
�����
���� �����
����
�

����!���� ��� ������ 	��������
�������!�������
���!
� �� 	���������

Data Manual

April 2000 Mixed-Signal Products
SLLS336A

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

iii

Contents
Section Title Page

1 Overview 1–1.
1.1 TSB12LV32 Description 1–1.
1.2 TSB12LV32 Features 1–1.
1.3 Functional Block Diagram 1–2.
1.4 Terminal Assignments 1–3.
1.5 Terminal Functions 1–4.

1.5.1 STAT0, STAT1, and STAT2 Programming 1–7.

2 Internal Registers 2–1.
2.1 TSB12LV32 Configuration Registers 2–1.
2.2 Configuration Register Definitions 2–4.

2.2.1 Version Register at 00h 2–4.
2.2.2 Data Mover Control Register at 04h 2–4.
2.2.3 Control Register at 08h 2–6.
2.2.4 Interrupt/Interrupt Mask Register at 0Ch and 10h 2–9.
2.2.5 Cycle Timer Register at 14h 2–11.
2.2.6 Isochronous Port Register at 18h 2–12.
2.2.7 Maint_Control Register at 1Ch 2–13.
2.2.8 Diagnostic Register at 20h 2–14.
2.2.9 Phy Access Register at 24h 2–15.
2.2.10 Reserved Registers at 28h – 2Ch 2–15.
2.2.11 FIFO Status Register at 30h 2–16.
2.2.12 Bus Reset Register at 34h 2–17.
2.2.13 Header0 Register at 38h 2–18.
2.2.14 Header1 Register at 3Ch 2–19.
2.2.15 Header2 Register at 40h 2–19.
2.2.16 Header3 Register at 44h 2–19.
2.2.17 Trailer Register at 48h 2–20.
2.2.18 Asynchronous Retry Register at 4Ch 2–21.
2.2.19 Asynchronous Retry Register at 4Ch 2–21.

3 Microcontroller Interface 3–1.
3.1 Microcontroller Byte Stack (Write) Operation 3–2.
3.2 Microcontroller Byte Unstack (Read) 3–3.
3.3 Microcontroller Interface Read/Write Timing 3–4.

3.3.1 Microcontroller Handshake Mode 3–4.
3.3.2 Microcontroller Fixed-Timing Mode 3–7.
3.3.3 Microcontroller ColdFire Mode 3–12.
3.3.4 Microcontroller Critical TIming 3–13.
3.3.5 Endian Swapping 3–14.

4 Link Core 4–1.
4.1 Physical Interface 4–1.

iv

Section Title Page

4.2 Transmitter 4–1.
4.3 Receiver 4–1.
4.4 Cycle Timer 4–2.
4.5 Cycle Monitor 4–2.
4.6 Cyclic Redundancy Check (CRC) 4–2.
4.7 Packet Routing Control Logic 4–2.

5 Data Mover Port Interface 5–1.
5.1 Data Mover Data Flow Diagram 5–4.

5.1.1 Isochronous Receive 5–4.
5.1.2 Isochronous Transmit 5–5.
5.1.3 Asynchronous Receive 5–7.
5.1.4 Asynchronous Transmit 5–8.

5.2 Data Mover Modes of Operation 5–10.
5.2.1 Isochronous Transmit With Automatic Header Insertion 5–11.
5.2.2 Isochronous Transmit Without Automatic Header Insertion 5–12.
5.2.3 Isochronous Packet Receive Without Header and Trailer 5–13.
5.2.4 Isochronous Packet Receive With Header and Trailer 5–13.
5.2.5 Asynchronous Packet Transmit With Automatic Header Insertion 5–14.
5.2.6 Asynchronous Packet Transmit Without Automatic Header Insertion 5–15. . .
5.2.7 Asynchronous Packet Receive With Headers and Trailer 5–16.
5.2.8 Asynchronous Packet Receive Without Headers and Trailer 5–16.

5.3 Data Mover Byte Mode 5–17.
5.4 Data Mover Endian Swapping 5–17.
5.5 Data Mover Handshake Mode 5–18.
5.6 Data Mover Critical Timing 5–18.

6 FIFO Memory Access 6–1.
6.1 General 6–1.
6.2 ATF Access 6–1.
6.3 ATF Burst Access 6–2.
6.4 General-Receive-FIFO (GRF) 6–2.
6.5 GRF Stored Data Format 6–3.

