TL041AC TAPE READ SIGNAL CONDITIONER

D3024, AUGUST 1987-REVISED SEPTEMBER 1989

- Designed for Signal Processing in Streaming-Tape Memory Units in Combination with TL040 Two-Channel Video Amplifier
- Space-Saving LSI Circuits Include:
 Two High-Speed Differential Comparators
 Time-Domain Filter
 Bidirectional One-Shot Multivibrator
 Gain-Controlled Video Amplifier with
 Differential Inputs and Outputs
- Amplifier and Comparator Bandwidth . . . 20 MHz Typical
- Maximum Data Rate at Read Data Pulse (RDP) . . . 1.4 Mb/s Typical
- Available in 300-mil Dual-In-Line and "Small Outline" Plastic Packages

(TOP VIEW) GCA IN + 1 1 1 24 GCA IN -BIAS 23 GADJ AGND ☐3 22 GADJ VCC1 ∏4 21 EGV BDOS RC ☐5 20 EGS 19 GCA OUT + RDP ☐6 TDF RC 17 18 GCA OUT -TP 18 17 WC IN+ 16 WC IN -VCC2 [DGND ☐10 15 WC OUT W/R []11 14 RC IN + RC OUT ☐12 13 RC IN -

DW OR NT PACKAGE

description

The TL041AC is a magnetic tape read signal conditioner designed for use with the TL040 video amplifier. When combined, these devices amplify the low-signal output from a streaming-tape playback head and reconstruct the data as originally written on the tape. The TL041AC includes a gain-controlled amplifier, two comparators, read/write select logic, a time-domain filter, and a bidirectional one-shot multivibrator.

The amplifier has differential inputs, differential outputs, and electronic gain control. A special feature of the electronic gain control is the Electronic Gain Select (EGS). When the EGS input is high, the Electronic Gain Voltage (EGV) input is driven low and amplifier gain is determined by the value of the resistor connected between the Gain Adjust (GADJ) pins. When the EGS input is low, the gain set by the resistor is increased by an amount determined by the voltage applied to the EGV pin.

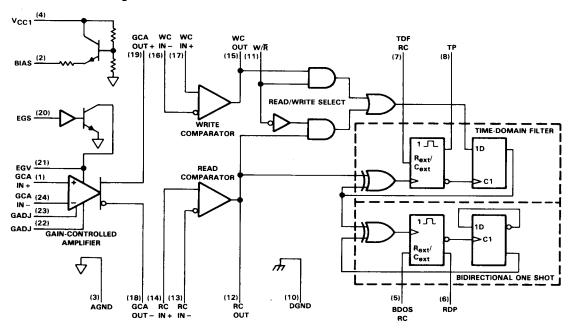
To accommodate different magnetic tape output signal levels, the amplifier gain may be switched by logic at the EGS input, controlled manually with an adjustable voltage at the EGV input, or automatically adjusted with an automatic gain control (AGC) circuit applying a control voltage to the EGV input.

The comparator functions are controlled by a logic input to the Write/Read (W/\overline{R}) select input. With the W/\overline{R} input low, the read comparator output (usually connected as a zero-crossing detector) is sent to the time-domain filter. When W/\overline{R} is high, the write comparator output is used to provide write amplitude verification in a typical read-after-write function.

The time-domain filter helps to ensure the input data is valid. A capacitor in series with a resistor, connected to the time-domain filter pin (TDF RC), begins charging at the leading edge of an input pulse from the read comparator. If the input pulse does not remain high for one RC time constant, the pulse is considered invalid and no signal is passed to the bidirectional one-shot multivibrator (BDOS). However, if the input pulse remains high for longer than one RC time constant, the pulse is considered valid and the signal is passed through the time-domain filter to trigger the BDOS. When triggered, the BDOS provides a pulse to the Read Data Pulse (RDP) output. The RDP output pulse duration is determined by a resistor-capacitor network connected to the BDOS RC pin.

