

�������

���� 	���������
����
������� ����

Getting Started
Guide

1997 Microcontroller Products

Printed in U.S.A., March 1997
M414003-9741 revision B

SPNU117B

TMS470R1x Code Generation Tools
Getting Started Guide

Release 1.20

Literature Number: SPNU117B
Manufacturing Part Number: M414003-9741 revision B

March 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright  1997, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The TMS470R1x Code Generation Tools Getting Started Guide tells you how
to install release 1.20 of the TMS470R1x code generation tools on your sys-
tem. It also provides the following information:

� Tells you how to set environment variables for parameters that you use
often

� Gets you started using the compiler, linker, and assembler

� Provides a list of the media contents for your tools set, so you will know
what information is associated with each file you have installed

� Details enhancements in this release and tells you where to find further
information

� Describes how you can resolve problems that you may encounter on a
PC running DOS (MS-DOS or PC-DOS)

Notational Conventions

In this document, the following notational conventions are used:

� Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the spe-
cial typeface for emphasis. Interactive displays use bold to distinguish
commands that you enter from items that the system displays (such as
prompts, command output, error messages, etc.). Some interactive
displays use italics to describe the type of information that should be
entered.

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Notational Conventions / Related Documentation From Texas Instruments

iv

Here is an example of a command that you might enter:

set PATH=c:\ tool_dir ;%PATH%

To change your path statement to use the tools, enter the command text as
shown in bold and replace tool_dir with the name of your tools direc-
tory.

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered.

Here is an example of a command that you might use:

mkdir tool_dir

In this example, you would type mkdir, as shown, and replace tool_dir with
the name of your directory.

� Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you don’t
enter the brackets themselves. Here’s an example of a command that has
optional parameters:

SET C_DIR=pathname1[;pathname2 . . .]

Setting the C_DIR environment variable allows you to specify one or more
pathnames for the C compiler to search.

Related Documentation From Texas Instruments

The following books describe the TMS470R1x and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments Litera-
ture Response Center at (800) 477–8924. When ordering, please identify the
book by its title and literature number.

TMS470R1x Assembly Language Tools User’s Guide (literature number
SPNU118) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the TMS470R1x devices.

TMS470R1x Optimizing C Compiler User’s Guide (literature number
SPNU119) describes the TMS470R1x C compiler. This C compiler
accepts ANSI standard C source code and produces assembly language
source code for the TMS470R1x devices.

 Related Documentation From Texas Instruments / Trademarks

v Read This First

TMS470R1x C Source Debugger User’s Guide (literature number
SPNU124) describes the TMS470R1x emulator and simulator versions
of the C source debugger interface. This book discusses various aspects
of the debugger interface, including window management, command
entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

TMS470R1x User’s Guide (literature number SPNU134) describes the
TMS470R1x RISC microcontroller, its architecture (including registers),
ICEBreaker module, interfaces (memory, coprocessor, and debugger),
16-bit and 32-bit instruction sets, and electrical specifications.

Trademarks

DOS/4G is a trademark of Tenberry Software, Inc.

HP-UX, HP 9000 Series 700, and PA-RISC are trademarks of Hewlett-
Packard Company.

IBM, PC, and PC-DOS are trademarks of International Business Machines
Corp.

MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft
Corp.

OpenWindows, SunOS, and Solaris are trademarks of Sun Microsystems, Inc.

Pentium is a trademark of Intel Corporation.

SPARCstation is trademark of SPARC International, Inc., but licensed exclu-
sively to Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of Tech-
nology.

If You Need Assistance

vi

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
Microcontroller Home Page http://www.ti.com/sc/micro

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

 Contents

vii

Contents

1 Setting Up the Code Generation Tools With DOS or Windows 3.1x 1-1.
Provides installation instructions for PCs running DOS or Windows 3.1x.

1.1 System Requirements 1-2.
Hardware checklist 1-2.
Software checklist 1-2.

1.2 Installing the Code Generation Tools 1-3.
Installing the tools on DOS systems 1-3.
Installing the tools on Windows 3.1x systems 1-3.

1.3 Setting Up the Code Generation Environment 1-4.
Identifying the directory that contains the executable files (PATH statement) 1-5.
Identifying alternate directories for the assembler to search (A_DIR) 1-5.
Identifying alternate directories for the compiler to search (C_DIR) 1-5.
Setting default shell options (C_OPTION) 1-6.
Specifying a temporary file directory (TMP) 1-7.
Resetting defined environment variables 1-7.
Verifying that the environment variables are set 1-7.

1.4 Performance Considerations 1-8.
1.5 Where to Go From Here 1-8.

2 Setting Up the Code Generation Tools With Windows 95 and Windows NT 2-1.
Provides installation instructions for the code generation tools for PCs running Windows 95 or
Windows NT.

2.1 System Requirements 2-2.
Hardware checklist 2-2.
Software checklist 2-2.

2.2 Installing the Code Generation Tools 2-3.
2.3 Setting Up the Code Generation Environment 2-4.

Identifying the directory that contains the executable files (PATH statement) 2-5.
Identifying alternate directories for the assembler to search (A_DIR) 2-5.
Identifying alternate directories for the compiler to search (C_DIR) 2-6.
Setting default shell options (C_OPTION) 2-6.
Specifying a temporary file directory (TMP) 2-7.
Resetting defined environment variables 2-7.
Verifying that the environment variables are set 2-7.

2.4 Where to Go From Here 2-8.

Contents

viii

3 Setting Up the Code Generation Tools With SunOS 3-1.
Provides installation instructions for the code generation tools for SPARCstations running
SunOS.

3.1 System Requirements 3-2.
Hardware checklist 3-2.
Software checklist 3-2.

3.2 Installing the Code Generation Tools 3-3.
Mounting the CD-ROM 3-3.
Copying the files 3-4.
Unmounting the CD-ROM 3-4.

3.3 Setting Up the Code Generation Environment 3-5.
Identifying the directory that contains the executable files (path statement) 3-6.
Identifying alternate directories for the assembler to search (A_DIR) 3-6.
Identifying alternate directories for the compiler to search (C_DIR) 3-7.
Setting default shell options (C_OPTION) 3-7.
Specifying a temporary file directory (TMP) 3-8.
Reinitializing your shell 3-9.
Resetting defined environment variables 3-9.
Verifying that the environment variables are set 3-10.

3.4 Where to Go From Here 3-10.

4 Setting Up the Code Generation Tools on an HP Workstation 4-1.
Provides installation instructions for HP 9000 Series 700 PA-RISC computers running HP-UX.

4.1 System Requirements 4-2.
Hardware checklist 4-2.
Software checklist 4-2.

4.2 Installing the Code Generation Tools 4-3.
Mounting the CD-ROM 4-3.
Copying the files 4-3.
Setting up the software tools using a C shell 4-4.
Setting up the software tools using a Korn shell 4-4.
Unmounting the CD-ROM 4-4.

4.3 Setting Up the Code Generation Environment 4-5.
Identifying the directory that contains the executable files (path statement) 4-6.
Identifying alternate directories for the assembler (A_DIR) 4-6.
Identifying alternate directories for the compiler (C_DIR) 4-7.
Setting default shell options (C_OPTION) 4-7.
Specifying a temporary file directory (TMP) 4-8.
Reinitializing your shell 4-9.
Resetting defined environment variables 4-9.
Verifying that the environment variables are set 4-10.

4.4 Where to Go From Here 4-10.

 Contents

ix Contents

5 Getting Started With the Code Generation Tools 5-1.
Provides an overview of how to invoke and use the assembler, linker, and compiler.

5.1 Getting Started With the Assembler and Linker 5-2.
5.2 Getting Started With the C Compiler 5-7.

6 Release Notes 6-1.
Describes the media contents and the enhancements for this release.

6.1 Media Contents 6-2.
6.2 Release Enhancements 6-4.

General enhancements 6-4.
Assembler enhancements 6-4.
C compiler enhancements 6-5.

A Troubleshooting DOS Systems A-1.
Lists kernel and DOS/4G error messages and explains how you can resolve them.

A.1 Troubleshooting in the Protected-Mode Environment A-2.
The PMINFO32.EXE program A-3.

A.2 Kernel Error Messages A-5.
A.3 DOS/4G Error Messages A-9.

B Glossary B-1.
Defines terms and acronyms used in this book.

x

1-1

Setting Up the Code Generation
Tools With DOS or Windows 3.1x

This chapter helps you install release 1.20 of the TMS470R1x code generation
tools and set up your code-development environment on a 32-bit x86-based
or Pentium PC running MS-DOS, PC-DOS, or Windows 3.1x. These tools
include an optimizing C compiler and a full set of assembly language tools for
developing and manipulating assembly language and object (executable)
code.

The C compiler tools are composed of the following components:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utility

The assembly language tools are composed of the following components:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Topic Page

1.1 System Requirements 1-2.

1.2 Installing the Code Generation Tools 1-3.

1.3 Setting Up the Code Generation Environment 1-4.

1.4 Performance Considerations 1-8.

1.5 Where Do We Go From Here 1-8.

Chapter 1

System Requirements

 1-2

1.1 System Requirements

To install and use the code generation tools, you need the items listed in the
following hardware and software checklists.

Hardware checklist

Host 32-bit x86-based or Pentium based PC with an ISA/EISA bus

Memory 4M–16M bytes of RAM plus 32M bytes of hard-disk space for
temporary files and 4M bytes of hard-disk space for the code
generation tools

Display Monochrome or color monitor (color recommended)

Required hardware CD-ROM drive

Optional hardware Microsoft compatible mouse

Software checklist

Operating system One of these operating systems:

� MS-DOS
� PC-DOS
� Windows 3.1x

CD-ROM TMS470R1x Code Generation Tools

Note: Memory Needed

The code generation tools, when installed on a PC, require at least 4M bytes
of memory, but you can expect some performance problems when using only
4M bytes. (16M bytes is recommended.) You may want to free as much
memory as possible before running the tools, especially if you have less than
16M bytes.

Installing the Code Generation Tools

1-3Setting Up the Code Generation Tools With DOS or Windows 3.1x

1.2 Installing the Code Generation Tools

This section helps you install the code generation tools on your hard-disk
system. The code generation tools package is shipped on CD-ROM. The
installation instructions vary according to your operating system.

Installing the tools on DOS systems

To install the tools on a DOS system, follow these steps:

1) Insert the TMS470R1x Code Generation Tools CD-ROM into your
CD-ROM drive.

2) Change to the CD-ROM drive (where d: is the name of your CD-ROM
drive):

d:

3) Enter the following command:

install

4) Follow the on-screen instructions.

