, Ring oscillation

• Input/ Output port

 − Port for input only: 1 port/ 4 pins

 − Input/ Output ports: 2 ports/ 8 pins

 − Port for output only: 1 port/ 4 pins

 − Can offer a direct row and column matrix of up to 72 (8 × 9) keys

• Interrupts

 − Internal interrupts: Timer

 − External interrupts: TG (port 0, port1), POI (Power On Initialization)

 − Priority: POI > TG > Timer

• Melody + Voice outputs for DAC

• TG interrupt provided

 − Share TG interrupt for Port0/Port1 input

 − Global TG interrupt enable controlled (bit3 of the IER register)

 − Individual interrupt enable controlled (PER0 and PER1 registers)

• Built-in 8 bit programmable down count timer

 − One of two internal clock frequencies can be selected

 − Desired Timer interval = (preset value+1) * 1/FT

 (FT: 32 Hz or 32 KHz dependent on the bit0 of the MODE register, at Fosc = 3 MHz)

• A total of around 64,000 instructions can be used in the program

• Powerful instruction set:

 − Arithmetic: ADD, ADDC, SUB, SUBC, INC, DEC, SETB, CLRB

 − Logic Operation: AND, OR, XOR, NOT

 − Shift & Rotate: RORC, ROLC, SHRC, SHLC

 − Date move: LD, LDR, MV

 − Branch: JP, JB0, JB1, JB2, JB3, JZ, JNZ, JC, JNC, JBZ1, JBZ2, CJNE, CJE, DJNZ, DJZ

 − Subroutine: CALL, RTN, RTI

 − Others: NOP, END, EN INT, DIS INT, PLAY CH1, PLAY CH2, STOP CH1, STOP CH2

• 8-level STACK shared by CALL, Timer, Synthesizer and TG

• Multi-tasking operation via interrupt for automatic voice segment concatenation

W562XXX DESIGN GUIDE

- 4 -

 − Melody or Speech voice can be easily concatenated with symbol "+"

 − Example: PLAY CH1, H4 + Melody1 + Speech1 + Speech2 + Melody2 + T4

 The DAC of the W562xxx will play Melody1, Speech1, Speech2 and Melody2 sequentially

• The length of the voice segment is unlimited

• Speech section control

 − Sample rate control (4.8K/6K/8K/12K)

 − Example: PLAY CH2, H4 + speech1_S + T4; S: define the sample rate

• Melody section control

 − Background music D/A output bits selectable for volume control (6/7/8)

 − Example: PLAY CH1, H4 + Melody_xxB + T4; B: define the melody output bits

• Dual tone melody with

 − XM3: Triple harmonic effect

 − 3 kinds of percussion effects

 − 6 beats

 − 41 pitches from G3# to C7

 − 16 kinds of tempo

 − The number of the score and note are unlimited

• Provide IR 38 KHz carrier

 − TXF.0 = 0/1 disable/enable IR carrier

 − TXF.1 = 0/1 output carrier with P2.3 low/high active

• Provides ICE (In Circuit Emulation) system for easy debugging

 − Free Run

 − Stop Run

 − Program Reset

 − Step Into

 − Step Over

 − Go To Cursor

 − Break point

 − Register read/ modify

W562XXX DESIGN GUIDE

- 5 -

W562xxx PAD DESCRIPTION

Name I/O Description
P0.0 - P0.3 I TG pins, internally pulled high.
P1.0 - P1.3 I/O I/O multiplexed port 0. Interruptable port if selected as input.
P2.0 - P2.3 I/O I/O multiplexed port 1. status port only if selected as input.
P3.0 - P3.3 O Output pins.

DAC O Current output of mixing channel 1 and channel 2 for driving an external
speaker.

TEST I Test pin, internally pulled low.
OSC I Connect ROSC to VDD to generate the 3 MHz master frequency

/RESET I Reset all, functions as POR, internally pulled high.
VSS - Negative power supply.
VDD - Positive power supply.

BLOCK DIAGRAM

I/O
Controller

Dual Tone
Melody Generator

RAM Special Register

Timing
Generator

OSC

P0 P1 P2 P3

Synthesizer I

ALU Timer

ROM

DAC

Mixer

38KHz
carrier

Synthesizer II

*

Figure 0-2. Block Diagram of W562xxx

W562XXX DESIGN GUIDE

- 6 -

FUNCTION DESCRIPTION

The W562xxx is basically a subset of the W56000 ICE chip, which is a µC-based speech
processor with multi-tasking capability to implement the program control, voice synthesis, and
dual tone Melody generation in parallel.

There are maximum 8 external TG interrupts (P0 & P1) which are serviced upon the
encountering of the falling-edge triggers. These TG input are different from Winbond's
previous PowerSpeech owing to the interrupt essence, which means these TG inputs don't
overwrite the current operation, but interrupt instead. After completion of the common ISR,
the unfinished program that is interrupted by TG will be continued. The POI is another
interrupt that executes automatically upon power up or depression of the RESET pin. A total
of 8 x 9 keypad matrix can be formed by configuring 8 inputs (P0 & P1) , 8 outputs (P2 & P3)
and ground without external components.

The W562xxx can synthesize dual-channel voices with different sample rate or voice
synthesis plus melody generation independently, meanwhile the control program proceeds to
execute regardless of the dual-channel operation. For synchronization among the control
program and voice syntheses, two busy flags (BZ1 & BZ2) concerning the status of the dual
channels are available. Also, at the end of each voice segment synthesis or melody phrase
generation, the H/W channel interrupt is generated to finish the playback of the channel list.
After the completion of a channel list, each channel must be terminated by an identifier to
mark "End Of List (EOL)." Should the EOL mark be encountered, the specific channel is said
to enter the IDLE state, where the busy flag turns down at that moment.

The sample rate used for each channel may be different to make efficient use of the memory
space and to have an acceptable voice quality. For each channel list, there could be delays,
which could be made by inserting silence of certain length, between successive voice
segments or melody phrases to allow for better synchronization of the dual channel outputs.
Because of the parallel processing capability of the W56000 family, customers now have the
ability to change status of the output pins during the period of channel operation without
sacrificing the continuation of voice combinations.

The ALU together with the 64-nibble RAM of the W56XXX offers customers a great deal of
flexibility to achieve various kind of program controls for different applications.

The W562xxx program can be developed by customers themselves quite easily as
PowerSpeech products. The developing environment is much the same with current
Winbond's speech coding system. Besides, another powerful debugging tools, the W56000
ICE system, is provided to assist program development. Less effort, but high output is always
the programming guideline for the W56000 family.

P0.0 - P0.3

The P0 port is interruptable trigger inputs with separate internal pull-up devices. This port is
usually regarded as TG1 - TG4 in previous PowerSpeech products. No internal debounce
circuits is available with P0, since the bounce is to be eliminated by means of user's program.
A common ISR, for P0 & P1 (provided that P1 is selected as input port), will be invoked once
a low-going edge is sensed on the port, the program is then used to further differentiate which
pin of the port is actually pressed down.

W562XXX DESIGN GUIDE

- 7 -

P1.0 - P1.3

These pins can be selected to be either inputs or outputs, depending on the status of IOR1
(I/O register 1). By setting the PCR1 (Pin Configuration Register 1), each selection can also
be defined as passive pull-up or floating for input pins, or defined as inverter or open drain
outputs. See Control Registers for further information. The P1 port is interruptable and
invokes the same ISR as P0, if selected as input.

P2.0 - P2.3

These pins can be selected to be either inputs or outputs, depending on the status of IOR2
(I/O register 2). By setting the PCR2 (Pin Configuration Register 2), each selection can also
be defined as passive pull-up or floating for input pins, or defined as inverter or open drain
outputs. See Control Registers for further information. The P2 port is a status port (not
interruptable, users have to move it to internal RAM for further processing), if selected as
input.

P3.0 - P3.3

The P3 is an inverter type output port.

VDD & VSS

VDD is the positive power supply, while VSS is the negative power supply. In order to prevent
possible power noises generated during motor driving from interfering the proper operations
of the internal POR circuit, which is essential to the POI(Power On Initialization) process of
the PowerSpeech synthesizers, two approaches are being adopted in the W562xxx one is to
use the /RESET pin, which is described in detail elsewhere, to fully reset the internal circuit
for a brand new start; the other is to place VDD and POR circuit apart as far as possible to
reduce the possibility of noise induction.

In order for the W562xxx to process the POI correctly, the VDD has to drop low enough and
rise quite quickly to initiate the internal POR circuit for generating the required pulse. Special
care goes to the discharge of VDD to nearly ground level to ensure proper operations.

TEST

The TEST pin is used solely for test purposes. It is internally pulled low by an NMOS device
with a 200KΩ resistance to prevent floating-gate conditions.

/RESET

Active low reset input with an internal pull-high resistance of 500 KΩ. The falling edge of the
/RESET pin will reset the W56XXX totally, just like the POR condition. Right at the rising
edge of the /RESET input, the W56XXX starts to awake and proceeds to undergo the POI
process.

Originally, the /RESET pin is used to function as a last resort to rescue the POR failure issue,
which is encountered in some occasions where the internal POR circuit of the W56XXX can't
operate properly. If customers failed to discharge the VDD to ground level and re-power up
the W56XXX, it may function abnormally, causing unpredictable operations. Users may then
reset the W56XXX by sending a pulse through the /RESET pin to re-start the operation from

W562XXX DESIGN GUIDE

- 8 -

the very beginning: POI. Maybe, this is the safest way to get around all the annoying POR
issues.

