
ICCH83

INTEGRATED C COMPILER
HITACHI H8/300 DEVELOPMENT TOOLS

INTEGRATED ENVIRONMENT

The ICCH83 toolset is delivered as a complete toolset with C
compiler, assembler, linker, librarian and run-time libraries. To help
reduce development times and make the tools easier to use the
delivery also includes a menu driven user interface with mouse
control. This user interface also includes an error-sensitive editor and
make utilities. Use the IAR Integrated Environment - and get to market
faster.

The IAR ICCH83 develop-
ment kit offers the choice of
C to H8/300 and H8/300H
applications, from single-
chip to banked design.

ICCH83 implements the full
ANSI C language, and pro-
vides extended keywords spe-
cific to the H8/300 architec-
ture. With its built-in chip-
specific optimizer, the IAR
H8/300 compiler generates
very efficient and reliable
PROMable code.

Combined with fully compre-
hensive documentation, the
IAR ICCH83 gets you started
on your H8/300 project in no
time, making the learning
process fast and easy. In
addition to a solid techno-
logy, our professional tech-
nical support is yet another
reason engineers adopt IAR
C.

COMPILER

Full ANSI C compatibility
The IAR H83 C Compiler
is fully compatible with the
ANSI C standard. All data
types required by ANSI are
supported without any ex-
ceptions (see figure 1).
float and double are repre-
sented in the IEEE 32- or
64-bit precision. Bitfields
are based on char, short or
long datatypes making port
manipulation very efficient.

Full ANSI C compatibility
means that the IAR C Com-
pilers follow not only the
ANSI syntax but also the
less well known require-
ments that ANSI puts on
run-time behavior such as
integral promotions and
precision in floating point
calculations to name two
specific and important are-
as.

DATA
TYPE

SIZE
(bytes)

VALUE RANGE

bit 1 bit 0 or 1
sfr 1 0 to 255
sfrp 2 0 to 65535
signed char 1 -128 to +127
unsigned
char

1 0 to 255

short & int 2 -32768 to +32767
unsigned
short & int

2 0 to 65535

signed long 4 -231 to 231-1
unsigned
long

4 0 to 232-1

float
IEEE 32-bit

4 ±1.18E-38 to
±3.39E+38, 7 digits

double
IEEE 64-bit

8 ±2.23E-308 to
±1.79E+308, 16

digits
pointer 1,2,4 object address

Figure 1. Data representation supported by the
IAR H83 C Compiler.

IAR C DEVELOPMENT TOOLS FOR THE HITACHI H8/300

H83 Specific extensions
To ideally suit development
for embedded systems, stan-
dard C needs additional func-
tionality. IAR Systems has
defined a set of extensions to
ANSI C, specific to the
H8/300 architecture (see Fi-
gure 2). All of these extended
keywords can be invoked by
using the #pragma directive,
which maintains compatibility
with ANSI and code porta-
bility.

In Addition there is also a set
of intrinsic functions that are
specially designed for H8/300
(see Figure 2). These func-
tions maps to assembler ins-
tructions that can be directly
invoked in C code as a func-
tion call. The intrinsic func-
tions shown in the table are
only some of the available
functions.

Efficient floating point
The compiler comes with full
floating point support. It
follows the IEEE 32-bit rep-
resentation using an IAR
Systems proprietary register
based algorithm, which ma-
kes floating point manipula-
tion extremely fast.

TYPE KEYWORD DESCRIPTION
Function interrupt

monitor

non_banked
tiny_func
near_func
far_func
banked_func
C_task

ANSI_main

Creates an interrupt function that is called
through an interrupt vector. The function
preserves the register contents and the
processor status.
Turns off the interrupts while executing a
monitor function.
Declares a non banked function.
Called indirectly via an exception vector.
Access range from 0H to FFFFH.
Unrestricted access to 16MB range.
Used in banked switching mode.
Inhibits register saving (used in real-time
kernel applications).
Forec main() to save registers.

Variable no_init

tiny

near

far

huge

Puts a variable in the no_init segment. Does
not get intialized at start-up.
Data object stored in the tiny segment.
Access using 8-bit addressing.
Data object stored in the near segment.
Access using 16-bit addressing.
Data object stored in the far segment.
Access using 32-bit addressing. Object size
<64KB.
Data object stored in the huge segment. No
restrictions on size.

Segment codeseg
constseg
dataseg

Renames the CODE segment.
Creates a new CONST segment.
Creates a new DATA segment.