If you choose not to have he environment variables set up automatically, you
can set yp the environment variables in your autoexec.bat file. See Section 1.3,
Setting Up the Code Generation Environment, on page 1-4, for more informa-
tion.

Installing the tools on Windows 3.1x systems

To install the tools on a Windows 3.1x system, follow these steps:

1) Insert the TMS470R1x Code Generation Tools CD-ROM into your
CD-ROM drive.

2) Start Windows 3.1x.

3) From the File menu, select Run.

4) In a dialog box, enter the following command (where d: is the name of your
CD-ROM drive):

d:\setup.exe

5) Click on OK.

6) Follow the on-screen instructions.

If you choose not to have the environment variables set up automatically, you
can set up the environment variables in your autoexec.bat file. See Section 1.3,
Setting Up the Code Generation Environment, on page 1-4, for more informa-
tion.

Setting Up the Code Generation Environment

 1-4

1.3 Setting Up the Code Generation Environment

Before or after you install the code generation tools, you can define environ-
ment variables that set certain software tool parameters you normally use. An
environment variable is a special system symbol that you define and associate
to a string. A program uses this symbol to find or obtain certain types of
information.

When you use environment variables, default values are set, making each
individual invocation of the tools simpler because these parameters are auto-
matically specified. When you invoke a tool, you can use command-line
options to override many of the defaults that are set with environment vari-
ables.

The code generation tools use the following environment variables:

� A_DIR
� C_DIR
� C_OPTION
� TMP

By default, the installation program modifies your autoexec.bat file and sets
up these environment variables:

set PATH=c:\ tool_dir ;%PATH%
set A_DIR=c:\ tool_dir
set C_DIR=c:\ tool_dir

If you choose not to have the environment variables set up automatically, you
can modify your autoexec.bat file to include the set commands above.

In addition to setting up environment variables, you must modify your path
statement. The following subsections describe how to modify your path state-
ment and how to define the environment variables that the code generation
tools use.

Setting Up the Code Generation Environment

1-5Setting Up the Code Generation Tools With DOS or Windows 3.1x

Identifying the directory that contains the executable files (PATH statement)

You must include the tool_dir directory in your PATH statement so that you can
specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� If you modify your autoexec.bat file to change the path information, add
the following to the end of the PATH statement:

;c:\ tool_dir

� If you set the PATH statement from the command line, enter the following:

set PATH=c:\ tool_dir ;%PATH%

The addition of ;%PATH% ensures that this PATH statement does not
undo the PATH statements in any other batch files (including the
autoexec.bat file).

Identifying alternate directories for the assembler to search (A_DIR)

The assembler uses the A_DIR environment variable to name alternative
directories for the assembler to search. To set the A_DIR environment vari-
able, use this syntax:

set A_DIR= pathname1[;pathname2 . . .]

The pathnames are directories that contain copy/include files or macro
libraries. You can separate the pathnames with a semicolon or with a blank.
Once you set A_DIR, you can use the .copy, .include, or.mlib directive in
assembly source without specifying path information.

If the assembler does not find the file in the directory that contains the current
source file or in directories named by the –ioption (which names alternate
directories), it searches the paths named by the A_DIR enviroment variable.
For more information on the –i option, see the TMS470R1x Assembly
Language Tools User’s Guide or the TMS470R1x Optimizing C Compiler
User’s Guide.

Identifying alternate directories for the compiler to search (C_DIR)

The compiler uses the C_DIR environment variable to name alternative direc-
tories for the compiler to search. To set the C_DIR environment variable, use
this syntax:

set C_DIR=pathname1[;pathname2 . . .]

The pathnames are directories that contain #include files or function libraries
(such as stdio.h). You can separate the pathnames with a semicolon or with
a blank. In C source, you can use the #include directive without specifying path
information. Instead, you can specify the path information with C_DIR.

Setting Up the Code Generation Environment

 1-6

Setting default shell options (C_OPTION)

You might find it useful to set the compiler, assembler, and linker shell default
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with C_OPTION
every time you run the shell.

Setting the default options with the C_OPTION environment variable is useful
when you want to run the shell consecutive times with the same set of options
and/or input files. After the shell reads the command line and the input file-
names, it reads the C_OPTION environment variable and processes it.

To set the C_OPTION environment variable, use this syntax:

set C_OPTION=option1[;option2 . . .]

Environment variable options are specified in the same way and have the
same meaning as they do on the command line. For example, if you want to
always run quietly (the –q option), enable C source interlisting (the –s option),
and link (the –z option), set up the C_OPTION environment variable as follows:

set C_OPTION=–qs –z

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These additional examples assume C_OPTION is set as shown above:

cl470 *c ; compiles and links
cl470 –c *.c ; only compiles
cl470 *.c –z lnk.cmd ; compiles and links using a

; command file
cl470 –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

For more information about shell options, see the TMS470R1x Optimizing C
Compiler User’s Guide. For more information about linker options, see the
TMS470R1x Assembly Language Tools User’s Guide .

Setting Up the Code Generation Environment

1-7Setting Up the Code Generation Tools With DOS or Windows 3.1x

Specifying a temporary file directory (TMP)

The compiler shell program creates intermediate files as it processes your
program. By default, the shell puts intermediate files in the current directory.
However, you can name a specific directory for temporary files by using the
TMP environment variable.

Using the TMP environment variable allows use of a RAM disk or other file
systems. It also allows source files to be compiled from a remote directory
without writing any files into the directory where the source resides. This is
useful for protected directories.

To set the TMP environment variable, use this syntax:

set TMP=pathname

For example, to set up a directory named temp for intermediate files on your
hard drive, enter:

set TMP=c:\temp

Resetting defined environment variables

The environment variables that you define remain set until you reboot the
system. If you want to clear an environment variable, use this command:

set variable name=

For example, to reset the A_DIR environment variable, enter:

set A_DIR

Verifying that the environment variables are set

To verify that the environment variables are set, open a DOS box and enter:

set

This command lists the path and environment variables and their current
values.

Performance Considerations

 1-8

1.4 Performance Considerations

You may notice a speed degradation when you use the code generation tools
with DOS or Windows 3.1x. This speed degradation may occur when you use
DOS with the tools to get appropriate host memory support.

If you encounter error messages when you use the tools on a PC with DOS,
run PMINFO to determine your system configuration before you contact tech-
nical support. For more information about PMINFO, see Appendix A, Trouble-
shooting DOS systems.

1.5 Where to Go From Here

Your code generation tools are now installed on your DOS or Windows 3.1x
system. Now you should do each of the following tasks:

� Go to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the
assembler, linker, and compiler.

� Read Chapter 6, Release Notes. This chapter explains the new features
included in release 1.20 of the code generation tools.

� Use Appendix A, Troubleshooting DOS Systems, as necessary. This
appendix lists kernel and DOS/4G error messages and explains how
you can resolve the messages.

Performance Considerations / Where to Go From Here

2-1

Setting Up the Code Generation Tools
With Windows 95 and Windows NT

This chapter helps you install release 1.20 of the TMS470R1x code generation
tools and set up your code-development environment on a 32-bit x86-based
or Pentium PC running Windows 95 or Windows NT . These tools include an
optimizing C compiler and a full set of assembly language tools for developing
and manipulating assembly language and object (executable) code.

The C compiler tools are composed of the following components:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utitlity

The assembly language tools are composed of the following components:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Topic Page

2.1 System Requirements 2-2.

2.2 Installing the Code Generation Tools 2-3.

2.3 Setting Up the Code Generation Environment 2-4.

2.4 Where to Go From Here 2-8.

Chapter 2

System Requirements

 2-2

2.1 System Requirements

To install and use the code generation tools, you need the items listed in the
following hardware and software checklists.

Hardware checklist

Host 32-bit x86-based or Pentium based PC with an ISA/EISA bus

Memory Minimum of 16M bytes of RAM plus 32M bytes of hard-disk space
for temporary files and 4M bytes of hard-disk space for the code
generation tools

Display Monochrome or color monitor (color recommended)

Required hardware CD-ROM drive

Optional hardware Microsoft compatible mouse

Software checklist

Operating system One of these operating systems:

� Windows 95 version 4.0 (or higher)
� Windows NT Workstation version 3.5.1 or 4.0

CD-ROMs TMS470R1x Code Generation Tools

Installing the Code Generation Tools

2-3Setting Up the Code Generation Tools With Windows 95 and Windows NT

2.2 Installing the Code Generation Tools

This section helps you install the code generation tools on your hard-disk sys-
tem. The code generation tools package is shipped on CD-ROM. To install the
tools on a PC running Windows 95 or Windows NT, follow these steps:

1) Insert the TMS470R1x Code Generation Tools CD-ROM into your CD-
ROM drive.

2) Start Windows.

3) If you are running Windows 95, select Run from the Start menu.
If you are running Windows NT, select Run from the File menu.

4) In the dialog box, enter the following command (where d: is the name of
your CD-ROM drive):

d:\setup.exe

5) Click on OK.

6) Follow the on-screen instructions.

If you choose not to have the environment variables set up automatically, you
can set them up yourself in one of the following ways:

� If you are running Windows 95, you can set up the environment variables
in your autoexec.bat file.

� If you are running Windows NT, you can set up the environment variables
in the System applet of the Control Panel.

See Section 2.3, Setting Up the Code Generation Environment, on page 2-4,
for more information.

Setting Up the Code Generation Environment

 2-4

2.3 Setting Up the Code Generation Environment

Before or after you install the code generation tools, you can define environ-
ment variables that set certain software tool parameters you normally use. An
environment variable is a special system symbol that you define and assign
to a string. A program uses this symbol to find or obtain certain types of in-
formation.

When you use environment variables, default values are set, making each
individual invocation of the tools simpler because these parameters are auto-
matically specified. When you invoke a tool, you can use command-line
options to override many of the defaults that are set with environment vari-
ables.

The code generation tools use the following environment variables:

� A_DIR
� C_DIR
� C_OPTION
� TMP

By default, the installation program modifies your autoexec.bat file and sets
up these environment variables:

set PATH=c:\ tool_dir ;%PATH%
set A_DIR=c:\ tool_dir
set C_DIR=c:\ tool_dir

These variables are set up in the registry under:

HKEY_CURRENT_USER\Environment

If you choose not to have the environment variables set up automatically, you
can set them up yourself in one of the following ways:

� If you are running Windows 95, you can modify your autoexec.bat file to
include the set commands above.

� If you are running Windows NT, you can set up the environment variables
in the System applet of the Control Panel. Enter the same commands that
you would enter on the command line in the System applet.

In addition to setting up environment variables, you must modify your path
statement. The following subsections describe how to modify your path state-
ment and how to define the environment variables that the code generation
tools use.