DAC

The DAC pin is a current-type voice output, which is connected to the output of the internal
D/A converter. The full scale output of the 8-bit D/A converter is 5 mA, which is able to drive
the external 8-W speaker through the amplification of a low-power NPN transistor with a β of
around 120 - 160. (Usually, the selection of an 8050D transistor is appropriate.)

DAC

R C

8050D NPN transistor

Figure 0-3. DAC Current-type Voice Output

The shunt resistor R in Figure 0-3 is used to reduce the current that enters into the base of
the NPN transistor for driving the external speaker without distortions, which may occur in the
above simple scheme.

Distortions result from two facts: one is the saturation phenomenon of the transistor due to
large IB, the other is the introduction of R that cuts small signals too much out of the original
waveform. A typical value of the shunt resistor is around 470Ohm - 1KOhm . The smaller the
resistance, the smaller the current enters the transistor and vice versa. Users have to trade
off what value of R could be added without causing these two kind of distortions.

The capacitor C is used for low-pass filtering the unwanted high-frequency noises that are
generated from D/A converters during sample transitions. Users may adjust the capacitance
to reach a better perceptual hearing. It could be simply omitted without affecting the voice
quality too much.

OSC

The master frequency (3 Mhz) of the W562xxx can be generated by ring oscillator. Connect
OSC to VDD via ROSC.

ABSOLUTE MAXIMUM RATINGS

 ITEM SYMBOL CONDITIONS RATED VALUE UNIT
Power Supply VDD - VSS - -0.3 - +7.0 V
Input Voltage VIN All Inputs VSS-0.3 - VDD+0.3 V

Storage Temp. TSTG - -55 - +150 °C
Operating Temp. TOPR - 0 - +70 °C

NOTE: Operating the device under conditions beyond those indicated above may cause
permanent damage or affect device reliability.

W562XXX DESIGN GUIDE

- 9 -

ELECTRICAL CHARACTERISTICS

DC PARAMETERS

(VDD−VSS = 3.0V, Fm = 3 MHz, TA = 25° C; unless otherwise specified)

PARAMETER SYM. CONDITIONS MIN. TYP. MAX. UNIT

Operating Voltage VDD - 2.4 - 5.5 V

Standby Current IDD1 No load, No Playing @5V - - 2 µA

Operating Current

(Crystal Type)

IOP1 No load

-

-

1

mA

Operating Current

(Ring Type)

IOP2 No load

-

-

1

mA

Input Low Voltage VIL All Input Pins VSS - 0.3VDD V

Input High Voltage VIH All Input Pins 0.7VDD - VDD V

Input Current for P0,
P1,P2

IIN VDD = 3V, VIN = 0V - - -6 µA

Input Current for /RESET IIN1 VDD = 3V, VIN = 0V - - -6 µA

Output Current of P1, IOL VDD = 3V, VOUT = 0.4V 5 - - mA

P2, P3 IOH VDD = 3V, VOUT = 2.7V -3 - - mA

DAC (D/A full Scale) IDAC VDD = 4.5V, RL = 100Ω -4.0 -5.0 -6.0 mA

Pull-low Resistor RPL TEST, OSCSEL Pins 100 - - KΩ

W562XXX DESIGN GUIDE

- 10 -

AC PARAMETERS

PARAMETER SYM. CONDITIONS MIN. TYP. MAX. UNIT

Main-clock Frequency FM Ring type, ROSC = 1.2MΩ

@3V,1.1MΩ@4.5V

2.7 3 3.3 MHz

Frequency Deviation by
Voltage Drop for Ring
Type Oscillator

∆f

f

f(3V) f(2.4V)
f(3V)
−

- - 10 %

 Instruction Cycle
Time

TINS One machine cycle 1/12K - 1/3K S

POR Pulse Width TPOR - 1 - - mS

TYPICAL APPLICATION (for your reference only)

P0.0

P1.0
P1.1
P1.2
P1.3

P2.0
P2.1
P2.2

P2.3

RESET

W562xx
P0.1

P0.2

P0.3

Vcc

P3.1

OSCI
ROSC

DAC

Vcc

8050

Rs

Vcc

8550

IR LED

R1

R2

Cs

Figure 0-4. Application Circuit of W562xxx

W562XXX DESIGN GUIDE

- 11 -

ARCHITECTURE
This section discusses the internal architecture of W562xxx.
Following chart shows the major components of the W562xxx devices' internal architecture.

RAM and Registers

0x00 - 0x07 Working RAM

0x08 - 0x3F General-purpose RAM

0x40 - 0x5F Control Register

0x60 - 0xFF ICE Register

The built-in RAM and registers map to the same address lines, which is called memory (RAM)
mapped registers. The registers comprise three major parts: 1) control registers, like ACC &
IOR; 2) internal registers, like SAR, CLP, STACK, and OPTION registers. They are used for
ICE debugging purposes

The first 128 RAM-mapped locations are 4-bit wide and are suitable for data exchanges. The last
128 addresses are used for those registers that got more than 4 bits.

RAM

64 x 4 bits RAM, R0..R63, can be used to store data. They can only be addressed directly. The
first eight locations, R0..R7, are used as Working Register (WR), denote as WR0 to WR7. They
are useful in data moves from other RAM-mapped locations. For convenience, users can denote
WR0 ~ WR7 as R0 ~ R7 to load data directly, and then rename to WR0 ~ WR7 for moving the
data. The other data memories are used as general memory and can't operate directly with
another RAM.

Example :

 (1) Load data

 LD R10, 1001b ; the 4 bit value is loaded into the addressed location 10.

 (2) Load & Move data

 LD R2, 1001b ; Working Register location 2 (WR2) is named as R2 for loading

 MV R63, WR2 ; data into it , and then renamed to WR2 to move data to R63.

Control Registers

ACC

The ACC (Accumulator) is generally modified during MOVE and ALU operations to reflect the
operation result. Branch instructions can be decided to be executed or not depending on the ACC
content.

W562XXX DESIGN GUIDE

- 12 -

MODE
3 2 1 0
x x x Timer clock

Default vaules upon power up are "0000", indicating clock source of timer is 32 Hz.

 MODE.0 Clock Source Overflow Period
0 32 Hz 30 mS - 8 S
1 32 KHz 30 uS - 8 mS

Example :
 LD MODE, 1101b ; bit1, 2, and 3 are don't care
 ; clock source of Timer is 32 Khz

IER

3 2 1 0

Timer TG Reserved Reserved
0: Disable (Default)
1: Enable

If an interrupt source is disabled, the corresponding ISR (Interrupt Service Routine) won't be
invoked upon the occurrence.

Example :
 LD IER, 1100b ; Timer & Trigger interrupt are enable,

PER0 (Port Enable Register 0)

3 2 1 0
P0.3 P0.2 P0.1 P0.0

0: Disable (default)
1: Enable

The PER0 (Port Enable Register 0) defines the enable/disable condition for the falling-edge
trigger of each P0 pin.

Example :
 LD PER0, 0011b ; The pins P0.2 and P0.3 are disable.

PER1 (Port Enable Register 1)

3 2 1 0
P1.3 P1.2 P1.1 P1.0

0: Disable (default)
1: Enable

The PER1 (Port Enable Register 1) defines the enable/disable condition for the falling-edge
trigger of each P1 pin when P1 is configured as input port.

Example :
 LD PER1, 1100b ; Pins P1.0 and P1.1 are disable

W562XXX DESIGN GUIDE

- 13 -

P1 (Port 1 Register)

3 2 1 0
P1.3 P1.2 P1.1 P1.0

P1 is used for storing output values, provided that some pins of the port 1 is selected as outputs.

P2 (Port 2 Register)
3 2 1 0

P2.3 P2.2 P2.1 P2.0

P2 is used for storing output values, provided that some pins of the port 2 is selected as outputs.

P3 (Port 3 Register)
3 2 1 0

P3.3 P3.2 P3.1 P3.0

P3 is used for storing output values of the port 3.

IOR1 (I/O Register 1)

3 2 1 0
P1.3 P1.2 P1.1 P1.0

0: Input (Default)
1: Output
This register is used to specify the selection of input or output of P1.0 - P1.3 pins of port P1. A
"0" selects input, while a "1" gives the output selection. Default value of IOR1 is 00h(after power
on, or reset), which indicates the selection of all inputs, to avoid possible I/O conflicts with
external circuits that may cause large current consumption.

Example :

 LD IOR1, 1100b ; input pins : P1.0, P1.1

 ; output pins : P1.2, P1.3

Once a pin was configured as input pin and Hi impedance (by set 0 in related bit of PCR1 or
PCR2 register), this pin must not leave as floating to avoid large standby current.

IOR2 (I/O Register 2)

3 2 1 0

P2.3 P2.2 P2.1 P2.0

Same as IOR1 except for the selection of port P2, rather than port P1.
Example :
 LD IOR2, 1111b ; port 2 is configured as output port

 PCR1 (Port Configuration Register 1)

3 2 1 0

P1.3 P1.2 P1.1 P1.0

W562XXX DESIGN GUIDE

- 14 -

Defaults are "0" upon power up.

Together with IOR1, the state of port P1 can be configured as follows:

Pin Function P1 PCR1 IOR1 Pin State
Input, High Z x 0 0 High Z
Input, Internal Pull-
up

x 1 0 Passive Pull-up

Output, Inverter 0 1 1 0
Output, Inverter 1 1 1 1
Output, Open Drain 0 0 1 0
Output, Open Drain 1 0 1 High Z

Example :
 LD IOR1, 1111b ; P1 is configured as an open-drain output port with
 LD PCR1, 0000b ; high Z state
 LD P1, 1111b

PCR2 (Port Configuration Register 2)

3 2 1 0

P2.3 P2.2 P2.1 P2.0

This register is used to configure the I/O type of port P2.