7 TSB12LV32 Data Formats 7–1.
7.1 Asynchronous Transmit (Host Bus to TSB12LV32) 7–1.

7.1.1 Quadlet Transmit 7–1.
7.1.2 Block Transmit 7–2.
7.1.3 Quadlet Receive 7–3.
7.1.4 Block Receive 7–5.

7.2 Isochronous Transmit (Host Bus to TSB12LV32) 7–7.
7.2.1 Isochronous Receive (TSB12LV32 to Host Bus) 7–7.

7.3 Phy Configuration 7–9.
7.3.1 Extended Phy Packets 7–10.

7.4 Receive Self-ID Packet 7–13.

v

Section Title Page

8 TSB12LV32/Phy Interface 8–1.
8.1 Principles of Operation 8–1.
8.2 TSB12LV32 Service Request 8–3.
8.3 Status Transfer 8–5.
8.4 Receive Operation 8–6.
8.5 Transmit Operation 8–8.
8.6 TSB12LV32/Phy Interface Critical Timing 8–10.

9 Electrical Characteristics 9–1.
9.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range 9–1.
9.2 Recommended Operating Conditions 9–1.
9.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and
 Operating Free-Air Temperature 9–2.

10 Mechanical Information 10–1.

vi

List of Illustrations
Figure Title Page

1–1 TSB12LV32 Functional Block Diagram 1–2.
3–1 Microcontroller Byte Stack Operation (Write) 3–2.
3–2 Microcontroller Byte Unstack Operation (Read) 3–3.
3–3 Byte Handshake Read 3–4.
3–4 Word Handshake Read 3–5.
3–5 Byte Handshake Write 3–6.
3–6 Word Handshake Write 3–6.
3–7 Byte Fixed-Timing Read 3–7.
3–8 Word Fixed-Timing Read 3–8.
3–9 Byte Fixed-Timing Write 3–9.
3–10 Word Fixed-Timing Write 3–9.
3–11 GRF Read Access (Byte Fixed-Timing Mode) 3–10.
3–12 GRF Read Access (Word Fixed-Timing Mode) 3–11.
3–13 ColdFire Read 3–12.
3–14 ColdFire Write 3–13.
3–15 Big Endian Format 3–14.
3–16 Little Endian Format 3–14.
3–17 Little-Endian Data Invariance Illustration Chart 3–16.
3–18 Little-Endian Address Invariance Illustration Chart 3–16.
4–1 Link Core Components 4–1.
5–1 A Typical System Diagram 5–1.
5–2 Isochronous DM Flow Control (TSB12LV32 Transmit) 5–2.
5–3 Transmit Data Path 5–3.
5–4 Asychronous DM Flow Control (TSB12LV32 Transmit) 5–3.
5–5 Isochronous Receive Without Header and Trailer 5–4.
5–6 Isochronous Receive With Header and Trailer 5–5.
5–7 Isochronous Transmit With Auto Header Insertion 5–5.
5–8 Isochronous Transmit Without Auto Header Insertion 5–6.
5–9 Asynchronous Receive Without Headers and Trailer 5–7.
5–10 Asynchronous Receive With Headers and Trailer 5–8.
5–11 Asynchronous Transmit With Auto Header Insertion 5–9.
5–12 Asynchronous Transmit Without Auto Header Insertion 5–10.
5–13 Isochronous Transmit With Auto Header Insertion at 400 Mbps 5–11.
5–14 Isochronous Transmit With Auto Header Insertion at 200 Mbps 5–11.
5–15 Isochronous Transmit With Auto Header Insertion at 100 Mbps 5–12.
5–16 Isochronous Transmit Without Auto Header Insertion 5–12.
5–17 Isochronous Receive Without Header and Trailer 5–13.
5–18 Isochronous Receive With Header and Trailer 5–13.
5–19 Isochronous Receive With Header and Trailer at 200 Mbps 5–14.
5–20 Asynchronous Quadlet Transmit With Automatic Header Insertion 5–14.
5–21 Asynchronous Block Transmit With Automatic Header Insertion at 200 Mbps 5–14. . . .