Setting Up the Code Generation Environment

2-5Setting Up the Code Generation Tools With Windows 95 and Windows NT

Identifying the directory that contains the executable files (PATH statement)

You must include the tool_dir directory in your PATH statement so that you can
specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� You can change the path information in one of the following ways:

� If you are running Windows 95, modify your autoexec.bat file to
change the path information by adding the following to the end of the
PATH statement:

;c:\ tool_dir

� If you are running Windows NT, modify the System applet of the Con-
trol Panel to change the path information by adding the following to the
end of the PATH statement:

;c:\ tool_dir

� If you set the PATH statement from the command line, enter the following:

set PATH=c:\ tool_dir ;%PATH%

The addition of ;%PATH% ensures that this PATH statement does not
undo the PATH statements in any other batch files (including the
autoexec.bat file).

Identifying alternate directories for the assembler to search (A_DIR)

The assembler uses the A_DIR environment variable to name alternative
directories for the assembler to search. To set the A_DIR environment vari-
able, use this syntax:

set A_DIR= pathname1[;pathname2 . . .]

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or with a blank. Once
you set A_DIR, you can use the .copy, .include, or .mlib directive in assembly
source without specifying path information.

If the assembler does not find the file in the directory that contains the current
source file or in directories named by the –i option (which names alternate
directories), it searches the paths named by the A_DIR environment variable.
For more information on the –i option, see the TMS470R1x Assembly
Language Tools User’s Guide or the TMS470R1x Optimizing C Compiler
User’s Guide.

Setting Up the Code Generation Environment

 2-6

Identifying alternate directories for the compiler to search (C_DIR)

The compiler uses the C_DIR environment variable to name alternate direc-
tories that contain #include files and function libraries. To set the C_DIR envi-
ronment variable, use this syntax:

set C_DIR=pathname1[;pathname2 . . .]

The pathnames are directories that contain #include files or libraries (such as
stdio.h). You can separate the pathnames with a semicolon or with a blank. In
C source, you can use the #include directive without specifying path informa-
tion. Instead, you can specify the path information with C_DIR.

Setting default shell options (C_OPTION)

You may find it useful to set the compiler, assembler, and linker default shell
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with C_OPTION
every time you run the shell.

Setting up default options with the C_OPTION environment variable is useful
when you want to run the shell consecutive times with the same set of options
and/or input files. After the shell reads the command line and the input file-
names, it reads the C_OPTION environment variable and processes it.

To set the C_OPTION environment variable, use this syntax:

set C_OPTION=option1 [option2 . . .]

Environment variable options are specified in the same way and have the
same meaning as they do on the command line. For example, if you want to
always run quietly (the –q option), enable C source interlisting (the –s option),
and link (the –z option), set up the C_OPTION environment variable as follows:

set C_OPTION=–qs –z

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These additional examples assume C_OPTION is set as shown above:

cl470 *.c ; compiles and links
cl470 –c *.c ; only compiles
cl470 *.c –z lnk.cmd ; compiles and links using a

; command file
cl470 –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

Setting Up the Code Generation Environment

2-7Setting Up the Code Generation Tools With Windows 95 and Windows NT

For more information about shell options, see the TMS470R1x Optimizing C
Compiler User’s Guide. For more information about linker options, see the
TMS470R1x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The compiler shell program creates intermediate files as it processes your pro-
gram. By default, the shell puts intermediate files in the current directory. How-
ever, you can name a specific directory for temporary files by using the TMP
environment variable.

Using the TMP environment variable allows use of a RAM disk or other file
systems. It also allows you to compile source files from a remote directory with-
out writing any files into the directory where the source resides. This is useful
for protected directories.

To set the TMP environment variable, use this syntax:

set TMP=pathname

For example, to set up a directory named temp for intermediate files on your
hard drive, enter:

set TMP=c:\temp

Resetting defined environment variables

The environment variables that you define remain set until you reboot the sys-
tem. If you want to clear an environment variable, use this command:

set variable_name=

For example, to reset the A_DIR environment variable, enter:

set A_DIR=

Verifying that the environment variables are set

To verify that the environment variables are set, open a DOS box and enter:

set

This command lists the path and environment variables and their current
values.

Where to Go From Here

 2-8

2.4 Where to Go From Here

Your code generation tools are now installed on your Windows 95 or Windows
NT system. Now you should do each of the following tasks:

� Turn to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the
assembler, linker, and compiler.

� Read Chapter 6, Release Notes. This chapter explains the new features
included in release 1.20 of the code generation tools.

3-1

Setting Up the Code
Generation Tools With SunOS

This chapter helps you install release 1.20 of the TMS470R1x code generation
tools and set up your code-development environment on a SPARCstation run-
ning SunOS version 4.1.x (or higher) or Solaris version 2.5.x (or higher).
These tools include an optimizing C compiler and a full set of assembly lan-
guage tools for developing and manipulating assembly language and object
(executable) code.

The C compiler tools are composed of the following components:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utitlity

The assembly language tools are composed of the following components:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Topic Page

3.1 System Requirements 3-2.

3.2 Installing the Code Generation Tools 3-3.

3.3 Setting Up the Code Generation Environment 3-5.

3.4 Where to Go From Here 3-10.

Chapter 3

System Requirements

 3-2

3.1 System Requirements

To install and use the code generation tools, you need the items in the following
hardware and software checklists.

Hardware checklist

Host SPARCstation compatible system with a SPARCstation 2 class or
higher performance

Display Monochrome or color monitor (color recommended)

Disk space 4M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

Software checklist

Operating system SunOS version 4.1.x (or higher) or SunOS version 5.x (also known
as Solaris 2.x) using an X Window System based window manag-
er, such as OpenWindows version 3.0 (or higher).

Root privileges If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root privi-
leges to mount and unmount the CD-ROM. If you do not have root
privileges, get help from your system administrator.

CD-ROMs TMS470R1x Code Generation Tools

Installing the Code Generation Tools

3-3Setting Up the Code Generation Tools With SunOS

3.2 Installing the Code Generation Tools

This section helps you install the code generation tools on your hard-disk sys-
tem. The software package is shipped on a CD-ROM. To install the tools on
a SPARCstation running SunOS or Solaris, you must mount the CD-ROM,
copy the files to your system, and unmount the CD-ROM.

Note:

If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root privileges to
mount or unmount the CD-ROM. If you do not have root privileges, get help
from your system administrator.

Mounting the CD-ROM

The steps to mount the CD-ROM vary according to your operating-system
version:

� If you have SunOS 4.1.x, as root, load the CD-ROM into the drive and
enter the following from a command shell:

mount –rt hsfs /dev/sr0 /cdrom
exit
cd /cdrom/sunos

� If you have SunOS 5.0 or 5.1, as root, load the CD-ROM into the drive and
enter the following from a command shell:

mount –rF hsfs /dev/sr0 /cdrom
exit
cd /cdrom/cdrom0/sunos

� If you have SunOS 5.2 or higher:

� If your CD-ROM drive is already attached, load the CD-ROM into the
drive and enter the following from a command shell:

cd /cdrom/cdrom0/sunos

� If you do not have a CD-ROM drive attached, you must shut down your
system to the PROM level, attach the CD-ROM drive, and enter the
following:

boot –r

After you log into your system, load the CD-ROM into the drive and
enter the following from a command shell:

cd /cdrom/cdrom0/sunos

Installing the Code Generation Tools

 3-4

Copying the files

Be sure you are not logged on as root. After you mount the CD-ROM, you must
create the directory that will contain the tools software and copy the software
to that directory.

1) Create a tools directory on your hard disk. To create this directory, enter:

mkdir / your_pathname / tool_dir

2) Copy the files from the CD-ROM to your hard-disk system:

cp –r * / your_pathname / tool_dir

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files.

� If you have SunOS 4.1.x, 5.0, or 5.1, as root, enter the following from a
command shell:

cd
umount /cdrom
eject /dev/sr0
exit

� If you have SunOS 5.2 or higher, enter the following from a command
shell:

cd
eject

Setting Up the Code Generation Environment

3-5Setting Up the Code Generation Tools With SunOS

3.3 Setting Up the Code Generation Environment

Before or after you install the code generation tools, you can define environ-
ment variables that set certain software tool parameters you normally use. An
environment variable is a special system symbol that you define and assign
to a string. A program uses this symbol to find or obtain certain types of
information.

When you use environment variables, default values are set, making each
individual invocation of the tools simpler because these parameters are auto-
matically specified. When you invoke a tool, you can use command-line op-
tions to override many of the defaults that are set with environment variables.

The code generation tools use the following environment variables:

� A_DIR
� C_DIR
� C_OPTION
� TMP

You can set up the environment variables on the command line or in your .login
or .cshrc file (for C shells) or .profile file (for Bourne or Korn shells). To set up
these environment variables in your system initialization file, enter the same
commands that you would enter on the command line in the file.

In addition to setting up environment variables, you must modify your path
statement. The following subsections describe how to modify your path state-
ment and how to define the environment variables that the code generation
tools use.

Setting Up the Code Generation Environment

 3-6

Identifying the directory that contains the executable files (path statement)

You must include the tool_dir directory in your path statement so that you can
specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� If you modify your .cshrc file (for C shells) or .profile file (for Bourne or Korn
shells) to change the path information, add the following to the end of the
path statement:

/your_pathname /tool_dir

� If you set the path statement from the command line, use this format:

� For C shells:

set path=(/ your_pathname /tool_dir $path)

� For Bourne or Korn shells:

PATH=/your_pathname /tool_dir $PATH

The addition of $path or $PATH ensures that this path statement does not
undo the path statements in the .cshrc or .profile file.

Identifying alternate directories for the assembler to search (A_DIR)

The assembler uses the A_DIR environment variable to name alternative
directories for the assembler to search. To set the A_DIR environment vari-
able, use this syntax:

� For C shells:

setenv A_DIR ” pathname1[;pathname2 . . .]”

� For Bourne or Korn shells:

A_DIR=” pathname1[;pathname2 . . .]”
export A_DIR

(Be sure to enclose the directory names within quotes.)

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or a blank. Once you
set A_DIR, you can use the .copy, .include, or .mlib directive in assembly
source without specifying path information.

If the assembler does not find the file in the directory that contains the current
source file or in directories named by the –i option (which names alternate di-
rectories), it searches the paths named by the A_DIR environment variable.

Setting Up the Code Generation Environment

3-7Setting Up the Code Generation Tools With SunOS

For more information on the –i option, see the TMS470R1x Assembly Lan-
guage Tools User’s Guide or the TMS470R1x Optimizing C Compiler User’s
Guide.