PSR (Processor Status Register)

PSR.3 PSR.2 PSR.1 PSR.0

BZ2 BZ1 Carry Zero

Read only Read / Write Read only

 0: False (Default upon power up)
 1: True

BZ2 : busy or not of channel 2.

BZ1 : busy or not of channel 1.

Carry : carry flag is set or not.

Zero : zero flag is set or not (default is 1).

The PSR register needs to be stored first after an interrupt happens along with general-purpose
ACC in order to prevent from possible changes made during ISR. They must be moved from
temporarily stored RAM locations to PSR and ACC for restoring initial values correctly.

Example :
 SETB PSR.1 ; set the carry flag (CF) to 1

W562XXX DESIGN GUIDE

- 15 -

TF0 (Trigger Flag of Port 0)

TF0 is used to latch the individual trigger event of port 0 (pins P0.0 - P0.3). TF0 register is
organized as 4-bit binary register (TF0.0 to TF0.3). It can be read or cleared by "MV WRn , TF0",
and "CLR TF0" instructions. The bit descriptions are as follows:

3 2 1 0

P0.3 P0.2 P0.1 P0.0

Bit 0 = 1 Falling-edge detected on P0.0
Bit 1 = 1 Falling-edge detected on P0.1
Bit 2 = 1 Falling-edge detected on P0.2
Bit 3 = 1 Falling-edge detected on P0.3

Default value is 0000B upon power up. Since each bit of TF0 will be set up to 1 whenever a
falling-edge is detected on the corresponding pin (no debounce time). The TF0 must be cleared
immediately after the ISR of dedicated TG interrupt is successfully invoked to prevent the
undesired disturbance which may be caused by glitch on port 0 (see more detail in Program
Example section).

Example :
 CLR TF0 ; clear the TF0 register
 CLRB TF0.1 ; clear TF0 bit1

TF1 (Trigger Flag of Port 1)

3 2 1 0
P1.3 P1.2 P1.1 P1.0

Same as TF0 except for port P1, rather than port P0, when P1 is configured as trigger interrupt
input.

TXF (Transmit enable flag)

3 2 1 0
reserved reserved with low/high active disable/enable 38KHz

carrier

 TXF.0 define IR carrier enable or not
 = 0 disable IR 38KHz carrier
 = 1 enable IR 38KHz carrier

 TXF.1 define IR carrier with low or high active
 = 0 P2.3 low active with 38KHz carrier
 = 1 P2.3 high active with 38KHz carrier

 default value (TXF.0, TXF.1) = (0, 0)

Control register v.s. P2.3 output waveform

W562XXX DESIGN GUIDE

- 16 -

program P2.3 output waveform

SETB TXF.0 ; enable IR carry

CLRB TXF.1 ; with low carrier

CALL PATTERN

SETB TXF.0 ; enable IR carry

SETB TXF.1 ; with high carrier

CALL PATTERN

CLRB TXF.0 ; disable IR carry

;SETB TXF.1 ; don't care TXF.1

; state, as the normal output pin

CALL PATTERN

PATTERN:

SETB P2.3

CALL DELY5MS

CLRB P2.3

CALL DELY2MS

SETB P2.3

CALL DELY2MS

CLRB P2.3

CALL DELY2MS

SETB P2.3

CALL DELY2MS

CLRB P2.3

CALL DELY2MS

SETB P2.3

CALL DELY2MS

CLRB P2.3

CALL DELY2MS

RTN

TIMER

7 6 5 4 3 2 1 0

This 8-bit timer downcounts every clock cycle, which is determined by the timer clock source.
Upon overflow conditions that occur when the timer changes from 00h to FFh, the W56000
generates the timer INT to allow manipulation of timed events. It starts to downcount after the
execution of "LD timer, operand". After the timer INT occurs under overflow conditions, the timer

38KHz

38KHz

W562XXX DESIGN GUIDE

- 17 -

stops downcounting. Users have to re-start the timer operation by loading the timer with an
appropriate value.

The timer interrupt happens every 30 uS - 8 second, depending on the selection of different
clock sources, and can be disabled by IER.

Example :
 LD TIMER, 080h ; load the period of timer into TIMER register
 ; and the timer starts downcounting

 TIMER_INTERRUPT : ; timer interrupt entry

 LD TIMER, 080h ; re-start the counting

 RTI ; return from interrupt

TEMPO

The tempo of W562xxx can not be dynamically controlled by register as well as if the ″Fix Beat
Length″ of the Melody Converter was set then the tempo will be changed automatically.
The tempo of W562xxx as listing below:

bpm (beat per minute)

1091 546 364 273 218 182 156 136
121 109 99 91 84 78 73 68

Memory Partition

The W56000 divides the external memory space into several different partitions for the purpose
of dual-channel operation along with the program execution, they are: Option, IV (Interrupt
Vector), COLA (Channel Operation List Area), Control Program, and ADPCM/note.

Option

Interrupt Vector

Reserved Area

Channel Operation List Area

Control Program

ADPCM/PCM/Note

Fixed size

Flexible size

0x0000

0x0002

0x0020

0x0100

W562XXX DESIGN GUIDE

- 18 -

Figure 0-5. Memory Partition

Operation Flow

Power On POI Operation

Power DownReset ?

No

Yes

Interrupt ?
Yes

Booting

No

Figure 0-6. Operation Flow Chat

 The Figure 0-6. shows the operation flow chart of W56xxx device.

The W562xxx enters power down (or called standby) mode if and only if the following conditions
are met:

1) END instruction executed;
2) Dual-channel operations cease;
3) Timer disabled or not activated since last overflow.

After entering the power down mode, only /RESET and TG interrupts can wake up the W56xxx.
Followings are two typical procedures to get in/out of the power down mode.

1) Power on => Boot (Option < 200 mS) => POI => Operation => Power down.
2) Power down mode => Wake up (RESET, TG interrupt) => Operation => Power down.

Interrupt

Keyword Name Address Instruction
POI: POR/Reset 002H JP POI

Reserved Reserved 008H Reserved
TG: TG 00AH JP TG

Timer_interrupt: Timer 00CH JP Timer_interrupt

Table 0-1. Interrupt vector

When an ISR (Interrupt Service Routine) is in service, others (TG, Timer) are disabled by H/W
automatically. Only if otherwise enabled by S/W program through instructions that modify
content of IER, like "LD IER, operand", (the disable condition be released by this instruction upon
the updating of IER), or enable interrupt � EN INT� , other interrupts (except for POR) are
disabled until the reaching of RTI (interrupt enabled again by H/W automatically), which indicates
the finish of an ISR. Special care goes to the prevention of STACK overflow, since only
maximum 8-level stack register is shared among all interrupt sources, and CALL instruction.

The POR/Reset is Non-Maskable Interrupt (NMI). The program execution and channel
operations all return to initial states as in power up conditions.

W562XXX DESIGN GUIDE

- 19 -

Other interrupt sources are processed in a polling sequence of the priority: TG => Timer, if occur
simultaneously. If an interrupt is disabled during ISR of other interrupts, it is latched and shall be
serviced right after the release of the disable condition.

Trigger

Since all P0 & P1 triggers share the same TG interrupt vector, users have to further differentiate
the real one from others by programming. Also, trigger debounce should be considered in the TG
section. Though a little bit complex than PowerSpeech, which is done by H/W debounce circuit,
but on the other hand, it do mean more flexibility.

ck
R

D Q

ck
R

D Q

TF0.0

ck
R

D Q

ck
R

D Q

ck
R

D Q

ck
R

D Q

ck
R

D Q

ck
R

D Q

TF0.1

TF0.2

TF0.3

TF1.0

TF1.1

TF1.2

TF1.3

Reset

CLR TF0

Reset

CLR TF1

PER1.3

PER1.2

PER1.1

PER1.0

P1.3

P1.2

P1.1

P1.0

PER0.3

PER0.2

P0.3

P0.2

P0.1

P0.0

PER0.1

PER0.0
IR

IR

IR

IR

IR

IR

IR

IR

TG

Data Bus

Figure 0-7. Trigger Scheme

Figure 0-7 shows the structure of trigger scheme. Two program examples based on this structure
is listed below to show how to configure the ISR for trigger interrupt.