vii

5–22 Asynchronous Block Transmit With Automatic Header Insertion at 400 Mbps 5–15. . . .
5–23 Asynchronous Quadlet Transmit Without Automatic Header Insertion

 at 400 Mbps 5–15.
5–24 Asynchronous Block Transmit Without Automatic Header Insertion

at 400 Mbps 5–15.
5–25 Asynchronous Quadlet Receive With Headers and Trailer at 400 Mbps 5–16.
5–26 Asynchronous Block Receive With Headers and Trailer at 400 Mbps 5–16.
5–27 Asynchronous Quadlet Receive Without Headers and Trailer at 400 Mbps 5–17.
5–28 Asynchronous Block Receive Without Headers and Trailer at 400 Mbps 5–17.
5–29 Endian Swapping in Byte Mode 5–17.
5–30 Endian Swapping in Word Mode 5–17.
5–31 Data Mover Handshake Mode (GPLynx mode) 5–18.
5–32 Clock to Output Timing With Respect to DMCLK 5–19.
6–1 TSB12LV32 Controller-FIFO-Access Address Map 6–1.
6–2 Asynchronous Packet With N Quadlets (ATV Loading Operation) 6–1.
7–1 Quadlet-Transmit Format (Write Request) 7–1.
7–2 Quadlet-Transmit Format (Read Response) 7–1.
7–3 Block-Transmit Format 7–3.
7–4 FIFO Quadlet-Receive Format 7–4.
7–5 Data Mover Quadlet-Receive Format 7–4.
7–6 FIFO Block-Receive Format 7–5.
7–7 Data Mover Block-Receive Format 7–6.
7–8 Isochronous-Transmit Format 7–7.
7–9 Data Mover Isochronous-Receive Format 7–7.
7–10 GRF Isochronous-Receive Format 7–8.
7–11 Phy Configuration Packet Format 7–9.
7–12 Received Phy Configuration Packet Format 7–10.
7–13 Ping Packet Format 7–10.
7–14 Remote Access Packet Format 7–11.
7–15 Remote Command Packet Format 7–11.
7–16 Resume Packet Format 7–12.
7–17 Receive Self-ID Packet Format (RXSID=1, FULLSID=1) 7–13.
7–18 Receive Self-ID Packet Format (RXSID=1, FULLSID=0) 7–13.
7–19 Phy Self-ID Packet #0 Format 7–14.
7–20 Phy Self-ID Packet #1 Format 7–14.
7–21 Phy Self-ID Packet #2 Format 7–14.
8–1 Phy-LLC Interface 8–1.
8–2 LREQ Request Stream 8–3.
8–3 Status Transfer Timing 8–6.
8–4 Normal Packet Reception Timing 8–7.
8–5 Null Packet Reception Timing 8–8.
8–6 Normal Packet Transmission Timing 8–9.
8–7 Critical Timing for the TSB12LV32/Phy Interface 8–10.

viii

List of Tables
Table Title Page

1–1 Terminal Functions 1–4.
1–2 STAT Terminals Programming 1–7.
2–1 Configuration Register (CFR) Map 2–2.
2–2 Header Usage for CFRs 38h–44h 2–3.
3–1 Microcontroller Interface Modes of Operation 3–1.
3–2 TSB12LV32 MP/MC Interface Terminal Function Matrix 3–1.
3–3 Endian Swapping Operation 3–15.
4–1 Receiver Routing 4–3.
5–1 Modes of Operation 5–11.
5–2 CLK to Output Timing With Respect to DMCLK 5–18.
6–1 Packet Token Definition 6–3.
7–1 Quadlet-Transmit Format Functions 7–2.
7–2 Block-Transmit Format Functions 7–3.
7–3 Quadlet–Receive Format Functions 7–5.
7–4 Block-Receive Format Functions 7–6.
7–5 Isochronous-Transmit Functions 7–7.
7–6 Isochronous-Receive Functions 7–8.
7–7 Phy Configuration Packet Functions 7–9.
7–8 Receive Phy-Configuration Packet 7–10.
7–9 Ping Packet Fields 7–10.
7–10 Remote Access Packet Fields 7–11.
7–11 Remote Command Packet Fields 7–12.
7–12 Resume Packet Fields 7–12.
7–13 GRF Receive Self-ID Setup Using Control Register Bits (RXSID and FULLSID) 7–13. .
7–14 Receive Self-ID Function 7–13.
7–15 Phy Self-ID Packet Fields 7–15.
8–1 CTL Encoding When the Phy Has Control of the Bus 8–2.
8–2 CTL Encoding When the TSB12LV32 Has Control of the Bus 8–2.
8–3 Request Stream Bit Length 8–3.
8–4 Request Type Encoding 8–3.
8–5 Bus Request 8–3.
8–6 Bus Request Speed Encoding 8–4.
8–7 Read Register Request 8–4.
8–8 Write Register Request 8–4.
8–9 Acceleration Control Request 8–4.
8–10 Status Bits 8–6.
8–11 Receive Speed Codes 8–8.