Identifying alternate directories for the compiler to search (C_DIR)

The compiler uses the C_DIR environment variable to name alternate direc-
tories that contain #include files and function libraries. To set the C_DIR envi-
ronment variable, use this syntax:

� For C shells:

setenv C_DIR “ pathname1[;pathname2 . . .]”

� For Bourne or Korn shells:

C_DIR=“ pathname1[;pathname2 . . .]”
export C_DIR

(Be sure to enclose the directory names within quotes.)

The pathnames are directories that contain #include files or libraries (such as
stdio.h). You can separate pathnames with a semicolon or with blanks. In C
source, you can use the #include directive without specifying path information.
Instead, you can specify the path information with C_DIR.

Setting default shell options (C_OPTION)

You may find it useful to set the compiler, assembler, and linker default shell
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with C_OPTION
every time you run the shell.

Setting up default options with the C_OPTION environment variable is useful
when you want to run the shell consecutive times with the same set of options
and/or input files. After the shell reads the command line and the input file-
names, it reads the C_OPTION environment variable and processes it.

To set the C_OPTION environment variable, use this syntax:

� For C shells:

setenv C_OPTION ” option1 [option2 . . .]”

� For Bourne or Korn shells:

C_OPTION=” option1 [option2 . . .]”
export C_OPTION

Setting Up the Code Generation Environment

 3-8

(Be sure to enclose the options within quotes.)

Environment variable options are specified in the same way and have the
same meaning as they do on the command line. For example, if you want to
always run quietly (the –q option), enable C source interlisting (the –s option),
and link (the –z option), set up the C_OPTION environment variable as follows:

� For C shells:

setenv C_OPTION ”–qs –z”

� For Bourne or Korn shells:

C_OPTION=”–qs –z”
export C_OPTION

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These additional examples assume C_OPTION is set as shown above:

cl470 *.c ; compiles and links
cl470 –c *.c ; only compiles
cl470 *.c –z lnk.cmd ; compiles and links using a

; command file
cl470 –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

For more information about shell options, see the TMS470R1x Optimizing C
Compiler User’s Guide. For more information about linker options, see the
TMS470R1x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The compiler shell program creates intermediate files as it processes your pro-
gram. By default, the shell puts intermediate files in the current directory. How-
ever, you can name a specific directory for temporary files by using the TMP
environment variable.

Using the TMP environment variable allows use of a RAM disk or other file
systems. It also allows you to compile source files from a remote directory with-
out writing any files into the directory where the source resides. This is useful
for protected directories.

Setting Up the Code Generation Environment

3-9Setting Up the Code Generation Tools With SunOS

To set the TMP environment variable, use this syntax:

� For C shells:

setenv TMP ” pathname”

� For Bourne or Korn shells:

TMP=” pathname”
export TMP

(Be sure to enclose the directory name within quotes.)

For example, to set up a directory named temp for intermediate files, enter:

� For C shells:

setenv TMP ”/temp”

� For Bourne or Korn shells:

TMP=”/temp”
export TMP

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. Use one of the following com-
mands to reread your system initialization file:

� For C shells:

source ~/.cshrc

� For Bourne or Korn shells:

source ~/.profile

Resetting defined environment variables

The environment variables that you define remain set until you reboot the sys-
tem. If you want to clear an environment variable, use this command:

� For C shells:

unsetenv variable_name

� For Bourne or Korn shells:

unset variable_name

For example, to reset the A_DIR environment variable, enter one of these
commands:

� For C shells:

unsetenv A_DIR

� For Bourne or Korn shells:

unset A_DIR

Where to Go From Here

 3-10

Verifying that the environment variables are set

To verify that the environment variables are set, enter:

set

This command lists the path and environment variables and their current
values.

3.4 Where to Go From Here

Your code generation tools are now installed. Now you should do each of the
following tasks:

� Go to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the
assembler, linker, and compiler.

� Read Chapter 6, Release Notes. This chapter explains the new features
included in release 1.20 of the code generation tools.

Setting Up the Code Generation Environment / Where to Go From Here

4-1

Setting Up the Code Generation
Tools on an HP Workstation

This chapter helps you install release 1.20 of the TMS470R1x code generation
tools and set up your code-development environment on an HP 9000 Series
700 PA-RISC computer with HP-UX 9.0x. These tools include an optimiz-
ing C compiler and a full set of assembly language tools for developing and
manipulating assembly language and object (executable) code.

The C compiler tools are composed of the following components:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utility

The assembly language tools are composed of the following components:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Topic Page

4.1 System Requirements 4-2.

4.2 Installing the Code Generation Tools 4-3.

4.3 Setting Up the Code Generation Environment 4-5.

4.4 Where to Go From Here 4-10.

Chapter 4

System Requirements

 4-2

4.1 System Requirements

To install and use the code generation tools, you need the items in the following
hardware and software checklists.

Hardware checklist

Host An HP 9000 Series 700 PA-RISC computer

Display Monochrome or color monitor (color recommended)

Disk space 4M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

Software checklist

Operating system HP-UX 9.0x operating system

Root privileges Root privileges to mount and unmount the CD-ROM

CD-ROMs TMS470R1x Code Generation Tools

Installing the Code Generation Tools

4-3Setting Up the Code Generation Tools on an HP Workstation

4.2 Installing the Code Generation Tools

This section helps you install the code generation tools on your hard-disk sys-
tem. The software package is shipped on a CD-ROM. To install the tools on
an HP workstation, you must mount the CD-ROM, copy the files to your sys-
tem, and unmount the CD-ROM.

Note:

If you are running HP-UX 9.0x, you must have root privileges to mount or
unmount the CD-ROM. If you do not have root privileges, get help from your
system administrator.

Mounting the CD-ROM

As root, you can mount the CD-ROM using the UNIX mount command or the
SAM (system administration manager):

� To use the UNIX mount command, enter the following from a command
shell:

mount –rt cdfs /dev/dsk/ your_cdrom_device /cdrom
exit

Make the hp directory on the CD-ROM the current directory. For example,
if the CD-ROM is mounted at /cdrom, enter the following:

cd /cdrom/hp

� To use SAM to mount the CD-ROM, see System Administration Tasks, the
HP documentation about SAM, for instructions.

Copying the files

After you mount the CD-ROM, log out as root and log back on as yourself. You
must create the directory that will contain the tools software and copy the soft-
ware to that directory.

1) Create a tools directory on your hard disk. To create this directory, enter:

mkdir / your_pathname / tool_dir

2) Copy the files from the CD-ROM to your hard-disk system:

cp –r * / your_pathname / tooldir

Installing the Code Generation Tools

 4-4

Setting up the software tools using a C shell

If you are using a C shell, enter the following:

setenv C_DIR ” tool_dir ”
setenv A_DIR ” tool_dir ”
set path=(tool_dir $path)

You can move the setenv and set path commands into your .login or .cshrc
file to avoid entering these commands each time you invoke a new shell.

Setting up the software tools using a Korn shell

If you are using a Bourne or Korn shell, enter the following:

C_DIR=tool_dir
A_DIR=tool_dir
PATH=tool_dir :$PATH

You can move the environment variable instructions into your .kshrc file to
avoid entering these commands each time you invoke a new shell.

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files. As root, enter the fol-
lowing from a command shell:

cd
umount /cdrom
exit

Setting Up the Code Generation Environment

4-5Setting Up the Code Generation Tools on an HP Workstation

4.3 Setting Up the Code Generation Environment

Before or after you install the code generation tools, you can define environ-
ment variables that set certain software tool parameters you normally use. An
environment variable is a special system symbol that you define and assign
to a string. A program uses this symbol to find or obtain certain types of
information.

When you use environment variables, default values are set, making each
individual invocation of the tools simpler because these parameters are auto-
matically specified. When you invoke a tool, you can use command-line op-
tions to override many of the defaults that are set with environment variables.

The code generation tools use the following environment variables:

� A_DIR
� C_DIR
� C_OPTION
� TMP

You can set up the environment variables o the command line or in your .login
or .cshrc file (for C shells) or .profile file (for Bourne or Korn shells). To set up
these environment variables in your system initialization file, enter the same
commands that you would enter on the command line in the file.

In addition to setting up environment variables, you must modify your path
statement. The following subsections describe how to modify your path state-
ment and how to define the environment variables that the code generation
tools use.

Setting Up the Code Generation Environment

 4-6

Identifying the directory that contains the executable files (path statement)

You must include the tool_dir directory in your path statement so that you can
specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� If you modify your .cshrc file (for C shells) or .profile file (for Bourne or Korn
shells) to change the path information, add the following to the end of the
path statement:

/your_pathname /tool_dir

� If you set the path statement from the command line, use this format:

� For C shells:

set path=(/ your_pathname /tool_dir $path)

� For Bourne or Korn shells:

PATH=/your_pathname /tool_dir $PATH

The addition of $path or $PATH ensures that this path statement does not
undo the path statements in the .cshrc or .profile file.

Identifying alternate directories for the assembler (A_DIR)

The assembler uses the A_DIR environment variable to name alternative
directories for the assembler to search. To set the A_DIR environment vari-
able, use this syntax:

� For C shells:

setenv A_DIR ” pathname1[;pathname2 …]”

� For Bourne or Korn shells:

A_DIR=” pathname1[;pathname2 …]”
export A_DIR

(Be sure to enclose the directory names within quotes.)

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or a blank. Once you
set A_DIR, you can use the .copy, .include, or .mlib directive in assembly
source without specifying path information.

If the assembler does not find the file in the directory that contains the current
source file or in directories named by the –i option (which names alternate
directories), it searches the paths named by the A_DIR environment variable.
For more information on the –i option, see the TMS470R1x Assembly
Language Tools User’s Guide or the TMS470R1x Optimizing C Compiler
User’s Guide.

Setting Up the Code Generation Environment

4-7Setting Up the Code Generation Tools on an HP Workstation

Identifying alternate directories for the compiler (C_DIR)

The compiler uses the C_DIR environment variable to name alternate direc-
tories that contain #include files and libraries. To set the C_DIR environment
variable, use this syntax:

� For C shells:

setenv C_DIR “ pathname1[;pathname2 . . .]”

� For Bourne or Korn shells:

C_DIR=“ pathname1[;pathname2 . . .]”
export C_DIR

(Be sure to enclose the directory names within quotes.)

The pathnames are directories that contain #include files or libraries (such as
stdio.h). You can separate pathnames with a semicolon or with blanks. In C
source, you can use the #include directive without specifying path information.
Instead, you can specify the path information with C_DIR.

Setting default shell options (C_OPTION)

You may find it useful to set the compiler, assembler, and linker shell default
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with C_OPTION
every time you run the shell.