Example (1) : Use port 0 as interrupt source

TG: ; TG is keyword.
 MV WR0, P0
 CJE R0, 1111B, BACK
 MV WR1, TF0
 CJE R1, 0000B, BACK
 call debounce ; Software debounce used to prevent the glitch on port 0
 XOR P0, WR0
 JZ SCAN0

W562XXX DESIGN GUIDE

- 20 -

BACK:
 CLR TF0
 RTI

SCAN0: ; differentiate which pin of port 0 is the real one trigger source.
 MV WR0, TF0
 MV ACC, WR0
 CLR TF0
 JB0 P00
 JB1 P01
 JB2 P02
 JB3 P03
 RTI

P00: ; ISR for trigger source P0.0
 PLAY CH1, H4+some_2+T4
 RTI

P01:
 PLAY CH1, H4+arround_2+T4 ; ISR for trigger source P0.1
 RTI

P02: ; ISR for trigger source P0.2
 PLAY CH1, H4+feel_2+T4
 RTI

P03:
 PLAY CH1, H4+dance_2+T4 ; ISR for trigger source P0.3
 RTI

debounce: ; soft ware debounce, a delay time of about
 LD R11, 0111b ; 512 instructions cycle time = 40 mS
a:
 LD R12, 1111b
b:
 DJNZ R12, b
 DJNZ R11, a
 RTN

Example (2) : Use both port 0 and port 1 as trigger source

TG: ; TG is keyword.
 MV WR0, P0
 CJE R0, 1111B, TRIG1
 MV WR1, TF0
 CJE R1, 0000B, TRIG1
 call debounce
 XOR P0, WR0
 JZ SCAN0
TRIG1: ; software debounce for port 1
 CLR TF0
 MV WR0, P1
 CJE R0, 1111B, BACK
 MV WR1, TF1
 CJE R1, 0000B, BACK

W562XXX DESIGN GUIDE

- 21 -

 call debounce
 XOR P1, WR0
 JZ SCAN1
BACK:
 CLR TF1
 RTI

SCAN0:
 MV WR0, TF0
 MV ACC, WR0
 CLR TF0
 JB0 P00
 JB1 P01
 JB2 P02
 JB3 P03
 RTI

SCAN1: ; differentiate which pin of port 1 is the real one trigger source
 MV WR0, TF1
 MV ACC, WR0
 CLR TF1
 JB0 P10
 JB1 P11
 JB2 P12
 JB3 P13
 RTI

Timer

The timer of the W56xxx is a quite simple mechanism to facilitate applications with timed
events. Once the timer interrupt is enabled, the timer starts to down-count as long as the "LD
timer, operand" is executed. Upon reaching the overflow condition, the timer interrupt occurs and
the timer_interrupt subroutine is serviced.

Users have to re-load the timer with a new value in order to start the timer again, since there's no
auto-reload function in it.

Interrupt Control

During the period of a specific ISR, other interrupts except for POR & synth are disabled by H/W
automatically. Users may enable certain interrupts under S/W control: "LD IER, operand", or "EN
INT".

Under normal conditions, the disabled interrupt situation disappears automatically when RTI of
that specific ISR is encountered. Figure 0-8 shows the arbitrator of all the interrupt sources.

W562XXX DESIGN GUIDE

- 22 -

S

R

Q

Reset

S

R

Q

Reset

IER.3

IER.2
TG

Time
r

Interrupt
Controller

Reset
EN INT

LD IER, i
RTI

Enable

DIS INT

Disable

IV

Figure 0-8. Interrupt Arbitrator

Speech Synthesis

The W562xxx offers two ADPCM synthesizers, synth1 and synth2, for voice reproduction. The
operation of the synthesizers are the same as Winbond's PowerSpeech devices, and are
description as below.

Channel Operation List (COL)

A Channel Operation (CO), which could be a voice segment, certain period of silence, or a
melody phrase, is used to indicate what a channel is to playback with. A COL (Channel
Operation List) contains a list of as many CO's as customers' needs for a certain channel,
channel 1 or channel 2. The following example shows two COLs for channel 1 and channel 2,
respectively.

Ch1: H4 + V1 + Song1 + Song2 + V2 + T4
Ch2: H4 + V1 + V2 + [silence] + V3 + T4

Where H4, T4 are the head file and tail file of ADPCM/melody voice data. And V1, V2, V3 are
voice segments (*.wam or *.src); [silence] is certain period of silence; Song1 and Song2 are
melody phases (*.dm).

There are many head and tail files for your option: H4/T4, H41/T41, H42/T42, and H43/T43
which can make sound smoothly in order to prevent the "pop" sound.

The silence length is represented by 2's complement of the actual length in unit of (3khz)-1 due to
the essence of up counting, instead of down counting. The W562xxx is said to finish the counting
of the silence length, if overflow condition occurs. Since the width of the register that holds the
silence length is 16 bit, the maximum silence length that can be implemented with each CO is 64

W562XXX DESIGN GUIDE

- 23 -

* 1024 * (3khz)-1 = 21.8 second. Of course, if customer really wants longer silence length, just
add more CO's.
For example :
 PLAY CH1, h4+[0BB8]+t4 ;denote the channel is playing a silence with a
period of 1 second.

Section Control

The W562xxx provides various sampling frequencies for ADPCM speech synthesis which can be
set by the section control function in the channel operation.

The variable frequency which is provided for ADPCM synthesis are listed below:

Option SR
 ADPCM
0 4.8 KHz
1 6 KHz
2 8 KHz
3 12 KHz

Table 0-2. Sampling frequency

The syntax of section control is listed below :

PLAY CH1/ CH2, h4 + voice_s + t4
sampling ratesection control

Three examples are given to show how the section control works.

Example (1) :
 PLAY CH1, h4 + V1_ 3+t4 ; the voice V1 is played back with a sampling rate of
 ; 12 KHz
Example (2) :
 PLAY CH1, h4 + V1_ 2+t4 ; the voice V1 is played back with the sampling rate
 ; of 8 KHz

Dual Tone Melody Generation

W562xxx provides the D/A output bit selection: 6/ 7/ 8 bits option.
The max. volume is 8 and 6 is the min. volume. While W562xxx is only playing the melody the 8
bits will make the volume loud. If melody just as the background music, the 6 bits will make the
music more tender.
It is controlled like following example:
play ch1,h4+melody_xx6+t4
play ch1,h4+melody_xx7+t4
play ch1,h4+melody_xx8+t4

xx: means don't care.

There are some concerned points when we are handling W562xxx dual tone melody:
 1) Pitch window: from G3# to C7
 2) Every note's beat length must be more than 1/4 beat.

W562XXX DESIGN GUIDE

- 24 -

 3) If you selected the "fix beat length" all the notes will be reserved, even less than 1/4 beat,
but it will occupy more ROM size.
 4) If you heared a "pop" sound at the end of the melody. The last note of the melody must take
longer duration to prevent the "pop" sound. W562xxx need 2.5 sec to decay the notes volume to
DC level.
 5) track1 and track2 can't used the same pitch at the same time. The notes will disappear or
have the smaller volume.
 6) NH4/NT4 will make W562xxx error, please used H4/T4, H41/T41, H42/T42, or H43/T43.
 7) Anytime of track1 and track2 only have one note. Else, converter will select one of notes
from track1/track2 automatically to make *.dm file.
 8)

?
4

?
8

?
2

Following above rules, W562xxx will play the complete and perfect dual tone melody.

Basic Structure of the W56xxx Program

A program is usually divided into 4 areas: Body Declaration, Constant Area, Macro Area, and
Command Area. It may contain a structure as below:

 � Body
 ������������� � Body declares here
 �� Body Declaration �
 �������������
 �
 � CONSTANT
 ������������� � Constant area starts here
 �� Constant Area �
 �������������
 �
 � MACRO
 ������������� � Macro area starts here
 �� Macro Area �
 �������������
 �
 � CODE
 ������������� � Command area starts here
 �� Command Area �
 �������������

W562XXX DESIGN GUIDE

- 25 -

Body Declaration

Body has to declare first in the program to acknowledge the IC body type and ROM size used.
Missing body declaration will cause a compilation error. The body type supported now are listed
below.

BODY W562S08 W562S10 W562S12 W562S15 W562S20 W562S25 W562S30
 W562S40 W562S50 W562S60 W562S80 W562S99 W562M02 -

Note: Body release is subject to change without prior notice. For exact information, please check
with Winbond's sales representatives.

Constant Area

DEFINE <Constant Name> <Value>

SYNTAX

<Constant Name>

A constant name is a user-defined symbol. Refer to 0 for syntax of symbol.

<Value>

Value can be of different types, register, number, channel, clp, ram or wr. Please refer to
section 0 for type information.

The Assembler, basically, substitutes the <Constant Name> with the <Value> while it parses
through Command Area.

NOTE: The assembler is not case-sensitive.

For example:

Define BUFFER1 32H ;÷ Define value of Buffer 1 as immediate value 32H.
Define BUFFER2 R13 ;÷ Define value of Buffer 2 as the 13th RAM.
Define BUFFER3 WR3 ;÷ Define value of Buffer 3 as the 3rd WR.
Define FLAG1 1011B ;÷ Define value of FLAG 2 as immediate value 1011B.

Macro Area

The Macro Area may consist of several macro declarations or none. After the macro has been
defined, the macro name can be called in the program. While compiling, the assembler will look
for the macro name, and expand it to the commands it defines. The syntax of macro declaration
is described.

MACRO <Macro Name> <Arguments>
 <Commands>
ENDM

SYNTAX

<Macro Name>

W562XXX DESIGN GUIDE

- 26 -

A macro name is a user-defined symbol. Refer to section 0 for the syntax of symbol.

<Arguments>

Macro may have no arguments, or several arguments. Commands are used to separate
between arguments. An argument is a user-defined symbol. The maximum number of
arguments are 20.

<Commands>

Macro should contain at least one command. Labels and directives are not allowed in
macro, and macro can not be nested. In short, a macro command can not be a macro
declaration. However, a macro command can use arguments, which will then be substituted
by the parameters of a macro call, for operands.

For example:

MACRO ADD2 arg1, arg2 ;÷ Define the macro name as ADD2.
 ;÷ Define 2 arguments, arg1 and arg2.