1–1

1 Overview
1.1 TSB12LV32 Description
The TSB12LV32 (GP2Lynx) is a high-performance general-purpose IEEE P1394a link-layer controller
(LLC) with the capability of transferring data between a host controller, the 1394 Phy-link interface, and
external devices connected to the data mover port (local bus interface). The 1394 Phy-link interface
provides the connection to the 1394 physical layer device and is supported by the LLC. The LLC provides
the control for transmitting and receiving 1394 packet data between the microcontroller interface and the
Phy-link interface via internal 2K byte FIFOs at rates up to 400 Mbit/s. The TSB12LV32 transmits and
receives correctly formatted 1394 packets, generates and detects the 1394 cycle start packets,
communicates transaction layer transmit requests to the Phy, and generates and inspects the 32-bit cyclic
redundancy check (CRC). The TSB12LV32 is capable of being cycle master (CM), isochronous resource
manager (IRM), bus manager, and supports reception of isochronous data on two channels.

The TSB12LV32 supports a direct interface to many microprocessors/microcontrollers including
programmable endian swapping. TSB12LV32 has a generic 16/8-bit host bus interface which includes
support for the ColdFire microcontroller mode at rates up to 60 MHz. The microinterface may operate in
byte or word (16 bit) accesses. The data mover block in GP2Lynx is meant to handle an external memory
interface of large data blocks. The port can be configured to either transmit or receive data packets. The
packets can be either asynchronous, isochronous, or streaming data packets. Asynchronous or
isochronous receive packets will be routed to the DM port or the GRF via the receiver routing control logic.

The internal FIFO is separated into a transmit FIFO and a receive FIFO each of 517 quadlets (2 Kbytes).
Asynchronous packets may be transmitted from the DM port or the internal FIFO. If there is contention the
FIFO has priority and will be transmitted first.

The LLC also provides the capability to receive status information from the physical layer device and to
access the physical layer control and status registers by the application software.

1.2 TSB12LV32 Features
• Compliant With IEEE 1394-1995 Standards and P1394a Supplement for High Performance

Serial Bus†

• Supports Transfer Rates of 400, 200, or 100 Mbit/s
• Compatible With Texas Instruments Physical Layer Controllers (Phys)
• Supports the Texas Instruments Bus Holder Galvanic Isolation Barrier
• Glueless Interface to 68000 and ColdFire Microcontrollers/Microprocessors
• Supports ColdFire Burst Transfers
• 2K-Byte General Receive FIFO (GRF) Accessed Through Microcontroller Interface Supports

Asynchronous and Isochronous Receive
• 2K-Byte Asynchronous Transmit FIFO (ATF) Accessed Through Microcontroller Interface

Supports Asynchronous Transmissions
• Programmable Microcontroller Interface With 8-Bit or 16-Bit Data Bus, Multiple Modes of

Operation Including Burst Mode, and Clock Frequency to 60 MHz.
• 8-Bit or 16-Bit Data Mover Port (DM Port) Supports Isochronous, Asynchronous, and Streaming

Transmit/Receive From an Unbuffered Port at a Clock Frequency of 25 MHz.
• Backward Compatible With All TSB12LV31(GPLynx) Microcontroller and Data Mover

Functionality in Hardware.
• Four-Channel Support for Isochronous Transmit From Unbufferred 8/16 Bit Data Mover Port.
• Single 3.3-V Supply Operation With 5-V Tolerance Using 5-V Bias Terminals.
• High Performance 100-Pin PZ Package

† Implements technology covered by one or more patents of Apple Computer, Incorporated and SGS Thomson, Limited.
ColdFire is a trademark of Motorola, Inc.