Setting up default options with the C_OPTION environment variable is useful
when you want to run the shell consecutive times with the same set of options
and/or input files. After the shell reads the command line and the input file-
names, it reads the C_OPTION environment variable and processes it.

The set the C_OPTION environment variable, use this syntax:

� For C shells:

setenv C_OPTION ” option1 [option2 . . .]”

� For Bourne or Korn shells:

C_OPTION=” option1 [option2 . . .]”
export C_OPTION

(Be sure to enclose the options within quotes.)

Setting Up the Code Generation Environment

 4-8

Environment variable options are specified in the same way and have the
same meaning as they do on the command line. For example, if you want to
always run quietly (the –q option), enable C source interlisting (the –s option),
and link (the –z option), set up the C_OPTION environment variable as follows:

� For C shells:

setenv C_OPTION ”–qs –z”

� For Bourne or Korn shells:

C_OPTION=”–qs –z”
export C_OPTION

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These additional examples assume C_OPTION is set as shown above:

cl470 *.c ; compiles and links
cl470 –c *.c ; only compiles
cl470 *.c –z lnk.cmd ; compiles and links using a

; command file
cl470 –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

For more information about shell options, see the TMS470R1x Optimizing C
Compiler User’s Guide. For more information on linker options, see the
TMS470R1x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The compiler shell program creates intermediate files as it processes your
program. By default, the shell puts intermediate files in the current directory.
However, you can name a specific directory for temporary files by using the
TMP environment variable.

Using the TMP environment variable allows use of a RAM disk or other file
systems. It also allows you to compile source files from a remote directory with-
out writing any files into the directory where the source resides. This is useful
for protected directories.

Setting Up the Code Generation Environment

4-9Setting Up the Code Generation Tools on an HP Workstation

To set the TMP environment variable, use this syntax:

� For C shells:

setenv TMP ” pathname”

� For Bourne or Korn shells:

TMP=” pathname”
export TMP

(Be sure to enclose the directory name within quotes.)

For example, to set up a directory named temp for intermediate files, enter:

� For C shells:

setenv TMP ”/temp”

� For Bourne or Korn shells:

TMP=”/temp”
export TMP

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. Use one of the following com-
mands to reread your system initialization file:

� For C shells:

source ~/.cshrc

� For Bourne or Korn shells:

source ~/.profile

Resetting defined environment variables

The environment variables that you define remain set until you reboot the sys-
tem. If you want to clear an environment variable, use this command:

� For C shells:

unsetenv variable name

� For Bourne or Korn shells:

unset variable name

For example, to reset the A_DIR environment variable, enter one of these
commands:

� For C shells:

unsetenv A_DIR

� For Bourne or Korn shells:

unset A_DIR

Where to Go From Here

 4-10

Verifying that the environment variables are set

To verify that the environment variables are set, enter:

set

This command lists the path and environment variables and their current
values.

4.4 Where to Go From Here

Your code generation tools are now installed. Now you should do each of the
following tasks:

� Go to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the
assembler, linker, and compiler.

� Read Chapter 6, Release Notes. This chapter explains the new features
included in release 1.20 of the code generation tools.

Setting Up the Code Generation Environment / Where to Go From Here

5-1

Getting Started With the
Code Generation Tools

This chapter helps you start using the assembler, linker, and compiler by
providing a quick walkthrough of these tools. For more information about
invoking and using these tools, see the TMS470R1x Assembly Language
Tools User’s Guide and the TMS470R1x Optimizing C Compiler User’s Guide.

Topic Page

5.1 Getting Started With the Assembler and Linker 5-2.

5.2 Getting Started With the C Compiler 5-7.

Chapter 5

Getting Started With the Assembler and Linker

 5-2

5.1 Getting Started With the Assembler and Linker

This section provides a quick walkthrough of the assembler and linker so that
you can get started without reading the entire TMS470R1x Assembly
Language Tools User’s Guide. Example 5–1 through Example 5–6 show the
most common methods for invoking the assembler and linker.

1) Create two short source files to use for the walkthrough; call them
file1.asm and file2.asm. (See Example 5–1 and Example 5–2.)

Example 5–1. file1.asm

 .global inclw

start: MOV r6, #0
 MOV r7, #0

loop: BL inclw
 BCC loop

 .end

Example 5–2. file2.asm

 .global inclw

inclw: ADDS r7, r7, #1
 ADDCSS r6, r6, #1
 MOV pc, lr

 .end

2) Enter the following command to assemble file1.asm:

asm470 file1

The asm470 command invokes the assembler. The input source file is
file1.asm. (If the input file extension is .asm, you do not have to specify the
extension; the assembler uses .asm as the default.)

This example creates an object file called file1.obj. The assembler creates
an object file only if there are no errors in assembly. You can specify a
name for the object file, but if you do not, the assembler uses the input file-
name with an extension of .obj.

Getting Started With the Assembler and Linker

5-3Getting Started With the Code Generation Tools

3) Now enter the following command to assemble file2.asm:

asm470 file2.asm –l

This time, the assembler creates an object file called file2.obj. The –l
(lowercase L) option tells the assembler to create a listing file; the listing
file for this example is called file2.lst. It is not necessary to create a listing
file, but it gives you information and assures you that the assembly has
resulted in the desired object code. The listing file for this example is
shown in Example 5–3.

Example 5–3. file2.lst, the Listing File Created by asm470 file2.asm –l

TMS470 COFF Assembler Version 1.20 Sat Feb 8 15:22:13 1997
Copyright (c) 1995–1996 Texas Instruments Incorporated

file2.asm PAGE 1

 1
 2 .global inclw
 3
 4 00000000 E2977001 inclw: ADDS r7, r7, #1
 5 00000004 22966001 ADDCSS r6, r6, #1
 6 00000008 E1A0F00E MOV pc, lr
 7
 8 .end

 No Errors, No Warnings

4) Now enter the following command to link file1.obj and file2.obj:

lnk470 file1 file2 –m lnker2.map –o prog.out

The lnk470 command invokes the linker. The input object files are file1.obj
and file2.obj. (If the input file extension is .obj, you do not have to specify
the extension; the linker uses .obj as the default.) The linker combines
file1.obj and file2.obj to create an executable object module called
prog.out. The –o option supplies the name of the output module.
Example 5–4 shows the map file resulting from this operation. (The map
file is produced only if you use the –m option.)

Getting Started With the Assembler and Linker

 5-4

Example 5–4. Output Map File, lnker2.map

TMS470 COFF Linker Version 1.20

Sat Feb 8 15:24:43 1997

OUTPUT FILE NAME: <prog.out>
ENTRY POINT SYMBOL: 0

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.text 0 00000000 0000001c
 00000000 00000010 file1.obj (.text)
 00000010 0000000c file2.obj (.text)

.const 0 00000000 00000000 UNINITIALIZED

.data 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.data)
 00000000 00000000 file1.obj (.data)

.bss 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.bss)
 00000000 00000000 file1.obj (.bss)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000000 .bss 00000000 edata
00000000 .data 00000000 .bss
00000000 .text 00000000 end
00000000 edata 00000000 .data
00000000 end 00000000 .text
0000001c etext 00000010 inclw
00000010 inclw 0000001c etext

[7 symbols]

Getting Started With the Assembler and Linker

5-5Getting Started With the Code Generation Tools

The two files, file1 and file2, can be linked together with or without a com-
mand file. However, using a command file allows you to configure your
memory using the MEMORY and SECTIONS directives:

� The MEMORY directive lets you specify a model of target memory so
that you can define the types of memory your system contains and the
address ranges they occupy.

� The SECTIONS directive describes how input sections are combined
into output sections and specifies where output sections are placed in
memory.

You can include the linker options and filenames in the linker command
file, or you can enter them on the command line. If you do not include a
linker command file, the linker uses a default allocation algorithm. Refer to
the TMS470R1x Assembly Language Tools User’s Guide for more in-
formation about the linker command file and the default allocation algo-
rithm.

Example 5–5. Sample Linker Command File, linker2.cmd

/* Specify the System Memory Map */

MEMORY
{
 D_MEM : org = 0x00000000 len = 0x00001000 /* Data Memory (RAM) */
 P_MEM : org = 0x00001000 len = 0x00001000 /* Program Memory (ROM) */
}

/* Specify the Sections Allocation Into Memory */

SECTIONS
{
 .data : {} > D_MEM /* Initialized Data */
 .text : {} > P_MEM /* Code */
}

Typing in the following command line using the linker command file shown
in Example 5–5 results in the map file shown in Example 5–6.

lnk470 file1 file2 linker2.cmd –m linker2.map –o prog.out

Getting Started With the Assembler and Linker

 5-6

Example 5–6. Linker Map File (linker2.map) Linked Using a Linker Command File

TMS470 COFF Linker Version 1.20

Sat Feb 8 15:36:45 1997

OUTPUT FILE NAME: <prog.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION

 name origin length used attributes fill
 –––––––– –––––––– ––––––––– –––––––– –––––––––– ––––––––
 D_MEM 00000000 000001000 00000000 RWIX
 P_MEM 00001000 000001000 0000001c RWIX

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.data 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.data)
 00000000 00000000 file1.obj (.data)

.text 0 00001000 0000001c
 00001000 00000010 file1.obj (.text)
 00001010 0000000c file2.obj (.text)

.bss 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.bss)
 00000000 00000000 file1.obj (.bss)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000000 .bss 00000000 edata
00000000 .data 00000000 .bss
00001000 .text 00000000 end
00000000 edata 00000000 .data
00000000 end 00001000 .text
0000101c etext 00001010 inclw
00001010 inclw 0000101c etext

[7 symbols]

Getting Started With the C Compiler

5-7Getting Started With the Code Generation Tools

5.2 Getting Started With the C Compiler

The TMS470R1x C compiler consists of many phases, including parsing, opti-
mization, and code generation. The simplest way to compile is to use the shell
program, which is included with the compiler. This section provides a quick
walkthrough so that you can get started without reading the entire TMS470R1x
Optimizing C Compiler User’s Guide.