 ADD arg1, arg2 ;÷ Define macro command ADD.
 ENDM

Command Area

The Command Area may consist of several commands and/or directives. The syntax of a
command is described as follows

<Label> <Mnemonic> <Operand> <Comment>
<Label> <Directive>

SYNTAX

<Label>

A label is a user-defined symbol that is followed by a colon. It is not a mandatory part of
the program. The label is used to name a program location, and to label entry, skipping
and branching of the program. It can be used to change the order of program execution
by using commands, such as JP and CALL, to jump to locations or call routines. After
the program is compiled, all labels are converted into absolute address values. Program
labels make it easy to find and remember program locations without having to compute
the memory address. It is convenient for modifying a program.

<Mnemonic>

Mnemonics are reserved names for instruction op codes.

<Operand>

<Operand> is optional. Operands provide the data for mnemonics to act on. There may
be from zero to three operands, depending on the op code, and they are separated by
commas. Operands take the form of either literals or symbols for data items. Symbols
are assumed to be assigned to data items declared in the Constant Area.

Operands can be of the following types:

1. Symbol

W562XXX DESIGN GUIDE

- 27 -

An symbol is an alpha-numeric string (0~9, a� z, A� Z, and _) that starts with an
alphabetic character and is allowed a maximum length of 40 characters. It must not be a
keyword, or a predefined symbol name.

2. Number

Numbers, or immediate values, accept four forms:

Binary:
Binary numbers are base 2 numbers, and are represented by a string of binary digits
followed by the character B. A binary digit is a character from {0, 1}. For example,
0101B is equivalent to the decimal number 9.

Octal:
Octal numbers are base 8 numbers, and are represented by a string of octal digits
followed by the character O. An octal digit is a character from {0-7}. For example, 11O
is equivalent to the decimal number 8.

Decimal:
Decimal numbers are base 10 numbers, and are represented by a string of decimal
digits. A decimal digit is a character from {0-9}.

Hexadecimal:
Hexadecimal numbers are base 16 numbers, and are represented by a string of
hexadecimal digits followed by the character H. A hexadecimal digit is a character from
{0-9, a-f, A-F}. A leading zero should be added if the hexadecimal number begins with
one of digits {a-f, A-F}. For example, 0AH is equivalent to the decimal number 15.

3. RAM

RAMs begin with a character R, and followed by a decimal number from 0 to 63. It is
used to store data, and move data from/to any other RAM-mapped locations. The first
eight locations of RAM, also called Working Registers (WR). RAMs can only be
addressed directly. For example, R10 is the location 10 in RAM.

4. Working Register

Working Registers begin with characters WR, and followed by a decimal number from 0
to 7. It is actually RAM mapped locations from 0 to 7. Working Registers can only be
addressed directly. For example, WR0 is the location 0 in RAM.

W562XXX DESIGN GUIDE

- 28 -

5. Register

Register names are reserved names. Refer to for more details. A list of registers is
provided.

REGISTER DESCRIPTION
ACC Accumulator
MODE Mode Register
IER Interrupt Enable Register
PER0 Port Enable Register 0
PER1 Port Enable Register 1
P0 Port 0 Register
P1 Port 1 Register
P2 Port 2 Register
P3 Port 3 Register
IOR1 I/O Register 1
IOR2 I/O Register 2
PCR1 Pin Configuration Register 1
PCR2 Pin Configuration Register 2
VOL1 Volume 1 Register
VOL2 Volume 2 Register
PSR Processor Status Register
TIMER Timer Register
TXF Transmit enable flag

6. Channel

Channels are used to identify which channel is used for voice output. Channels start
with characters CH, and followed by number 1 or 2. For example: PLAY CH1, RING is
to output a voice RING to channel 1.

7. Channel List Pointer

Channel List pointers are used to identify which channel list pointer is used. Channel List
pointers start with characters CLP, and followed by number 1 or 2.

<Comment>

A good comment is a basic part in writing a program. The comments allow users to give
the necessary explanations of commands. A comment starts with a semi-colon, and
followed by any characters. The assembler will ignore a comment till end of the line.

<Directive>

Directives are also called pseudo instructions. The W56xxx Assembler provides several
directives:

W562XXX DESIGN GUIDE

- 29 -

1. Define frequency

This directive is used to define the sample frequency.

FREQ n<Frequency>

SYNTAX

<Frequency>

 It is the sample frequency of voice output, n= 0 to 3.

For example:
 FREQ 3 ; Define the sample frequency of voice output as 3.

2. Play voices

This directive is used to play voices. It actually will expand into 4 commands:

 STOP <channel>
 LD <clp>, <voice list name>
 RD <clp>
 PLAY <channel>

PLAY <Channel> , <Voice List>

SYNTAX

<Channel>

Specify which channel to be output to. Only Ch1 and Ch2 are valid.

<Voice List>

Voice list may contain voice files, and/or length of silence for channel output. A
voice file can be of two types: ADPCM (*.wam), or dual tone Melody(*.dm). The
extension of voice file is not needed, the Assembler will automatically look for
the voice files available in the local directory. A list of voices are separated by a
+.

For example:

PLAY ch1, H4+Happy+[15]+Birthday+T4 ; Output 4 voice files, H4, Happy, Birthday, and T4,

 ; and a silence length 15h.

Furthermore, when the voice list contains a large number of voice files , 50 files or more, and
can't be placed in one line in text editor, the voice list can be separated into several lines and
connected by the notation "\". The assembler will look it as a single list.
 For example:

 PLAY ch1, H4+Happy+[15]+Birthday+bird \
 +cat+dog+A+B+ \
 C+T4

W562XXX DESIGN GUIDE

- 30 -

are the same as

 PLAY ch1, H4+Happy+[15]+Birthday+bird+cat+dog+A+B+C+T4

3. Declare speech

This directive is used to declare the type of speech files. From Speech Coding System
Ver 7.54, ADPCM speech is the default speech file. All legal file type, for example, PCM
files and WAV files, will be automatically converted to ADPCM files before compiling into
.OBJ file. However, explicitly declaring speech file type, will retain the file type.
Explicitly declaration will ensure the correct speech files will be used.

 SRC/WAM/DM/TM <filename> { , <filename> }

SYNTAX

<filename>

It is the speech filename without extention name.

For example:
 WAM dog ; define the ADPCM speech file. (default)
 DM singing ; define the dual Tone melody file.

W562XXX DESIGN GUIDE

- 31 -

INSTRUCTION SET

Instruction Set List

Mnemonics Operation Flag
Affected

CYCLE

Arithmetic

ADD Rn, i ACC, Rn <-- Rn + i Zero/Carry 1

ADDC Rn, i ACC, Rn <-- Rn + i + carry Zero/Carry 1

ADD Rn, WR ACC, Rn <-- Rn + WR Zero/Carry 1

ADDC Rn, WR ACC, Rn <-- Rn + WR + carry Zero/Carry 1

SUB Rn, i ACC, Rn <-- Rn - i Zero/Carry 1

SUBC Rn, i ACC, Rn <-- Rn - i - carry Zero/Carry 1

SUB Rn, WR ACC, Rn <-- Rn - WR Zero/Carry 1

SUBC Rn, WR ACC, Rn <-- Rn - WR - carry Zero/Carry 1

INC Rn ACC, Rn <-- Rn + 1 Zero/Carry 1

DEC Rn ACC, Rn <-- Rn - 1 Zero/Carry 1

SETB Rn.b ACC, Rn <-- Rn | (2^b) ; b = 0 ~ 3 Zero 1

CLRB Rn.b ACC, Rn <-- reg (Rn) & (1's complement of 2^b);b
= 0 ~ 3

Zero 1

Logic Operations

AND Rn, i ACC, Rn <-- Rn & i Zero 1

AND Rn, WR ACC, Rn <-- Rn & WR Zero 1

OR Rn, i ACC, Rn <-- Rn | i Zero 1

OR Rn, WR ACC, Rn <-- Rn | WR Zero 1

XOR Rn, i ACC, Rn <-- Rn ^ i Zero 1

XOR Rn, WR ACC, Rn <-- Rn ^ WR Zero 1

NOT Rn ACC,Rn <-- 1's complement of Rn Zero 1

Shift & Rotate

RORC Rn ACC.b, Rn.b <-- Rn.(b+1); ACC.3, Rn.

3 <-- carry, carry <-- Rn.0

Carry 1

ROLC Rn ACC.b, Rn.b <-- Rn.(b-1),; ACC.0, Rn.

0 <-- carry, carry <-- Rn.3

Carry 1

SHRC Rn ACC.b, Rn.b <-- Rn.(b+1), ACC.3, Rn.

3 <-- 0, carry <-- Rn.0

Carry 1

SHLC Rn ACC.b, Rn.b <-- Rn.(b-1), ACC.0, Rn. Carry 1

W562XXX DESIGN GUIDE

- 32 -

0 <-- 0, carry <-- Rn.3

Data Move

LD Rn, i Rn <-- i, Rn : RAM mapped register (0 ~ 127)

i : immediate value, 4 bit.