1–2

1.3 Functional Block Diagram

MA0 – MA6

MD0 – MD15

BCLK

Byte Stacker
8-/16-to-32

bits

7

16

7

32

7

32

Address

Data

FIFO

CFR

Control

ATF

ARF

IRF

CTL[0:1]

H
os

t I
nt

er
fa

ce

Li
nk

 C
or

e

Data
Mover

DM

DM D0–D15

DM Control

16

Data
Mover

Port

32 DM IT/AT

÷ 2
SCLK

Microcontroller Interface

MCA
MCS

Status

2K ATF
2K GRF

32

32

32

P
ac

ke
t R

ou
te

r C
on

tr
ol

32 DM IR/IR

ATF

GRF

DMCLK P
hy

si
ca

l L
ay

er
 C

hi
p

(P
H

Y
)D[0:7]

LREQ

LPS

LinkOn

MRW

Figure 1–1. TSB12LV32 Functional Block Diagram

1–3

1.4 Terminal Assignments

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

76777879808182838485868788899091929394959697989910
0

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

50494847464544434241403938373635343332313029282726

LREQ
GND

CTL1

D0

CONTNDR
LINKON
D2

D4

D6
D7

STAT1
STAT0
LPS
DMERROR
PKTFLAG

INT

TEA
MCA
GND

MCS
MWR

RESET

MDINV

MCMODE/SIZ1

TESTMODE
MA6
MA5
MA4

GND

MA3

MA1
MA0

M
D

0
M

D
1

M
D

3

G
N

D

M
D

4
M

D
5

M
D

6

M
D

8

M
D

14
M

D
15

D
IR

E
C

T
G

N
D

D
M

R
E

A
D

Y
C

Y
C

LE
IN

D
M

D
0

D
M

D
1

D
M

D
2

D
M

D
3

G
N

D

D
M

D
5

D
M

D
7

D
M

D
10

D
M

D
11

D
M

D
12

D
M

D
14

D
M

D
15

D
M

C
LK

D
M

P
R

E
D

M
R

W

SCLK

D
M

D
13

PZ PACKAGE
(TOP VIEW)

CYSTART

M8BIT/SIZ0

G
N

D

CTL0

D5

GND

D
M

D
6

G
N

D

BCLK

VDD

MA2

VDD

D
M

D
8

M
D

11

M
D

2

TSB12LV32

M
D

9

M
D

12
M

D
13

VDD5V

COLDFIRE

D
D

V
D

M
D

4

D
D

V
5V

D
M

D
9

D
D

V

D
D

V

D
M

D
O

N
E

STAT2

D3

D1

VDD

VDD

LENDIAN

D
D

VD
D

V
5V

M
D

10

M
D

7

1–4

1.5 Terminal Functions
The terminal functions are described in Table 1–1.

Table 1–1. Terminal Functions

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

Microcontroller/Microprocessor Interface

BCLK 6 I Microinterface clock. Maximum frequency is 60 MHz. In the ColdFire mode,
BCLK is the same as CLK, which is the clock-input signal to the ColdFire.

COLDFIRE 12 I ColdFire mode. To operate in this mode, COLDFIRE must be asserted high.

LENDIAN 75 I Little-endian mode for the microinterface. When this terminal is pulled up, the
data on MD0–MD15 will be byte-swapped to little endian byte format before it is
written to the CFR or FIFO and after it is read from the CFR or FIFO.

MA0 – MA6 24 – 21
19 – 17

I Microcontroller address bus. MA0 is the most significant bit (MSB) of these 7 bits.

M8BIT/SIZ0 13 I Configuration bit for microinterface. If the microinterface is 8 bits wide, this
terminal must be pulled up to the supply voltage. In ColdFire mode, this terminal
represents burst SIZ0.

MCMODE/SIZ1 14 I Mode bit for microinterface. If the microinterface wants to communicate in a
handshake manner this terminal must be pulled up to the supply voltage. When
the ColdFire mode terminal (12) is high, this terminal represents burst SIZ1.

MCA 4 O Microinterface cycle acknowledge. When asserted low, MCA signals an
acknowledge of the microcontroller cycle from the TSB12LV32.

MCS 7 I Microinterface cycle start. When asserted low, MCS signals the beginning of a
microcontroller operation to the TSB12LV32.