1) Create a sample file called function.c that contains the following code:

/**************************************/
/* function.c */
/* (Sample file for walkthrough) */
/**************************************/
int main(int i)
{
 return(i < 0 ? –i : i);
}

2) To invoke the shell program to compile and assemble function.c, enter:

cl470 –o function

By default, the TMS470R1x shell program compiles and assembles 32-bit
instructions. To compile 16-bit instructions, use the –mt option:

cl470 –o –mt funtion

The shell program prints the following information as it compiles the pro-
gram:

[function]
TMS470 ANSI C Compiler Version 1.20
Copyright (c) 1995–1997 Texas Instruments Incorporated
 ”function.c” ==> main
TMS470 ANSI C Optimizer Version 1.20
Copyright (c) 1995–1997 Texas Instruments Incorporated
 ”function.c” ==> main
TMS470 ANSI C Codegen Version 1.20
Copyright (c) 1995–1997 Texas Instruments Incorporated
 ”function.c”: ==> main
TMS470 COFF Assembler Version 1.20
Copyright (c) 1995–1997 Texas Instruments Incorporated
 PASS 1
 PASS 2

 No Errors, No Warnings

By default, the shell deletes the assembly language file from the current
directory after the file is assembled. If you want to inspect the assembly
language output, use the –k option to retain the assembly language file:

cl470 –o –k function

Getting Started With the C Compiler

 5-8

3) Also by default, the shell creates a COFF object file as output; however,
if you use the –z option, the output is an executable object module. The
following examples show two ways of creating an executable object
module:

a) The example in step 2 creates an object file called function.obj. To
create an executable object module, run the linker separately by
invoking lnk470 as in the following example:

lnk470 –c function.obj lnk32.cmd –o function.out –l rts32.lib

The –c linker option tells the linker to observe the C language linking
conventions. The linker command file, lnk32.cmd, is shipped with the
code generation tools. The –o option names the output module,
function.out; if you don’t use the –o option, the linker names the output
module a.out. The –l option names the runtime-support library. You
must have a runtime-support library before you can create an execut-
able object module; the prebuilt runtime-support libraries rts32.lib and
rts16.lib are included with the code generation tools.

b) In this example, use the –z shell option, which tells the shell program
to run the linker. The –z option is followed by linker options.

cl470 –o function.c –z lnk32.cmd –o function.out –l rts32.lib

For more information on linker commands, see the Linker Description
chapter of the TMS470R1x Assembly Language Tools User’s Guide.

4) The TMS470R1x compiler package also includes an interlist utility. This
program interlists the C source statements as comments in the assembly
language compiler output, allowing you to inspect the assembly language
generated for each line of C. To run the interlist utility, invoke the shell pro-
gram with the –s option. For example:

cl470 –s function –z lnk32.cmd –o function.out

The output of the interlist utility is written to the assembly language file
created by the compiler. (The shell –s option implies –k; that is, when you
use the interlist utility, the assembly file is automatically retained.)

6-1Release Notes

Release Notes

This chapter describes the media contents of the TMS470R1x tools kit. The
tools are supported on SPARCstations, HP workstations, and PCs with DOS,
Windows 3.1x, Windows 95, or Windows NT.

This chapter also contains documentation of tools and features that are new
or have been changed since the last release.

Topic Page

6.1 Media Contents 6-2.

6.2 Release Enhancements 6-4.

Chapter 6

Media Contents

 6-2

6.1 Media Contents

The CD-ROM included in the TMS470R1x tools kit for SPARCstations and HP
workstations contains the files listed in Table 6–1. The CD-ROM included in
the TMS470R1x tools kit for PCs contains the files listed in Table 6–2.

Table 6–1. Media Contents for SPARCstations and HP Workstations

File Description

README.1st Online release bulletin

abs470 Absolute lister

ac470 ANSI C parser

ar470 Archiver

asm470 Assembler

cg470 Code generator

cl470 Compiler shell program

clist C source interlist utility

hex470 Hex conversion utility

intvecs.asm Sample interrupt vector setup file

lnk470 COFF linker

lnk16.cmd Sample 16-bit linker command file

lnk32.cmd Sample 32-bit linker command file

mk470 Library-build utility

opt470 C optimizer

rts16.lib 16-bit runtime-support library

rts32.lib 32-bit rutime-support library

rts.src C runtime-support source library

xref470 Cross-reference utility

*.h #include header files for RTS:

assert.h limits.h stdarg.h stdlib.h

ctype.h math.h stddef.h string.h

errno.h setjmp.h stdio.h time.h

float.h

Media Contents

6-3Release Notes

Table 6–2. Media Contents for PCs

File Description

readme.1st Online release bulletin

abs470.exe Absolute lister

ac470.exe ANSI C parser

ar470.exe Archiver

asm470.exe Assembler

cg470.exe Code generator

cl470.exe Compiler shell program

clist.exe C source interlist utility

hex470.exe Hex conversion utility

intvecs.asm Sample interrupt vector setup file

lnk470.exe COFF linker

lnk16.cmd Sample 16-bit linker command file

lnk32.cmd Sample 32-bit linker command file

mk470.exe Library-build utility

opt470.exe C optimizer

pminfo32.exe† Utility to measure protected/real-mode switching

rts16.lib 16-bit runtime-support library

rts32.lib 32-bit runtime-support library

rts.src C runtime-support source library

xref470.exe Cross-reference utility

*.h #include header files for RTS:

assert.h limits.h stdarg.h stdlib.h

ctype.h math.h stddef.h string.h

errno.h setjmp.h stdio.h time.h

float.h

† This file is included only in the tool kit for PCs running DOS.

Release Enhancements

 6-4

6.2 Release Enhancements

Release 1.20 of the TMS470R1x code generation tools contains general
enhancements as well as enhancements specific to the assembler and
compiler. The following sections list these enhancements.

General enhancements

The TMS470R1x general enhancements include the following items:

� All known bugs have been removed.

� COFF version 2 is supported. Section names are no longer limited to eight
characters, and filenames are no longer limited to 14 characters. Section
name length is unrestricted, and filename length is restricted by the con-
ventions of your operating system.

Note: Using Version 1 COFF

If you depend on a third-party COFF-dependent tool that does not support
version 2 COFF, then use the –v1 linker option. The –v1 option instructs the
linker to generate version 1 COFF. Ensure that your object modules do not
have section names that are longer than eight characters or filenames that
are longer than 14 characters. The –v1 option is a temporary option for this
release and it will be removed in a future release.

Assembler enhancements

The TMS470R1x assembler enhancements are as follows:

� A feature of COFF version 2 is the use of subsections. You can create
subsections of any section to give you tighter control of the memory map.
Subsections are created using the .sect and .usect directives. For informa-
tion on creating subsections, see the Introduction to Common Object File
Format chapter of the TMS470R1x Assembly Language Tools User’s
Guide; for memory map examples using subsections, see the Linker
Description chapter.

� The assembler supports conditionally linked sections. You select sections
for conditional linking with the .clink assembler directive.

The .clink directive marks the current section as a conditionally linked sec-
tion. This section will be linked into the final output of the linker only if it is
referenced by a linked section through a symbol reference. By default, all
sections are linked.

Release Enhancements

6-5Release Notes

The section in which the entry point of a C program is defined cannot be
marked as a conditionally linked section. The compiler marks all function
veneers as conditionally linked.

You must link with the –a linker option, which creates an absolute, execut-
able output module, to enable conditional linking. The –j linker option
disables conditional linking.

For information on the .clink directive, see the Assembler Directives
chapter of the TMS470R1x Assembly Language Tools User’s Guide; for
information on the –j linker option, see the Linker Description chapter.

C compiler enhancements

The TMS470R1x optimizing C compiler enhancements are as follows. For
more information, see the named chapter of the TMS470R1x Optimizing C
Compiler User’s Guide.

� You can specify command line options in a file. When you specify that file
on the command line with the –@ shell option, the compiler reads the file
and interprets it as if it contained part of the command line. For more
information, see the Compiler Description chapter.

� The options that invoke the interlist utility with the shell have changed. The
–s option interlists optimizer comments (if the optimizer is invoked) and
assembly statements; otherwise it interlists C source and assembly state-
ments. The –ss option interlists C source and assembly statements. A new
option, the –os option, interlists optimizer comments with assembly state-
ments. To interlist C source and assembly statements with optimizer
comments, use the –os and –ss options when invoking the optimizer. For
more information, see the Compiler Description and Optimizing Your
Code chapters.

� Global register variables are now supported. For more information, see
the TMS470R1x C Language chapter.

� Bit-field manipulation improvements are incorporated. For more informa-
tion, see the Runtime Environment chapter.

� The alignment of structures has changed. In previous releases, all struc-
tures were word aligned. Now, a structure is aligned according to the align-
ment of the structure’s most restrictive element. For more information, see
the Runtime Environment chapter.

� Software interrupts are supported for C code. You define the software
interrupt with the SWI_ALIAS pragma. For more information, see the
TMS470R1x C Language and Runtime Environment chapters.

 6-6

A-1Troubleshooting DOS Systems

Appendix A

Troubleshooting DOS Systems

DOS/4GW is a memory manager that is embedded into the DOS version of
the TMS470R1x code generation tools, so you may occasionally see
DOS/4GW error messages while you are using the tools. The executable files
for DOS/4GW are not shipped as such, nor is any documentation provided on
this tool, except for the list of error messages.

Section A.2, Kernel Error Messages, and Section A.3, DOS/4G Error Mes-
sages, are excerpted from the DOS/4GW User’s Manual (reproduced here
with the permission of Tenberry Software, Inc). Included are lists of error mes-
sages with descriptions of the circumstances in which the error is most likely
to occur and suggestions for remedying the problem. (Portions of the excerpt
have been modified to provide you with specific information about using TI
tools.)

Topic Page

A.1 Troubleshooting in the Protected-Mode Environment A-2.

A.2 Kernel Error Messages A-5.

A.3 DOS/4G Error Messages A-9.

Appendix A

Troubleshooting in the Protected-Mode Environment

 A-2

A.1 Troubleshooting in the Protected-Mode Environment

Getting 32-bit programs to execute properly under DOS can be frustrating.
Your computer’s configuration and memory management can cause problems
that may be difficult to find because many programs are interacting.

This list of error messages is reproduced in Section A.2 on page A-5 and
Section A.3 on page A-9 because they may occur when you are executing
any tools, since all of the tools have been assembled along with the DOS/4GW
memory extender. When reading this material, consider these items:

� When an Action directs you to technical support, determine the configura-
tion of your system by using the PMINFO program (on page A-3) before
contacting technical support. See the If You Need Assistance section on
page vi, for information about contacting technical support.

� Some error messages are not included in this appendix because they are
rarely seen when using DOS/4GW with the TMS470R1x tools. Also, many
of the messages that are documented here are seldom seen when using
DOS/4GW with the TMS470R1x tools.

Troubleshooting in the Protected-Mode Environment

A-3Troubleshooting DOS Systems

The PMINFO32.EXE program

Purpose: Run PMINFO.EXE to determine the performance of protected/
real-mode switching and extended memory.

Notes: The time-based measurements made by PMINFO may vary
slightly from run to run.