- 1

LD Rn, k Rn <-- k, Rn: RAM mapped register

(128 ~164) k : immediate value, 8 bit

- 1

LDR Rn, i Rn ← v3v2v1v0,, vj= r * bj, r : random number (1 or
0), bj = 1 for random, j = 0~3,

- 1

MV Rn, WR Rn <-- WR - 1

MV WR, Rn WR <-- Rn - 1

Branch

JP label PC <-- label - 2

JB0 label PC <-- label, if ACC.0 = 1; PC <-- PC++, if not - 2

JB1 label PC <-- label, if ACC.1 = 1; PC <-- PC++, if not - 2

JB2 label PC <-- label, if ACC.2 = 1; PC <-- PC++, if not - 2

JB3 label PC <-- label, if ACC.3 = 1; PC <-- PC++, if not - 2

JZ label PC <-- label, if PSR.0 = 1; PC <-- PC++, if not - 2

JNZ label PC <-- label, if PSR.0 = 0; PC <-- PC++, if not - 2

JC label PC <-- label, if carry flag = 1; PC <-- PC++, if not - 2

JNC label PC <-- label, if carry flag = 0; PC <-- PC++, if not - 2

JBZ1 label PC <-- label, if Busy1 flag = 1; PC <-- PC++, if
not

- 2

JBZ2 label PC <-- label, if Busy2 flag = 1; PC <-- PC++, if
not

- 2

CJNE Rn, i,label ACC <-- Rn - i; PC <-- label, if ACC ! = 0;
otherwise

PC <-- PC++

Zero/Carry 2

CJE Rn, i,label ACC <-- Rn - i; PC <-- label, if ACC = 0;
otherwise

PC <-- PC++

Zero/Carry 2

CJNE Rn,WR,label ACC <-- Rn - WR; PC <-- label, if ACC ! = 0 ;
otherwise PC <-- PC++

Zero/Carry 2

CJE Rn,WR,label ACC <-- Rn - WR; PC <-- label, if ACC = 0;
otherwise PC <-- PC++

Zero/Carry 2

DJNZ Rn,label ACC, Rn <-- Rn - 1; PC <-- label, if ACC ! = 0;
otherwise PC <-- PC++

Zero/Carry 2

DJZ Rn, label ACC, Rn <-- Rn - 1; PC <-- label, if ACC = 0;
otherwise PC <-- PC++

Zero/Carry 2

W562XXX DESIGN GUIDE

- 33 -

otherwise PC <-- PC++

Mnemonics Operation Flag
Affected

CYCLE

Subroutine

CALL label STACK <-- PC+1, then PC <-- label. - 2

RTN PC <- STACK, used in call subroutine return - 1

RTI PC <- STACK, used in interrupt return - 1

Others

NOP No operation - 1

END Program execution stops - 1

EN INT Enable interrupt source - 1

DIS INT Disable interrupt source - 1

PLAY CH1/2,
h4+voice+t4

Play voice segment used channel 1/2 BZ1/BZ2 3

STOP CH1/2 Stop playing channel 1/2 BZ1/BZ2 1

CLR TF0/1 TF0/1 <-- 0000B - 1

Legend

Rn: 0 ~ 63, including WR0 ~ WR7, control registers, internal registers

WR: Working Register, WR0 ~ WR7

PC: Program Counter

i: immediate value, 4 bit

k: immediate value, 8 bit

label: 0 ~ 65535 word

Operator

! =: Not equal

&: AND

|: OR

^: XOR

<--: Data transfer

NOTE: ACC, Carry flag and Zero flag are modified implicitely after ALU operations.

Instruction Description

W562XXX DESIGN GUIDE

- 34 -

Arithmetic

Instruction Set Description Example

ADD Rn, i ACC, Rn ← Rn + i

Add an immediate data i to register Rn.
The result is kept in "Rn" and ACC.

Flag affected: CF, ZF1

ADD R10, 0011b

Memory. Before exec. After
exec.
i 0011b 0011b
R10 1100b 1111b
ACC --- 1111b

ADDC Rn, i ACC, Rn ← Rn +i + CF

Add an immediate data i and CF to
register Rn. The result will be kept in Rn
and ACC.

Flag affected: CF, ZF

ADDC R10, 0011b

Memory. Before exec. After
exec.
i 0011b 0011b
CF 1 1
R10 1100b 0000b
ACC --- 0000b

ADD Rn, WR ACC, Rn ← Rn +WR

Add the content of WR to register Rn.
The result will be kept in Rn and ACC.

Flag affected: CF, ZF

ADD R10, WR1

Memory. Before exec. After
exec.
WR1 1011b 1011b
R10 1100b 0111b
ACC --- 0111b

ADDC Rn, WR ACC, Rn ← Rn+WR + CF

Add the content of WR and CF to
register Rn. The result will be kept in Rn
and ACC.

Flag affected: CF, ZF

ADDC R10, WR1

Memory. Before exec. After
exec.
WR1 1011b 1011b
CF 1 1
R10 1100b 1000b
ACC --- 1000b

SUB Rn, i ACC, Rn ← Rn - i

Subtract an immediate data i from the
register Rn. The result will be kept in Rn
and ACC.

Flag affected: CF, ZF

SUB R11, 0101b

Memory. Before exec. After
exec.
i 0101b 0101b
R11 1101b 1000b
ACC --- 1000b

1 CF denotes Carry Flag and ZF denotes Zero Flag

W562XXX DESIGN GUIDE

- 35 -

SUBC Rn, i ACC, Rn ← Rn - i - CF

Subtract an immediate data i and CF
from the register Rn. The result will be
kept in Rn and ACC.

Flag affected: CF, ZF

SUBC R11, 0101b

Memory. Before exec. After
exec.
i 0101b 0101b
CF 1 0
R11 1101b 0111b
ACC --- 0111b

SUB Rn, WR ACC, Rn ← Rn - WR

Subtract the content of WR from the
register Rn. The result will be kept in Rn
and ACC.

Flag affected: CF, ZF

SUB R11, WR0

Memory. Before exec. After
exec.
WR0 0101b 0101b
R11 1101b 1000b
ACC --- 1000b

SUBC Rn, WR ACC, Rn ← Rn - WR - CF

Subtract the content of WR and CF
from the register Rn. The result will be
kept in Rn and ACC.

Flag affected: CF, ZF

SUBC R11, WR0

Memory. Before exec. After
exec.
WR0 0101b 0101b
CF 1 0
R11 1101b 0111b
ACC --- 0111b

INC Rn ACC, Rn ← Rn + 1

Increment register Rn by 1.

Flag affected: ZF, CF

INC R12

Memory. Before exec. After
exec.
R12 5 6
ACC --- 6

DEC Rn ACC, reg ← Rn - 1

Decrement register Rn by 1.

Flag affected: ZF, CF

DEC R12

Memory. Before exec. After
exec.
R12 5 4
ACC --- 4

SETB Rn.b AC, Rn ← Rn | (2^b), b = 0~3

Set one of the register bits to 1 without
altering the values of other bits.

Flag affected: ZF

SETB MODE.3

Memory. Before exec. After
exec.
MODE 0000b 1000b
ACC --- 1000b

W562XXX DESIGN GUIDE

- 36 -

CLRB Rn.b ACC, Rn ← Rn & (1's complement of
2^b) b = 0~3

Set one of the register bits to 0 without
altering the values of other bits.

Flag affected: ZF

CLRB IER.3

Memory. Before exec. After
exec.
IER 1100b 0100b
ACC --- 0100b

Logic Operations

AND Rn, i ACC, Rn ← Rn & i

Bitwise AND operation of register Rn
and an immediate value i. The result will
be kept in Rn and ACC.

Flag affected: ZF

AND R2, 0010b

Memory. Before exec. After
exec.
R2 0110b 0010b
i 0010b 0010b
ACC --- 0010b

AND Rn, WR ACC, Rn ← Rn & WR

Bitwise AND operation of register Rn
and WR. The result will be kept in Rn
and ACC.

Flag affected: ZF

AND R2, WR3

Memory. Before exec. After
exec.
R2 1010b 1000b
WR3 1100b 1100b
ACC --- 1000b

OR Rn, i ACC, Rn ← Rn | i

Bitwise OR operation of register Rn and
an immediate value i. The result will be
kept in Rn and ACC.

Flag affected: ZF

OR R0, 0011b

Memory. Before exec. After
exec.
R2 1010b 1011b
i 0011b 0011b
ACC --- 1011b

W562XXX DESIGN GUIDE

- 37 -

OR Rn, WR ACC, Rn ← Rn | WR

Bitwise OR operation of register Rn and
WR. The result will be kept in Rn and
ACC.

Flag affected: ZF

OR R0, WR2

Memory. Before exec. After
exec.
R2 1010b 1011b
WR2 0011b 0011b
ACC --- 1011b

XOR Rn, i ACC, Rn ← Rn ^ i

Bitwise XOR operation of register Rn
and an immediate value i. The result will
be kept in Rn and ACC.

Flag affected: ZF

XOR R7, 0101b

Memory. Before exec. After
exec.
R7 1101b 1000b
i 0101b 0101b
ACC --- 1000b

XOR Rn, WR ACC, Rn ← Rn ^ WR

Bitwise XOR operation of register Rn
and WR. The result will be kept in Rn
and ACC.

Flag affected: ZF

XOR R7, WR5

Memory. Before exec. After
exec.
R7 1101b 1000b
WR5 0101b 0101b
ACC --- 1000b

NOT Rn ACC, Rn ← 1's complement of Rn

Performs 1's complement of the register
Rn. The result is kept in Rn and ACC.

Flag affected: ZF

NOT R7

Memory. Before exec. After
exec.
R7 0010b 1101b
ACC --- 1101b

Shift and Rotate

RORC Rn

ACC.b, Rn.b ← Rn.(b+1);
ACC.3, Rn.3 ← CF; CF ← Rn.0

The content of register Rn is rotated
right one bit, bit 0 is rotated into CF, and
CF is rotated into bit 3 of Rn. The result
is kept in Rn and ACC.