MDINV 11 I Microinterface data invariant mode. This terminal is meaningful only when
LENDIAN (75) is high. When asserted high, the microinterface operates in the
data invariant mode. When low, the microinterface operates in address invariant
mode.

MD0 – MD15 99 – 96
94 – 91
89 – 86
84 – 81

I/O Microinterface bidirectional data bus. MD0 is the most significant bit. However,
byte significance is dependent on the state of the LENDIAN and MDINV
terminals.

MWR 8 I Microcontroller read/write indicator. When asserted high, MWR indicates a read
access from the TSB12LV32. When asserted low, MWR indicates a write access
to the TSB12LV32.

TEA 3 O Transfer error acknowledge. This active-low signal is asserted low for one BCLK
cycle whenever there is an illegal transfer request by the microcontroller (i.e.,
requested data transfer size is unsupported or MCS is asserted low for more than
one BCLK cycle in ColdFire mode).

1–5

Table 1–1. Terminal Functions (Continued)

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

Data-Mover Port Interface

DMD0–DMD15 26 – 29
31 – 34
36 – 39
41 – 44

I/O Data mover (DM) bidirectional data port. DMD0 is the MSB of these 16 bits.

DMCLK 46 O Data mover clock at (SCLK/2) MHz

DMDONE 50 O Data mover done. For transmit, this will be activated when the packet per block
counter in the CFR counts down to zero. For receive, this terminal will pulse for
one DMCLK prior to the first byte/word available to the DM interface.

DMERROR 52 O Data mover error. DMERROR is asserted high when there is an error in the
received packet or an illegal transmit speed was attempted.

DMPRE 48 O Data mover predata indicator. In transmit mode, DMPRE pulses for one DMCLK
prior to sending the first quadlet. In isochronous receive mode, DMPRE will pulse
for one DMCLK when the sync bit in the header matches a bit set in the
isochronous register. DMPRE is not used in asynchronous receive mode.

DMREADY 77 I Data mover ready. Must be asserted high by the external logic controlling the DM
interface when it is ready to supply data for transmit. DMREADY must be set low
when the data mover is in receive mode.

DMRW 49 O Data mover read/write indicator. When data is being moved from 1394 to the DM
port (receive) this signal will go active high to indicate data is available on
DMD[0:15]. When data is being moved from DM to 1394 bus (transmit) this signal
will go active high to indicate that data must be supplied to the DMD[0:15] port for
transmission.

PKTFLAG 51 O Packet flag. When set, PKTFLAG is asserted high to indicate the first (header) or
last (trailer) quadlet of a received packet on the DM interface. PKTFLAG is not
valid in transmit mode.

Phy/Link Interface

CTL0, CTL1 70, 69 I/O Phy-link interface control lines.

D0–D7 67, 66,
63–58

I/O Phy-link interface data lines. Data is only expected on D0 and D1 at 100 Mbit/s,
D0–D3 at 200 Mbit/s, and D0–D7 at 400 Mbit/s. D0 is the MSB bit.

LINKON 64 I Link-on from the Phy is a 4 MHz – 8 MHz clock. This signal will be activated when
the link is inactive and the Phy has detected a link-on packet or a Phy interrupt.
This clock will persist for no more than 500 ns. When the link detects this terminal
as active, it will turn on and drive LPS.

LPS 53 O Link power status. LPS is used to drive the LPS input to the Phy. It indicates to the
Phy that the link is powered up and active. LPS toggles at a rate = 1/16 of BCLK.

LREQ 74 O Link request to Phy. LREQ makes bus requests and register access requests to
the Phy.

SCLK 72 I System clock. SCLK is a 49.152 MHz clock supplied by the Phy. DMCLK is
generated from SCLK.

1–6

Table 1–1. Terminal Functions (Continued)

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

Miscellaneous Functions

CONTNDR 65 I/O Contender. When asserted high, this terminal tells the link that this node is a
contender for isochronous resource manager (IRM) or bus manager functions.
The state of the CONTNDR must match the state of the Phy contender terminal for
1394-1995 compliant Phys, and the Phy register bit for 1394.A compliant Phys.
This terminal defaults to being an input on power up. After power up, the value of
this terminal may be driven internally by the CTNDRSTAT bit (bit#12 at 08h)

CYCLEIN 76 I Cycle in. This input is an optional external 8-kHz clock used as the isochronous
cycle clock. It should only be used if attached to the cycle-master node. It is
enabled by the cycle source bit and should be tied high when not used.