Intrinsic sleep
no_operation
read_e_port

write_e_port
disable_max_time
do_byte_eepmov

do_word_eepmov

func_stack_mask

set_interrupt_mask
read_ccr
write_ccr
and_ccr
or_ccr
xor_ccr

Executes the SLEEP instruction.
Executes the NOP instruction.
Reads a byte from an address using
MOVFPE.
Writes a byte to an address using MOVTPE.
Sets maximum interrupt disable time.
Copy a sequence of bytes to an EPROM
using EEPMOV.B.
Copy a sequence of bytes to an EPROM
using EEPMOV.W.
Gets a pointer to correct function return
address.
Sets the interrupt priority level.
Reads the CCR register.
Writes to the CCR register.
ANDs to the CCR register.
ORs to the CCR register.
Exclusive-ORs to the CCR register.

Figure 2. IAR Systems embedded C extensions.

IAR C DEVELOPMENT TOOLS FOR THE HITACHI H8/300

Processor mode Extra
small

Tiny Mini Small Large Banked

Function calls 64KB Mode tiny_func tiny_func banked_func near_func near_func banked_fun
c

Function calls 1 MB & 16 MB Mode far_func far_func banked_func far_func far_func banked_fun
c

Data pointers 64KB Mode near near near near near near
Data pointers 1 MB & 16 MB Mode far far far huge huge huge
Stack size 64KB Mode 256 bytes 64 KB 256 bytes 256 bytes 64 KB 64 KB
Stack size 1 MB & 16 MB Mode 256 bytes 64 KB 64 KB 64 KB 16 MB 16 MB
Intrinsic calls Could be selected as tiny_func or far_func under any mode or via a compiler

switch.
Figure 3. Memory models.

Memory models for any hardware design
Every design has its own memory requirements.
The ICCH83 compiler has two sets of six
different memory models allowing a best fit
selection (see Figure 3).

ASSEMBLER

Macro-Assembler for time-critical routines
The IAR C Compiler kit comes with a reloca-
table structured assembler. This provides the
option of coding time-critical sections of the
application in assembly without losing the ad-
vantages of the C language. The preprocessor
of the C compiler is incorporated in the assemb-
ler, thus allowing use of the full ANSI C macro
language, with conditional assembly, macro defi-
nitions, if statements, etc. C include files can also
be used in an assembly program. All modules
written in assembly can easily be accessed from
C and vice versa, making the interface between
C and assembly a straightforward process.

Powerful Set of Assembler Directives
The assembler provides an extensive set of
directives to allow total control of code and data
segmentation. Directives also allow creation of
multiple modules within a file, macro definitions
and variable declarations.

LINKER

The IAR XLINK Linker supports complete
linking, relocation and format generation to pro-
duce H8/300 PROMable code (see Figure 4).

The XLINK generates over 30 different output
formats and is compatible with most popular
emulators and EPROM burners.

The XLINK is extremely versatile in allocating
any code or data to a start address, and checking
for overflow. Detailed cross reference and map
listing with segments, symbol information,
variable locations, and function addresses are
easily generated.

Examples of linker
commands

Description

-Z seg_def

-F format_name

-x -l file_name

-D symbol=value

Allocates a list of segments
at a specific address.
Selects one of more than 30
different absolute output
formats.
Generate a map file
containing the absolute
addresses of modules,
segments, entry points,
global/static variable, and
functions.
Define a global symbol and
equates it to a certain value.

Figure 4. Example of different linker commands.

LIBRARIAN

The XLIB Librarian creates and maintains libra-
ries and library modules. Listings of modules,
entry points, and symbolic information contained
in every library are easily generated.

XLIB can also change the attributes in a file or
library to be either conditionally or unconditio-

IAR C DEVELOPMENT TOOLS FOR THE HITACHI H8/300

nally loaded, i.e. loaded only if referred to or
loaded without being referred to.

ANSI C LIBRARIES

The IAR C Compiler kit comes with all libraries
required by ANSI free standing implementation
of C. Additionally, ICCH83 comes with low-
level routines required for embedded systems
development (see Figure 5).