Flag affected: CF

RORC R16

Memory. Before exec. After
exec.
R16 0010b 1001b
CF 1 0
ACC ---
1001b

W562XXX DESIGN GUIDE

- 38 -

ROLC Rn

ACC.b, Rn.b ← Rn.(b -1);
ACC.0, Rn.0 ← CF; CF ← Rn.3

The content of register Rn is rotated left
one bit, bit 3 is rotated into CF, and CF
is rotated into bit 0 of Rn. The result is
kept in Rn and ACC.

Flag affected: CF

ROLC R16

Memory. Before exec. After
exec.
R16 0010b 0101b
CF 1 0
ACC ---
0101b

SHRC Rn

ACC.b, Rn.b ← Rn.(b +1);
ACC.3, Rn.3 ←0; CF ← Rn.0

The content of register Rn is shifted
right one bit, bit 0 is shifted into CF, and
bit 3 of Rn is replaced with "0". The
result is kept in Rn and ACC.

Flag affected: CF

SHRC R16

Memory. Before exec. After
exec.
R16 0011b 0001b
CF 0 1
ACC --- 0001b

SHLC Rn

ACC.b, Rn.b ← Rn.(b - 1);
ACC.0, Rn.0 ←0; CF ← Rn.3

The content of register Rn is shifted left
one bit, bit 3 is shifted into CF, and bit 0
of Rn is replaced with "0". The result is
kept in Rn and ACC.

Flag affected: CF

SHLC R16

Memory. Before exec. After
exec.
R16 1011b 0110b
CF 0 1
ACC --- 0110b

Data Move

Instruction Set Description Example

LD Rn, i Rn ← i

Load register Rn with an immediate 4 bit
value i.

Flag affected: none

LD IER, 1100

Memory. Before exec. After
exec.
i 1100b 1100b
IER --- 1100b

W562XXX DESIGN GUIDE

- 39 -

LD Rn, k

* For internal
register
 only (address 128
 ~ 164)

Rn ← k

Load internal register Rn (address 128 ~
164) with an immediate 8 bit value k.

Flag affected: none

LD TIMER, 0A9h

Memory. Before exec. After
exec.
k 0A9h 0A9h
TIMER --- 0A9h

LDR Rn, i

Rn ← v3v2v1v0,, vj= r * bj, r : random
number (1 or 0), bj = 1 for random, j =
0~3.

Load register Rn with a random number,
which is determined by the following
formula :
i = b3b2b1b0 (binary form)
Rn.j = r ⋅ bj, 0 ≤ j ≤ 3
where
Rn.j = bit j of register Rn in binary
representation, r = random bit(0 or 1),
which is generated by H/W, bj = bit j of
"i"
(4 bit, 0 - 15) in binary representation.

Flag affected: none

LDR R2, 7

Memory. Before exec. After
exec.
 i 0111b 0111b
 R2 --- 0rrrb

MV Rn, WR* Rn ← WR

Move the content of WR to Rn.

Flag affected: none

MV R12, WR0

Memory. Before exec. After
exec.
WR0 1110b 1110b
R12 --- 1110b

MV WR, Rn WR ← Rn

Move the content of Rn to WR.

Flag affected: none

MV WR2, R10

Memory. Before exec. After
exec.
R10 1110b 1110b
WR2 --- 1110b

Branch

Instruction Set Description Example

* Data move can only be accessed between general registers (Rn) and Working Register (WR0 ~ WR7). See the Program Example for
more details.

W562XXX DESIGN GUIDE

- 40 -

JP label PC ← label

The PC is replaced with "label", and an
unconditional branch occurs.

Flag affected: none

JP EXIT

Memory. Before exec. After
exec.
EXIT 1A9h 1A9h
PC --- 1A9h
(In this example, the "EXIT" label is
compiled to 1A9h.)

JB0 label PC ← label, if ACC.0 = 1; else PC =
PC++

If bit 0 of ACC is "1", The PC is replaced
with "label", and a jump occurs. If bit 0
of ACC is "0", the PC is incremented.

Flag affected: none

JB0 EXIT

Memory. Before exec. After
exec.
EXIT 1A9h 1A9h
ACC xxx1b xxx1b
PC --- 1A9h

JB1 label PC ← label, if ACC.1 = 1; else PC =
PC++

If bit 1 of ACC is "1", The PC is replaced
with "label", and a jump occurs. If bit 1
of ACC is "0", the PC is incremented.

Flag affected: none

JB1 EXIT

Memory. Before exec. After
exec.
EXIT 1A9h 1A9h
ACC xx0xb xx0xb
PC 100h 101h

JB2 label PC ← label, if ACC.2 = 1; else PC =
PC++

If bit 2 of ACC is "1", The PC is replaced
with "label", and a jump occurs. If bit 2
of ACC is "0", the PC is incremented.

Flag affected: none

JB2 EXIT1

Memory. Before exec. After
exec.
EXIT1 1B9h 1B9h
ACC x1xxb x1xxb
PC ---- 1B9h

JB3 label PC ← label, if ACC.3 = 1; else PC =
PC++

If bit 3 of ACC is "1", The PC is replaced
with "label", and a jump occurs. If bit 3
of ACC is "0", the PC is incremented.

Flag affected: none

JB3 EXIT2

Memory. Before exec. After
exec.
EXIT2 1C9h 1C9h
ACC 1xxxb 1xxxb
PC ---- 1C9h

W562XXX DESIGN GUIDE

- 41 -

JZ label PC ← label, if ACC = 0 (PSR.0 = 1);
else PC = PC++

If the ACC is zero. The PC is replaced
with "label", and a jump occurs. If ACC
is not zero, the PC is incremented.

Flag affected: none

JZ LOOP1

Memory. Before exec. After
exec.
LOOP1 255h 255h
ACC 0000b 0000b
PC ---- 255h

JNZ label PC ← label, if ACC != 0 (PSR.0 = 0);
else PC = PC++

If the ACC is not zero. The PC is
replaced with "label", and a jump
occurs. If ACC is zero, the PC is
incremented.

Flag affected: none

JNZ LOOP2

Memory. Before exec. After
exec.
LOOP2 300h 300h
ACC 0000b 0000b
PC 120h 121h

JC label PC ← label, if CF = 1 (PSR.1 = 1); else
PC = PC++

If carry flag (CF) is "1". The PC is
replaced with "label", and a jump
occurs. If CF is zero, the PC is
incremented.

Flag affected: none

JC LOOP2

Memory. Before exec. After
exec.
LOOP2 300h 300h
PSR.1 1 1
PC ----- 300h

JNC label PC ← label, if CF = 0 (PSR.1 = 0); else
PC = PC++

If carry flag (CF) is zero. The PC is
replaced with "label", and a jump
occurs. If CF is "1", the PC is
incremented.

Flag affected: none

JNC LOOP2

Memory. Before exec. After
exec.
LOOP2 300h 300h
PSR.1 1 1
PC 200h 201h

JBZ1 label PC ← label, if BZ1 = 1 (PSR.2 = 1); else
PC = PC++

If channel 1 is busy (BZ1 flag is set to
1), the PC is replaced with "label" and a
jump occurs.Else,the PC is
incremented.

Flag affected: none

JBZ1 AGAIN

Memory. Before exec. After
exec.
AGAIN 2A0h 2A0h
PSR.2 1 1
PC ----- 2A0h

W562XXX DESIGN GUIDE

- 42 -

JBZ2 label PC ← label, if BZ2 = 1 (PSR.3 = 1); else
PC = PC++

If channel 2 is busy (BZ2 flag is set to
1), the PC is replaced with "label" and a
jump occurs. Else, the PC is
incremented.

Flag affected: none

JBZ2 AGAIN

Memory. Before exec. After
exec.
AGAIN 2A0h 2A0h
PSR.3 0 0
PC 1BFh 1C0h

CJNE Rn, i, label ACC ← Rn - i; PC ← label, if ACC != 0;
else PC = PC++

Compare the content of Rn with an
immediate value i. If not equal, the PC
is replaced with "label" and a jump
occurs. Else, the PC is incremented.

Flag affected: ZF, CF

CJNE R10, 1010b, ERROR

Memory. Before exec. After
exec.
i 1010b 1010b
R10 1011b 1011b
ERROR 1A0h 1A0h
ACC --- 0001b
PC --- 1A0h

CJE Rn, i, label ACC ← Rn - i; PC ← label, if ACC = 0;
else PC = PC++

Compare the content of Rn with an
immediate value i. If equal, the PC is
replaced with "label" and a jump occurs.
Else, the PC is incremented.

Flag affected: ZF, CF

CJE R10, 1010b, ERROR

Memory. Before exec. After
exec.
i 1010b 1010b
R10 1011b 1011b
ERROR 1A0h 1A0h
ACC --- 0001b
PC 0B9h 0BAh

CJNE Rn, WR,
label

ACC ← Rn - WR; PC ← label, if ACC
!= 0; else PC = PC++

Compare the content of Rn with that of
WR.If not equal, the PC is replaced with
"label" and a jump occurs. Else, the PC
is incremented.

Flag affected: ZF, CF

CJNE R10, WR0, ERROR

Memory. Before exec. After
exec.
WR0 1010b 1010b
R10 1011b 1011b
ERROR 1A0h 1A0h
ACC --- 0001b
PC --- 1A0h

CJE Rn, WR, label ACC ← Rn - WR; PC ← label, if ACC =
0; else PC = PC++

Compare the content of Rn with that of
WR. If equal, the PC is replaced with
"label" and a jump occurs. Else, the PC
is incremented.