CYSTART 2 O Isochronous cycle start indicator. CYSTART signals the beginning an isochronous
cycle by pulsing for one DMCLK period.

DIRECT 79 I Isolation terminal. When this terminal is asserted high, no isolation is present
between the TSB12LV32 and the Phy. When low, bus holder isolation becomes
active.

GND 5, 25, 30,
45, 57, 73,

78, 90,
100

Ground reference

INT 1 O Interrupt. NOR of all internal interrupts.

��	�
 9 I 	����� ������
��� �
�������� ������ �� ����
������� �� ���
	��������

STAT0–STAT2 54 – 56 O General status outputs. STATn is the output signal selected with the CFR at
address 20h.

TESTMODE 16 I This terminal is used to place the TSB12LV32 in the test mode. In normal
operation, this terminal must be tied to ground.

VDD5V 10, 35, 85 5 V (± 0.5V) supply voltage for 5-V tolerant inputs. Only the Phy/link interface side
of the TSB12LV32 is not 5-V tolerant. Tie this terminal to the 3.3-V supply voltage if
the TSB12LV32 is not connected to any devices driving 5-V signals. Tie this
terminal to the 5-V supply voltage if the TSB12LV32 is connected to any devices
driving 5-V signals. This terminal is only used to make inputs 5-V tolerant, it is not
used for any outputs.

VDD 15, 20, 40,
47, 68, 71,

80, 95

3.3 V (± 0.3 V) supply voltage

1–7

1.5.1 STAT0, STAT1, and STAT2 Programming

STAT0, STAT1 and STAT2 terminals can be independently programmed to show one of fourteen possible
internal hardware status. The controls for the STAT terminals are in the Diagnostic register at address 20h
of the CFR register. STAT0 is controlled by STATSEL0(bits 16–19), STAT1 is controlled by bits
STATSEL1(bits 20–23), and STAT2 is controlled by STATSEL2 (bits 24–27). Refer to Table 1–2 for
programming the STAT terminals.

Table 1–2. STAT Terminals Programming

STATSEL0,
STATSEL1, or

STATSEL2
STAT0/STAT1/STAT2 DESCRIPTION

0 0 0 0 Reserved Reserved

0 0 0 1 ATFFULL ATF is full. Bit 12 in CFR at 30h.

0 0 1 0 Bus Reset 1394 Bus reset. Bit 3 in CFR at 0Ch

0 0 1 1 Arbitration reset gap Bit 26 in CFR at 0Ch

0 1 0 0 CYCLEOUT
Cycle out. This is the link’s cycle clock. It is based on the timer
controls and the received cycle-start messages.

0 1 0 1 RXDMPKT
Packet received to DM interrupt. Activated at the end of a received
packet. Bit 9 in CFR at 0Ch

0 1 1 0 RXGRFPKT
Packet received to GRF interrupt. Activated at the end of a received
packet. . Bit 6 of CFR at 0Ch

0 1 1 1 BX_BUSY Byte busy. This represents the OR of bits 0 – 3 of CFR at 20h

1 0 0 0 SUBGP
Subaction gap. Activated upon detection of a subaction gap. Bit 27
in CFR at 0Ch

1 0 0 1 CYCLE_DONE
Cycle done. Indicates the end of the isochronous period. This
happens when a subaction gap has been detected.

1 0 1 0
ATSTARTED
(default setting for STAT1)

Activated when an asynchronous packet transfer has started from
the ATF. Bit 5 in CFR at 0Ch

1 0 1 1 DMACKERR DM acknowledge was not Complete. Bit 17 in CFR at 0Ch

1 1 0 0 DMEN DM enable. Bit 26 in CFR at 04h

1 1 0 1
GRFEMPTY
(default setting for STAT2)

GRF is empty. Bit 15 in CFR at 30h.