The TLO41AC is characterized for operation from 0°C to 70°C.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1989, Texas Instruments Incorporated

4-77

TL041AC TAPE READ SIGNAL CONDITIONER

functional block diagram

FUNCTION TABLE

		INPUT CONDITONS					
EGS	W/R	DIFFERENTIAL INPUTS	I/O NAME	I/O CONDITION			
EGS		WRITE OR READ COMPARATOR					
	X	RC IN + > RC IN -	RC OUT	H			
	X	RC IN - > RC IN +	RC OUT	L			
	L	×	RC OUT	Input to time-domain filter			
	Х	WC IN+ > WC IN-	WC OUT	Н			
	Х	WC IN - > WC IN +	WC OUT	L			
	н	×	WC OUT	Input to time-domain filter			
Н		×	EGV	L			
L		×	EGV	Input			

PIN		DESCRIPTION				
NAME	NO.	DESCRIPTION				
AGND	3	Analog ground				
BDOS RC	5	Bidirectional one-shot resistor and capacitor				
BIAS	2	Output bias voltage				
DGND	10	Digital ground				
EGS	20	Electronic gain select				
EGV	21	Electronic gain voltage				
GCA IN -	24	Gain-controlled amplifier, inverting input				
GCA IN+	1	Gain-controlled amplifier, noninverting input				
GADJ	22	Gain adjust				
GADJ	23	Gain adjust				
GCA OUT -	18	Gain-controlled amplifier, inverting output				
GCA OUT+	19	Gain-controlled amplifier, noninverting output				
RC IN -	13	Read comparator, inverting input				
RC IN+	14	Read comparator, noninverting input				
RC OUT	12	Read comparator out				
RDP	6	Read data pulse				
TDF RC	7	Time-domain filter resistor and capacitor				
TP	8	Test point				
V _{CC1}	4	Analog collector supply voltage				
V _{CC2}	9	Digital collector supply voltage				
WC IN -	16	Write comparator, inverting input				
WC IN+	17	Write comparator, noninverting input				
WC OUT	15	Write comparator out				
W/R	11	Write/read				

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage: VCC1 (see Note 1)
VCC2 · · · · · · · · · · · · · · · · · ·
Input voltage range: Amplifier and comparators
Multivibrators and logic
Input current: EGV (see Note 2)
Continuous total dissipation See Dissipation Rating Table
Operating free-air temperature range
Storage temperature range
Lead temperature 1.6 mm (1/16 inch) from the case for 10 seconds 260 °C

NOTES: 1. All voltages except differential voltages are with respect to network ground terminals (AGND and DGND tied together).

2. Driving EGV high from a low-impedance source (> ±2 mA capability) with EGS high can result in damage to the device.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	TA = 70°C POWER RATING
DW	1350 mW	10.8 mW/°C	864 mW/°C
NT	1700 mW	13.6 mW/°C	1088 mW/°C

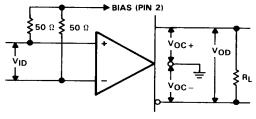
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC1}	10.8	12	13.2	V	
Supply voltage, V _{CC2}		4.5	5	5.5	V
High-level input voltage, V _{IH}	EGS or W/R	2			٧
Low-level input voltage, V _{IL}	EGS or W/R			0.8	٧
Input voltage, V _I	EGS	0 10		10	.,
input voltage, vi	EGV	0	0.8V _{CC1}		\ \
Common-mode input voltage to gain-control amplifier, VIC			4		V
High-level output current, IOH	WC OUT, RC OUT, TP, or RDP			400	
				- 400	μΑ
Low-level output current, IOI	WC OUT, RC OUT,			8	4
Low-level output current, IOL	TP, or RDP			٥	mA
Pulse duration, t _W	TP or RDP	40			ns
External timing resistance, (see Note 3)	TDF or BDOS RC	5		25	kΩ
External timing capacitance	TDF or BDOS RC)	0.01	0.1	1000	nF
perating free-air temperature, TA				70	°C

NOTE 3: Some high resistance and capacitance combinations may produce abnormal output waveforms.

electrical characteristics at VCC1 = 12 V, VCC2 = 5 V, VIC(GIC) = V_{bias}, R_{ADJ} = 5 k Ω , EGS at high level, EGV at 0 V, r_i = 50 Ω , R_L = 2 k Ω , T_A = 25 °C (unless otherwise noted)