Flag affected: ZF, CF

CJE R10, WR0, ERROR

Memory. Before exec. After
exec.
WR0 1010b 1010b
R10 1011b 1011b
ERROR 1A0h 1A0h
ACC --- 0001b
PC 0B9h 0BAh

W562XXX DESIGN GUIDE

- 43 -

DJNZ Rn, label ACC, Rn ← Rn - 1; PC ← label, if ACC
!= 0; else PC = PC++

Decrement Rn by 1. If ACC is not equal
to zero, the PC is replaced with "label"
and a jump occurs. Else, the PC is
incremented.

Flag affected: ZF, CF

DJNZ R6, start

Memory. Before exec. After
exec.
start 60h 60h
R6 4 3
ACC --- 3
PC --- 60h

DJZ Rn, label ACC, Rn ← Rn - 1; PC ← label, if ACC
= 0; else PC = PC++

Decrement Rn by 1. If ACC is zero, the
PC is replaced with "label" and a jump
occurs. Else, the PC is incremented.

Flag affected: ZF, CF

DJZ R6, start

Memory. Before exec. After
exec.
start 60h 60h
R6 1 0
ACC --- 0
PC --- 60h

Subroutine

CALL label STACK ← PC + 1, then PC ← label

The next PC (return entry) is stored in
the STACK and then the direct address
"label" is loaded into PC. A subroutine is
called.

Flag affected: none

CALL OUTPUT

Memory. Before exec. After
exec.
OUTPUT 160h 160h
PC 40h 160h
STACK --- 41h

RTN PC ← STACK

The PC is restored from the STACK. A
return from a subroutine occurs.

Flag affected: none

RTN

Memory. Before exec. After
exec.
STACK 160h ----
PC ---- 160h

RTI PC ← STACK

The PC is restored from the STACK. A
return from an interrupt service routine
(ISR) occurs.

Flag affected: none

RTN

Memory. Before exec. After
exec.
STACK 160h ----
PC ---- 160h

Others

NOP No operation.

Flag affected: none

NOP

W562XXX DESIGN GUIDE

- 44 -

END The program stops execution and the
W562xxx enters power-down mode.

Flag affected: none

END

EN INT This instruction enables the interrupt
source.

Flag affected: none

EN INT

DIS INT This instruction disables the interrupt
source.

Flag affected: none

DIS INT

PLAY CH1/CH2,
h4+vocice+t4*

Use channel 1 or channel 2 to play
voice segments. The voice segmemts
can be the following types :
 1. Speech
 2. PCM Melody
 3. Silence
These segments can be combined
arbitrarily.

Flag affected: BZ1/ BZ2

1. PLAY CH2, h4+Bird+t4 (Speech)

2. PLAY CH1, h4+Sonatina+t4
 (PCM Melody)

3. PLAY CH1, h4+[1A0B]+t4
(Silence)

STOP CH1/CH2 Stop the operation of channel 1 or
channel 2 immediately.

Flag affected: BZ1 / BZ2

STOP CH1

CLR TF0 / TF1 Clear the Trigger Flag of port 0 (TF0) or
that of port 1 (TF1).

Flag affected: TF0 / TF1

CLR TF0

* See Speech Synthesis and Error! Reference source not found. for more details.

W562XXX DESIGN GUIDE

- 45 -

Reserved Words

There are several reserved words for the W562xxx that should not be used as a normal label
names. The following tables lists them.

ALU ADD, ADDC, OR, XOR, AND, SUB, SUBC, DEC, INC, NOT, SETB, CLRB,

RORC, ROLC, SHRC, SHLC

Data Move LD, LDR, MV

Branch JP, JB0, JB1, JB2, JB3, JZ, JNZ, JC, JNC, JBZ1, JBZ2, CJNE, CJE, DJNZ,
DJZ

Subroutine CALL, RTN, RTI

Other Instructions NOP, END, EN INT, DIS INT, PLAY, STOP, CLR,

Register All RAM-Mapped Registers.

Keyword POI, TG, TIMER_INTERRUPT, MACRO, ENDM, DEFINE, TEST

Directives VOL 0 - VOL 7, FREQ 0 ~ FREQ 3

SOFTWARE APPLICATIONS
This chapter provides explanations of how to use the W56000, W56xxx and instruction set
features along with assembly language coding examples. Besides, some demo programs are
also provided to demonstrate the functions. Users can get the object files from the example
program directory and download directly to ICE system to run the programs.

Trigger Debounce

Since all P0 and P1 triggers (total 8 pins) share the same TG interrupt vector, users have to
further differentiate the real one source from others by programming. Also, trigger debounce
should be considered in the TG section.
The following two assembly source code provide explanations of how to do these works by
software instruction.

Example 0-1 : Use only P0 as input pins. (For your reference only)

; Function :non_retriggerable

W562S20

; Body declaration

Macro INITIAL

 LD MODE,0000B

 LD IOR1,0000B

 LD PCR1,1111B

 LD IER,0100B

 LD PER0,1111B

ENDM

;macro start

;

;P1 as input port

;

;Enable TG

;Enable all P0 individual interrupt

POI:

 INITIAL

; "POI", a keyword, Reset entry vector

W562XXX DESIGN GUIDE

- 46 -

 END

TG:

 MV WR0, P0

 NOP

 NOP

 NOP

 NOP

 NOP

 NOP

 XOR P0, WR0

 JNZ Bounce

 MV WR1,TF0

 MV ACC,WR1

 JB0 KEY1

 JB1 KEy2

 JB2 KEY3

 JB3 KEY4

Bounce:

 CLR TF0

 RTI

KEY1:

 PLAY CH1, H4+Do+T4

 JP Chkbusy

KEY2:

 PLAY CH1, H4+RE+T4

 JP Chkbusy

KEY3:

 PLAY CH1, H4+MI+T4

 JP Chkbusy

KEY4:

 PLAY CH1, H4+FA+T4

Chkbusy:

 JBZ1 Chkbusy

 JB Bounce

;"TG", a keyword, Port 0 and Port 1 trigger interrupt entry
vector

; NOP for S/W debounce time

; Check synthesizer active or not

;

W562XXX DESIGN GUIDE

- 47 -

; Function :retriggerable

W562S20

; Body declaration

Macro INITIAL

 LD MODE,0000B

 LD IOR1,0000B

 LD PCR1,1111B

 LD IER,0100B

 LD PER0,1111B

ENDM

;macro start

;

;P1 as input port

;

;Enable TG

;Enable all P0 individual interrupt

;marco end

POI:

 INITIAL

 END

; "POI", a keyword, Reset entry vector

TG:

 MV WR0, P0

 NOP

 NOP

 NOP

 NOP

 NOP

 NOP

 XOR P0, WR0

 JNZ Bounce

 MV WR1,TF0

 MV ACC,WR1

 JB0 KEY1

 JB1 KEy2

 JB2 KEY3

 JB3 KEY4

Bounce:

 CLR TF0

 RTI

KEY1:

 PLAY CH1, H4+Do+T4

 JP ReleaseKey

KEY2:

 PLAY CH1, H4+RE+T4

 JP ReleaseKey

KEY3:

 PLAY CH1, H4+MI+T4

 JP ReleaseKey

KEY4:

 PLAY CH1, H4+FA+T4

ReleaseKey:

 MV WR0,P0

 XOR R0,1111B

 JNZ ReleaseKey

;"TG", a keyword, Port 0 and Port 1 trigger interrupt entry
vector

; NOP for S/W debounce time

; Check key is released or not

;

W562XXX DESIGN GUIDE

- 48 -

 JB Bounce

Normally, the trigger debounce and key scan routines can be written as modules for most
programs to use repeatedly. Only slight modifications are necessary to meet certain specific
requirements.

Keypad Matrix Application

For applications that require a large keypad of many keys, the W562xxx family offers a direct
row and column matrix of up to 8 x 9 keys.
This program uses port 0 and port 1 as input ports, while port 2 and port 3 as the output ports to
form the keypad matrix of 8 x 8 keys. We can also add the Vss line as another column to get a
maximum of 8 x 9 keypad matrix in a direct manner.
You might be able to further expand the keypad matrix by adding external resistors and diodes.
This part will be collected in the application note later on.

Application Circuit

P0.0

P0.1
W561XX

...
..

..

..

..

..

..

..

..

Vss

...

..

P1.3

P3.3

..

8 x 9 Keypad matrix

P3.2

P2.0

P2.1

P2.2

P2.3

P3.1

P3.0

Figure 0-1. An 8 x 9 keypad matrix diagram

W562XXX DESIGN GUIDE

- 49 -

Version Date Writer Reasons for change
A2 Oct. 14th, 1999 Sophia Ho • Add two body with two chips solution

W562M-04 W56000+W55M08
W562M-05 W56000+W55M06

A3 Nov. 18th, 1999 Sophia Ho • modify TXF register table on page15
• remove the software application about

volume control

Headquarters
No. 4, Creation Rd. III,
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice & Fax-on-demand: 886-2-7197006

Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-7190505
FAX: 886-2-7197502

Winbond Electronics (H.K.) Ltd.
Rm. 803, World Trade Square, Tower II,
123 Hoi Bun Rd., Kwun Tong,
Kowloon, Hong Kong
TEL: 852-27513100
FAX: 852-27552064

Winbond Electronics North America Corp.
Winbond Memory Lab.
Winbond Microelectronics Corp.
Winbond Systems Lab.
2730 Orchard Parkway, San Jose,
CA 95134, U.S.A.
TEL: 1-408-9436666
FAX: 1-408-9436668

 Note: All data and specifications are subject to change without notice.