If this error message appears:

DOS/16M error: [17] system software does not follow VCPI
or DPMI specifications

check for a statement in your CONFIG.SYS containing
NOEMS. If such a statement exists, remove it and reboot your
computer.

If the computer is not equipped with extended memory or if
none is available for DOS/4GW, the extended-memory
measurements do not display.

Other DOS/4GW error messages are in Section A.3, DOS/4G
Error Messages.

Example: The following example shows the output of the PMINFO pro-
gram on an 80486 AT -compatible machine running at
33 MHz.

–================================= PMINFO =======================================–

 Protected Mode and Extended Memory Performance Measurement –– 4.45
 Copyright (c) Tenberry Software, Inc. 1987 – 1996

DOS memory Extended memory CPU performance equivalent to 33.0 MHz 80486
–––––––––– –––––––––––––––
 640 17854 K bytes configured (according to BIOS).
 640 31744 K bytes physically present (SETUP).
 550 17585 K bytes available for DOS/16M programs.
21.6 (0.0) 19.1 (0.5) MB/sec word transfer rate (wait states).
35.4 (0.5) 34.4 (0.5) MB/sec 32–bit transfer rate (wait states).

Overall cpu and memory performance (non–floating point) for typical
DOS programs is 7.78 � 0.62 times an 8MHz IBM PC/AT.

Protected/Real switch rate = 18078/sec (55 �sec/switch, 33 up + 21 down),
DOS/16M switch mode 11 (VCPI).

Troubleshooting in the Protected-Mode Environment

 A-4

PMINFO provides the information shown in Table A–1.

Table A–1. PMINFO Fields

Measurement Purpose

CPU performance Shows the CPU processor equivalent and the speed of the CPU (in MHz)

According to BIOS Shows the configured memory in DOS and extended memory as provided by the
BIOS (interrupts 12h and 15h, function 88h)

SETUP Shows the configuration obtained directly from the CMOS RAM as set by the com-
puter’s setup program. It is displayed only if the numbers are different from those
in the BIOS line. They are different if the BIOS has reserved memory for itself or
if another program has allocated memory and is intercepting the BIOS configura-
tion requests to report less memory available than is physically configured.

DOS/16M programs If displayed, shows the low and high addresses available to DOS/4GW in
extended memory

Transfer rates PMINFO tries to determine the memory architecture. Some architectures perform
well under some circumstances and poorly under others; PMINFO shows the best
and worst cases. The architectures detected are cache, interleaved, page-mode
(or static column), and direct.

Measurements are made by using 32-bit accesses and are reported as the num-
ber of megabytes per second that can be transferred. The number of wait states
is reported in parentheses. The wait states can be a fractional number, like 0.5,
if there is a wait state on writes but not on reads. Memory bandwidth (that is, how
fast the CPU can access memory) accounts for 60% to 70% of the performance
for typical programs (those that are not heavily dependent on floating-point math).

Overall CPU and memory
performance

Shows a performance metric developed by Tenberry Software, Inc. (formerly
known as Rational Systems, Inc.), indicating the expected throughput for the com-
puter relative to a standard 8-MHz IBM PC/AT (disk accesses and floating-point
operations are both excluded).

Protected/real switch rate Shows the speed with which the computer can switch between real and protected
modes, both as the maximum number of round-trip switches that can occur per
second, and as the time for a single round-trip switch, broken into the real-to-
protected (up) and protected-to-real (down) components.

Kernel Error Messages

A-5Troubleshooting DOS Systems

A.2 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded
in the TMS470R1x code generation tools. Kernel error messages can occur
because of severe resource shortages, corruption of the executable file, cor-
ruption of memory, operating system incompatibilities, or internal errors. All of
these messages are quite rare.

DOS/16M protected mode available only with 386 or 486

Description DOS4G did not detect the presence of a 386-, 486-, or Pen-
tium-based processor.

Action If you are running the tools on a 386 (or later) PC, rerun the
program. If you are running the tools on a 286 PC, reinstall
and run the tools on a 386 PC or later.

0: involuntary switch to real mode

Description The computer was in protected mode but switched to real
mode without going through DOS/16M. This error most often
occurs because of an unrecoverable stack segment
exception (stack overflow) but can also occur if the global
descriptor table or interrupt descriptor table is corrupted.

Action Restart your computer. If the problem persists, contact tech-
nical support.

2: not a DOS/16M executable <filename>

Description DOS4G.EXE or a bound DOS/4G application has probably
been corrupted in some way.

Action Recopy the file from the source media.

6: not enough memory to load program

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

8: cannot open file <filename>

Description The DOS/16M loader cannot load DOS/4G, probably
because DOS has run out of file units.

Action Set a larger FILES= entry in the CONFIG.SYS file, reboot,
and try again.

Kernel Error Messages

 A-6

9: cannot allocate tstack

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

10: cannot allocate memory for GDT

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

11: no passup stack selectors – GDT too small

Description This error indicates an internal error in DOS/4G or an
incompatibility with other software.

Action Contact technical support.

12: no control program selectors – GDT too small

Description This error indicates an internal error in DOS/4G or an incom-
patibility with other software.

Action Contact technical support.

13: cannot allocate transfer buffer

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

14: premature EOF

Description DOS4G.EXE or a bound DOS/4G application has probably
been corrupted.

Action Recopy the file from the source media.

15: protected mode available only with 386 or 486

Description DOS/4G requires an 80386 (or later) CPU. It cannot run on an
80286 (or earlier) CPU.

Action Reinstall and run the tools on a 386 (or later) PC.

Kernel Error Messages

A-7Troubleshooting DOS Systems

17: system software does not follow VCPI or DPMI specifications

Description Some memory-resident program has put your 386 or 486
CPU into virtual 8086 mode. This is done to provide special
memory services to DOS programs, such as EMS simulation
(EMS interface without EMS hardware) or high memory. In
this mode, it is not possible to switch into protected mode
unless the resident software follows a standard that
DOS/16M supports (DPMI, VCPI, and XMS are the most
common).

Action Contact the vendor of your memory-management software.

22: cannot free memory

Description Memory was probably corrupted during execution of your
program.

Action Make more memory available and try again.

23: no memory for VCPI page table

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

24: VCPI page table address incorrect

Description There is an internal error.

Action Contact technical support.

25: cannot initialize VCPI

Description An incompatibility with other software was detected.
DOS/16M has detected that VCPI is present, but VCPI
returns an error when DOS/16M tries to initialize the interface.

Action Find the other software that uses VCPI and disable it (stop its
execution).

28: memory error, avail loop

Description Memory was probably corrupted during execution of your
program. Using an invalid or stale alias selector may cause
this error. Incorrect manipulation of segment descriptors may
also cause it.

Action Rerun the program and/or restart your computer.

Kernel Error Messages

 A-8

29: memory error, out of range

Description Memory was probably corrupted during execution of your
program. Writing through an invalid or stale alias selector may
cause this error.

Action Check your source code for references to variables that are
not declared or are no longer in scope.

32: DPMI host error (possibly insufficient memory)
33: DPMI host error (need 64K XMS)
34: DPMI host error (cannot lock stack)

Description Memory under DPMI is probably insufficient.

Action Under Windows, make more physical memory available by
eliminating or reducing any RAM drives or disk caches. You
can also edit DEFAULT.PIF so that at least 64K bytes of XMS
memory is available to non-Windows programs. Under OS/2,
increase the DPMI_MEMORY_LIMIT in the DOS box set-
tings.

35: general protection fault

Description An internal error in DOS/4G was probably detected. Faults
generated by your program should cause error 2001 instead.

Action Contact technical support.

38: cannot use extended memory: HIMEM.SYS not version 2

Description An incompatibility with an old version of HIMEM.SYS was
detected.

Action Upgrade to a more recent copy of DOS or upgrade your DOS
memory extender.

40: not enough available extended memory (XMIN)

Description An incompatibility with your memory manager or its configu-
ration was detected.

Action Try configuring the memory manager to provide more ex-
tended memory or change memory managers.

DOS/4G Error Messages

A-9Troubleshooting DOS Systems

A.3 DOS/4G Error Messages

DOS/4G errors are more common than kernel errors when using DOS/4G or
DOS/4GW with the TMS470R1x code generation tools. They are usually re-
lated to an unknown path name, corrupt files, or memory problems. Memory
problems can include inadequate memory, poor configuration, or corrupted
memory.

1000 ”can’t hook interrupts”
Description A DPMI host has prevented DOS/4G from loading.

Action Contact technical support.

1001 ”error in interrupt chain”
Description A DOS/4G internal error was detected.

Action Contact technical support.

1003 ”can’t lock extender kernel in memory”
Description DOS/4G could not lock the kernel in physical memory, prob-

ably because of a memory shortage.

Action Free some memory for the DOS/4G application.

1005 ”not enough memory for dispatcher data”
Description There is not enough memory for DOS/4G to manage user-

installed interrupt handlers properly.

Action Free some memory for the DOS/4G application.

1007 ”can’t find file <program> to load”
Description DOS/4G could not open the specified program. The file prob-

ably does not exist. It is possible that DOS ran out of file han-
dles or that a network or similar utility has prohibited read ac-
cess to the program.

Action Make sure that the filename was spelled correctly.

1008 ”can’t load executable format for file <filename> [<error
code>]”
Description DOS/4G did not recognize the specified file as a valid execut-

able file. DOS/4G can load linear executables (LE and LX)
and EXPs (BW).

Action Recopy the file from the source media.

DOS/4G Error Messages

 A-10

3301 ”unhandled EMPTYFWD, GATE16, or unknown relocation”
3302 ”unhandled ALIAS16 reference to unaliased object”
3304 ”unhandled or unknown relocation”

Description If your program was built for another platform that supports
the LINEXE format, it may contain a construct that DOS/4G
does not currently support, such as a call gate. One of these
messages may also appear if your program has a problem
mixing 16- and 32-bit code. A linker error is another likely
cause.

Action Check for viruses and reinstall the tools from the source
media. If the problem persists, contact technical support.

 Glossary

B-1 Glossary

Appendix A

Glossary

A

asm470: The name of the command that invokes the assembler for the
TMS470R1x.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro definitions. The assembler substitutes absolute opera-
tion codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

C

C compiler: A software program that translates C source statements into
assembly language source statements.

code generator: A compiler tool that takes the file produced by the parser
or the optimizer and produces an assembly language source file.

COFF: Common object file format. A binary object file format that promotes
modular programming by supporting the concept of sections. All COFF
sections are independently relocatable in memory space; you can place
any section into any allocated block of target memory.

cl470: The name of the command that invokes the compiler shell program
for the TMS470R1x. (The second character in the shell name is a lower-
case L.)