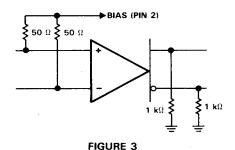
gain-controlled amplifier


PARAMETER		TEST FIGURE	TEST CONDI	MIN	ТҮР	MAX	UNIT	
V ₀₀	Output offset voltage	1	$V_{ID} = 0$,	$V_{OD} = V_{O}$		0.35	0.75	>
V _{OPP}	Maximum differential output voltage	1	V _{1D} = 1 V,	$V_{OPP} = V_{O}$	3	6		٧
			$V_{ID} = 20 \text{ mV},$	EGS high	8	14	20	V/V
A _{VD}	Large-signal differential voltage amplification	1	V _{id} = 20 mV, EGS low,	EGV at 4 V		19		V/V
	voltage unipinioation		f = 455 kHz	EGV at 9.6 V		90		
CMRR	Common-mode rejection ratio	2	V _{IC} = 2 V to 5 V		60	80		dB
V _{IC}	Common-mode input voltage	2			2		5	V
Voc	Common-mode output voltage	1	V _{ID} = 0		4	5.8	6.4	V
10	Input offset current	1	I _{IB+} - I _{IB-}			0.2	3	μΑ
lo	Output current, sink				1.5	2		mA
lΒ	Input bias current	1	$(I_{1B+} + I_{1B-})/2$			5	17	μА
VO(BIAS)	Bias output voltage	1			3	4	5	٧
zo(BIAS)	Bias output impedance					1		kΩ
z _i	Input impedance					30		kΩ
BW	Bandwidth (-3 dB)	3				20		MHz
ksvr	Supply voltage rejection ratio	4	$V_{CC1} = 10.8 \text{ V to } 13.3$	2 V	50	70		dB
ICC1	Supply current from V _{CC1}		$V_{CC1} = 13.2 \text{ V},$	No signal		32	45	mA

logic section

PARAMETER			TEST FIGURE	TEST CON	DITIONS	MIN	ТҮР	MAX	UNIT
V _{OH} High-level output voltage			$V_{CC2} = 4.5 \text{ V},$ $I_{OH} = -400 \mu \text{A}$	$V_{\text{ID}} = 0.1 \text{ V},$	2.7	3.5		V	
V _{OL} Low-level output voltage			$V_{CC2} = 4.5 \text{ V},$ $I_{OL} = 8 \text{ mA}$	$V_{ID} = 0.1 V$,		260	500	mV	
VICR	Common-mode input voltage, comparators					2		7	٧
1	High-level input current	EGS		$V_{I(EGS)} = 2.7 V$			120	200	μА
ΙН		W/R		$V_{I(W/\overline{R})} = 2.7 \text{ V}$				20	
	Low-level input current	EGS		$V_{I(EGS)} = 0.4 \text{ V}$				- 20	
ηL		W/R		$V_{I(W/\overline{R})} = 0.4 \text{ V}$				- 400	μΑ
ICC2	CC2 Supply current from VCC2			$V_{CC2} = 5.5 V$,	No signal		22	31	mA
	Response time			100-mV step,	5-mV overdrive		50		ns
	Pulse duration of one-shots			$R_{ext} = 5 k\Omega$,	C _{ext} = 100 pF		360		
tw	(TP, RDP)			$R_{ext} = 20 k\Omega$,	C _{ext} = 33 pF		460		ns

PARAMETER MEASUREMENT INFORMATION


$$V_{OO} = V_{OD} \text{ with } V_{ID} = 0$$

$$V_{OPP} = V_{OD} \text{ with } V_{ID} = 1 \text{ V}$$

$$A_{VD} = \frac{V_{OD}}{V_{ID}} \text{ with } V_{ID} = 20 \text{ mV}$$

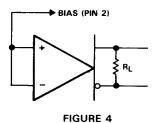
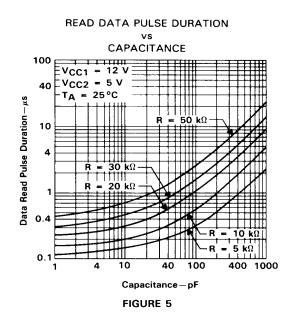

$$V_{OC} = \frac{V_{OC} + V_{OC} - V_{ID}}{2} \text{ with } V_{ID} = 0$$

FIGURE 1



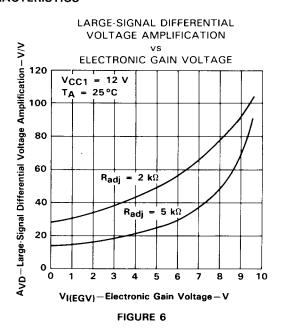

50 Ω 50 Ω 50 Ω VIC 1 kΩ 1 kΩ

FIGURE 2

TYPICAL CHARACTERISTICS

TYPICAL APPLICATION DATA

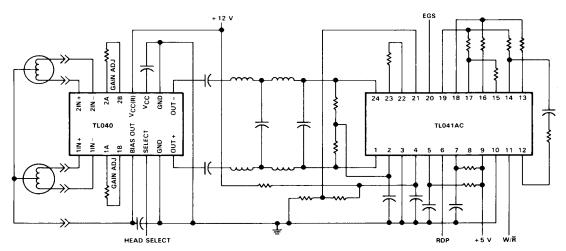


FIGURE 7. READ SIGNAL CIRCUIT FOR A STREAMING TAPE DRIVE