C LIBRARY FUNCTIONS
DIAGNOSTICS <assert.h> assert
CHARACTER HANDLING <ctype.h> isalnum,
isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit tolower, toupper
VARIABLE ARGUMENTS <stdarg.h> va_arg, va_end,
va_list, va_start
NON LOCAL JUMPS <setjmp.h> longjmp, setjmp
INPUT/OUTPUT <stdio.h> getchar, gets, printf,
putchar, puts, scanf, sscanf, sprintf
GENERAL UTILITIES <stdlib.h> abort, abs, atof, atol,
atoi, bsearch, calloc, div, exit, free, labs, ldiv, malloc,
rand, realloc, srand, strtod, strtol, strtoul, qsort
STRING HANDLING <string.h> memchr, memcmp,
memcpy, memmove, memset, strcat, strchr, strcmp,
strcoll, strcpy, strcspn, strerror, strlen, strncat, strncmp,
strncpy, strpbrk, strrchr, strspn, strstr, strtok, strxfrm
MATHEMATICS <math.h> acos, asin, atan, atan2,
ceil, cos, cosh, exp, exp10, fabs, floor, fmod, frexp,
ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh
LOW-LEVEL ROUTINES <iccbutl.h>
_formatted_write, _formatted_read
Figure 5. Library functions. IAR C Compiler comes with
all libraries required by ANSI.

UTILITIES & EXTRAS

User interface, editor and Make utility installa-
tion is easy and straight forward due to the in-
stallation program which will check for other
IAR installations. ICCH83 comes with a mouse-
controlled menu-driven user interface that inclu-
des an error-sensitive ASCII editor. An easy-to-
use Make utility is also integrated in the inter-
face environment.

SUPPORT & UPDATES

IAR H83 toolkit comes with the following bene-
fits:
• Updates released within 90 days after pur-

chase free of charge.
• On-line free technical support.

HOSTS

• IBM PC and compatibles. Minimum 386,
DOS 4.x, and 4 MB of RAM.

• Windows 3.1x, 95 and NT 3.51 or later in a
DOS window.

• SUN 4 (SPARC): SUN-OS, Solaris.
• HP 9000/700: HP-UX.

IAR C DEVELOPMENT TOOLS FOR THE HITACHI H8/300

The IAR H83 C-SPY is a high
level language simulator/
debugger. C-SPY combines the
detailed control of execution
needed for embedded develop-
ment debugging with the flexi-
bility and power of the C lan-
guage.

C-SPY H83
SIMULATOR/DEBUGGER
FOR HITACHI H8/300

USER INTERFACE

Short learning curve
C-SPY is a window-oriented simu-
lator/debugger which provides a
friendly and easy-to-navigate debugging
environment.

No set-up problems
C-SPY does not need to be set-up to
offer powerful debug features. All func-
tionality is present from start-up. The
C-SPY screen could be reduced to only
two windows (Source and Command)
for simplicity or be divided into the
following user-selectable windows:

C/ASM source code. Displays source
code on C or assembly levels, and high-
lights the line being executed. Allows
placement of breakpoints directly on the
C or ASM source line.
Registers. Displays register contents
and the cycle count.
Memory. Simulates memory space of
the cpu. Displays the content of a user
selectable address range, ROM, RAM
or stack.
Watchpoint. Displays the content of
variables and expressions. Globals, lo-
cals, structures, arrays, and pointers are
all supported.
Terminal I/O. A unique C-SPY feature
where the screen becomes the output
and the keyboard becomes the input. A
very useful feature for debugging em-

bedded applications when logical flow
is of interest or the target is not yet
ready.

A Powerful Command Set
A powerful yet easy to use command
set; includes all that is needed for
embedded debugging environments.
Frequently used commands are invoked
via function keys.

Built-in Assembler & Disassembler
In addition to modifying variables and
symbol values, C-SPY H83 also pro-
vides the flexibility of modifying the
code during a debugging session. This
feature is often needed while debugging
embedded applications.

CONTACT INFORMATION
USA
IAR Systems Inc.
One Maritime Plaza
San Francisco,
CA 94111
Tel: +1 415-765-5500
Fax: +1 415-765-5503
Email: info@iar.com

SWEDEN
IAR Systems AB
P.O. Box 23051
S-750 23 Uppsala
Tel: +46 18 16 78 00
Fax: +46 18 16 78 38
Email: info@iar.se

GERMANY
IAR Systems GmbH
Brucknerstrasse 27
D-81677 Munich
Tel: +49 89 470 6022
Fax: +49 89 470 9565
Email: info@iar.de

UK
IAR Systems Ltd.
9 Spice Court,
Ivory Square
London SW11 3UE
Tel: +44 171 924 3334
Fax: +44 171 924 5341
Email: info@iarsys.co.uk

Home Page: http://www.iar.se
IAR is a registered trademark of IAR Systems, Embedded Workbench, XLINK, XLIB, and C-SPY are trademarks of IAR Systems. All

other products are trademarks or registered trademarks of their respective owners. Product features, availability, pricing and other terms
and conditions are subject to change by IAR Systems from time to time without further notice.

Copyright1996 IAR Systems AB