D

DOS/4G: The base version for DOS/4GW. You may occasionally see this
term in an error message. If so, see Appendix A, Troubleshooting DOS
Systems, for the appropriate action.

Appendix B

Glossary

B-2

DOS/4GW: A memory extender that is bound with the DOS version of the
TMS470R1x code generation tools. The executable DOS/4GW file is not
shipped separately but is embedded within the other executables. Error
messages from DOS/4GW are included in Appendix A, Troubleshooting
DOS Systems, to assist you in debugging. If you receive one of these
error messages, contact technical support for assistance, and remember
that the tools are shipped as object files with the memory extender
embedded.

DOS/16M: The executable filename for a tool that is embedded in the
TMS470R1x code generation tools. You may occasionally see this term
in an error message. If so, see Appendix A, Troubleshooting DOS
Systems, for the appropriate action.

E

environment variables: System symbols that you define and assign to a
string. They are usually included in batch files (for example, .cshrc).

I

interlist utility: A compiler utility that inserts as comments your original C
source statements into the assembly language output from the assem-
bler. The C statements are inserted next to the equivalent assembly
instructions.

L

linker: A software program that combines object files to form an object mod-
ule that can be allocated into system memory and executed by the de-
vice.

lnk470: The name of the command that invokes the linker for the
TMS470R1x.

O

optimizer: A software tool that improves the execution speed and reduces
the size of C programs.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

 Glossary

B-3 Glossary

P
pragma: Preprocessor directive that provides directions to the compiler

about how to treat a particular statement.

protected-mode programs: 32-bit extended DOS programs. These
programs require an extended memory manager and run on 80386,
80486, and Pentium based PCs only. Protected-mode programs can use
all available RAM on a computer up to 64M bytes.

R
real-mode: 16-bit native DOS mode. This mode limits the available memory

to 640K bytes. Calls to DOS may involve switching from protected to real
mode. DOS real-mode tools are no longer supported by the TMS470R1x
code generation tools.

S
shell program: A utility that lets you compile, assemble, and optionally link

in one step. The shell runs one or more source modules through the com-
piler (including the parser, optimizer, and code generator), the assem-
bler, and the linker.

structure: A collection of one or more variables grouped together under a
single name.

swap file: The file where virtual memory (secondary memory) is allocated
on the hard disk.

V
veneer: A sequence of instructions that serves as an alternate entry point

into a routine if a state change is required.

virtual memory: The ability of a program to use more memory than a
computer actually has available as RAM. This is accomplished by using
a swap file on disk to augment RAM. When RAM is not sufficient, part of
the program is swapped out to a disk file until it is needed again. The
combination of the swap file and available RAM is the virtual memory.
The TMS470R1x tools use the DOS/4GW memory extender to provide
virtual-memory management (VMM). This memory extender is not pro-
vided as an executable file but is embedded in several of the tools
shipped by TI. Contact technical support for more information.

B-4

Index

Index-1

Index

@ shell option 6-5

A
A_DIR environment variable

for DOS systems 1-5
for HP workstations 4-6
for SPARCstations 3-6 to 3-7
for Windows 3.1x systems 1-5
for Windows 95/NT systems 2-5

asm470
definition B-1
invoking 5-2

assembler, definition B-1
assembler walkthrough 5-2 to 5-4
assistance from TI vi

C
C compiler walkthrough 5-7 to 5-8
C_DIR environment variable

for DOS systems 1-5
for HP workstations 4-7
for SPARCstations 3-7
for Windows 3.1x systems 1-5
for Windows 95/NT systems 2-6

C_OPTION environment variable
for DOS systems 1-6
for HP workstations 4-7 to 4-8
for SPARCstations 3-7 to 3-8
for Windows 3.1x systems 1-6
for Windows 95/NT systems 2-6

CD-ROM
mounting

for HP workstations 4-3
for SPARCstations 3-3

CD-ROM (continued)
requirements

for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

retrieving files from (copying)
for HP workstations 4-4
for SPARCstations 3-4

unmounting
for HP workstations 4-4
for SPARCstations 3-4

cl470
definition B-1
invoking 5-7

.clink directive 6-4

code generation tools
for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

code generator, definition B-1

COFF
creating object file 5-8
definition B-1
version 1 switch 6-4
version 2 support 6-4

compiler, definition B-1

conditionally linked sections 6-4

.cshrc file
for HP workstations 4-5 to 4-10
for SPARCstations 3-5 to 3-10

Index

Index-2

D
directives

MEMORY 5-5
SECTIONS 5-5

directories, software tools
for DOS systems 1-5
for HP workstations 4-3, 4-6
for SPARCstations 3-4, 3-6
for Windows 3.1x systems 1-5
for Windows 95/NT systems 2-5

disk space requirements
for HP workstations 4-2
for SPARCstations 3-2

display requirements
for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

DOS systems
requirements 1-2
setting up the environment 1-4
software installation 1-3

DOS/16M, definition B-2

DOS/4G
definition B-1
error messages A-9 to A-10

DOS/4GW
definition B-2
described A-1

E
enhancements

assembler 6-4
C compiler 6-5 to 6-6
general 6-4

environment setup
for DOS systems 1-4
for HP workstations 4-5 to 4-10
for SPARCstations 3-5 to 3-10
for Window 3.1x systems 1-4
for Windows 95/NT systems 2-4 to 2-7

environment variables
A_DIR 1-5, 2-5, 3-6 to 3-7, 4-6
C_DIR 1-5, 2-6, 3-7, 4-7
C_OPTION 1-6, 2-6, 3-7 to 3-8, 4-7 to 4-8
definition B-2
for DOS systems 1-4
for HP workstations 4-5 to 4-10
for SPARCstations 3-5 to 3-10
for Window 3.1x systems 1-4
for Windows 95/NT systems 2-4 to 2-7
resetting 1-7, 2-7, 3-9, 4-9
TMP 1-7, 2-7, 3-8 to 3-9, 4-8 to 4-9
verifying 1-7, 2-7, 3-10, 4-10

error messages
DOS/4G A-9 to A-10
kernel A-5 to A-8

example
assembler 5-2 to 5-3
compiler 5-7 to 5-8
linker 5-4 to 5-6
PMINFO A-3

F
filename length 6-4

G
global register variables 6-5

H
hardware checklist

for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

host system
for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

HP workstations
requirements 4-2
setting up the environment 4-5 to 4-10
software installation 4-3 to 4-4

Index

Index-3

I
installation, software

for DOS systems 1-3
for HP workstations 4-3 to 4-4
for SPARCstations 3-3
for Windows 3.1x systems 1-3
for Windows 95/NT systems 2-3

interlist utility
definition B-2
described 5-8
enhancements 6-5

invoking
assembler 5-2 to 5-4
compiler 5-7 to 5-8
linker 5-2 to 5-6

K
kernel error messages A-5 to A-8

L
linker, definition B-2

linker walkthrough 5-2 to 5-4

lnk470
definition B-2
invoking 5-3

M
media contents 6-2, 6-3

HP workstations 6-2
PCs with DOS 6-3
PCs with Windows 3.1x 6-3
PCs with Windows 95/NT 6-3
SPARCstations 6-2

MEMORY directive 5-5

memory requirements
for DOS systems 1-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

modifying PATH statement
for DOS systems 1-5
for HP workstations 4-6
for SPARCstations 3-6
for Windows 3.1x systems 1-5
for Windows 95/NT systems 2-5

mounting CD-ROM
for HP workstations 4-3
for SPARCstations 3-3

mouse requirements
for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

MS-DOS PMINFO A-3 to A-10

N
notational conventions iii

O
operating system

for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

optimizer, definition B-2
options, definition B-2

P
PATH statement

for DOS systems 1-5
for HP workstations 4-6
for SPARCstations 3-6
for Windows 3.1x systems 1-5
for Windows 95/NT systems 2-5

performance considerations for DOS or Windows
3.1x systems 1-8

permissions
for HP workstations 4-2
for SPARCstations 3-2

PMINFO A-3 to A-10
example A-3

pragma, definition B-3

Index

Index-4

.profile file
for HP workstations 4-5 to 4-10
for SPARCstations 3-5 to 3-10

protected-mode
environment, troubleshooting A-2
programs, definition B-3

R
real-mode, definition B-3

reinitializing
.cshrc file 3-9, 4-9
.profile file 3-9, 4-9
shell 3-9, 4-9

related documentation iv

requirements. See hardware checklist; software
checklist

resetting environment variables
for DOS systems 1-7
for HP workstations 4-9
for SPARCstations 3-9
for Windows 3.1x systems 1-7
for Windows 95/NT systems 2-7

retrieving files from CD-ROM
for HP workstations 4-4
for SPARCstations 3-4

root privileges
for HP workstations 4-2
for SPARCstations 3-2

runtime-support library 5-8

S
section names 6-4

SECTIONS directive 5-5

setting up the environment
for DOS systems 1-4
for HP workstations 4-5 to 4-10
for SPARCstations 3-5 to 3-10
for Window 3.1x systems 1-4
for Windows 95/NT systems 2-4 to 2-7

setup.exe
for DOS systems 1-3
for Windows 3.1x systems 1-3
for Windows 95/NT systems 2-3

shell, reinitializing 3-9, 4-9
shell program

COFF file 5-8
definition B-3

software checklist
for DOS systems 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1x systems 1-2
for Windows 95/NT systems 2-2

software interrupts 6-5
Solaris. See SPARCstations
SPARCstations

requirements 3-2
setting up the environment 3-5 to 3-10
software installation 3-3 to 3-4

structure
alignment 6-5
definition B-3

subsections 6-4
SunOS. See SPARCstations
swap file, definition B-3
system initialization files

.cshrc
for HP workstations 4-5 to 4-10
for SPARCstations 3-5 to 3-10

.profile
for HP workstations 4-5 to 4-10
for SPARCstations 3-5 to 3-10

system requirements. See hardware checklist; soft-
ware checklist

T
TMP environment variable

for DOS systems 1-7
for HP workstations 4-8 to 4-9
for SPARCstations 3-8 to 3-9
for Windows 3.1x systems 1-7
for Windows 95/NT systems 2-7

U
unmounting CD-ROM

for HP workstations 4-4
for SPARCstations 3-4

V
veneer, definition B-3

Index

Index-5

virtual memory, definition B-3

W
walkthrough

assembler 5-2 to 5-4
C compiler 5-7 to 5-8
linker 5-2 to 5-4

Windows 3.1x systems
requirements 1-2
setting up the environment 1-4
software installation 1-3

Windows 95/NT systems
requirements 2-2
setting up the environment 2-4 to 2-7
software installation 2-3

Index-6

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