1 1 1 0 Reserved Reserved

1 1 1 1 Reserved Reserved

1–8

2–1

2 Internal Registers
2.1 TSB12LV32 Configuration Registers

2–2

Table 2–1. Configuration Register (CFR) Map

40h

38h Header0

Asynchronous
Retry

Header1

Header3
Header2

NUMBER OF QUADLETS

ASYNC RETRY COUNT RETRY INTERVAL

ACKCODE SPD Trailer

44h

3Ch

4Ch

48h

LP
S

_R
E

S
E

T

LP
S

_O
F

F

1Ch

20h

24h

28h–2Ch

B
2_

B
U

S
Y

B
3_

B
U

S
Y

B
0_

P
N

D

B
1_

P
N

D

B
2_

P
N

D

B
3_

P
N

D

R
A

M
_T

E
S

T

R
E

G
R

W

R
D

P
H

Y
A

T
F

C
LR

A
T

F
F

U
LL

G
R

F
E

M
P

T
Y

30h

34h

Diagnostic

Phy Access

Reserved

FIFO Status

Bus Reset

Maint_Control

PHYRGAD PHYRGDATA PHYRXAD PHYRXDATA

N
R

ID
V

A
L

B
0_

B
U

S
Y

B
1_

B
U

S
Y

STATSEL0 STATSEL1 STATSEL2

W
R

P
H

Y
A

T
F

W
B

M
T

Y

G
R

F
C

LR

C
D

ATACK GRFUSED

R
O

O
T

C
O

N
T

E
N

D
E

R

IRMNODEID BUS NUMBER NODE NUMBER

E
_H

C
R

C

E
_D

C
R

C

N
O

_P
K

T

F
_A

C
K

N
O

_A
C

K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31

00h

P
H

IN
T

S
E

LF
ID

E
N

D

AT
S

TA
R

T
E

D

S
E

LF
ID

E
R

R
X

D
M

P
K

T

DM Control

Interrupt

Isochronous
Port

P
H

R
R

X

S
N

T
R

J

C
Y

D
N

E

C
Y

S
E

C

C
Y

S
T

C
Y

LS
T

C
A

R
B

F
L

04h

0Ch

10h

14h

18h

28

IA
R

B
F

L

A
R

B
G

P

S
U

B
G

P

H
D

R
E

R
R

08h

IN
T

AT
F

E
M

P
T

Y

P
H

R
S

T

Interrupt
Mask

Cycle Timer

VERSION
(711538A0h)

0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0

E
N

D
S

W
A

P

B
Y

T
E

M
O

D
E

H
A

N
D

S
H

K

A
U

T
O

U
P

DMACK

D
M

H
D

R

A
R

0

A
R

1

D
M

A
S

Y
N

C

D
M

R
X

C
H

N
LC

N
T

D
M

E
N

S
P

E
E

D

R
S

T
T

X

R
S

T
R

X

C
T

N
D

R
S

TA
T

C
T

N
D

R
IS

IN

F
LS

H
E

R
R

R
X

S
LD

F
U

LL
S

ID

P
H

Y
_P

K
T

_E
N

A

B
S

Y
C

T
L

T
X

E
N

R
X

E
N

E
N

A
_A

C
C

E
L

E
N

A
_C

O
N

C
A

T

B
U

S
N

R
S

T

B
D

IV
0

B
D

IV
1

D
M

A
C

K
C

O
M

P

F
IF

O
A

C
K

C
O

M
P

C
Y

M
A

S

C
Y

S
R

C

C
Y

T
E

N

C
LS

ID
E

R

ERROR
SID

CODE

C
M

A
U

T
O

IR
P

1E
N

IR
P

2E
N

C
M

D
R

S
T

D
M

E
R

R
O

R

R
X

G
R

F
P

K
T

AT
S

T
K

T
C

E
R

R

M
C

E
R

R
O

R

D
M

A
C

K
E

R
R

F
IF

O
A

C
K

P
H

IN
T

S
E

LF
ID

E
N

D

AT
S

TA
R

T
E

D

S
E

LF
ID

E
R

R
X

D
M

P
K

T

P
H

R
R

X

S
N

T
R

J

C
Y

D
N

E

C
Y

S
E

C

C
Y

S
T

C
Y

LS
T

C
A

R
B

F
L

IA
R

B
F

L

A
R

B
G

P

S
U

B
G

P

H
D

R
E

R
R

IN
T

AT
F

E
M

P
T

Y

P
H

R
S

T

C
M

D
R

S
T

D
M

E
R

R
O

R

R
X

G
R

F
P

K
T

AT
S

T
K

T
C

E
R

R

M
C

E
R

R
O

R

D
M

A
C

K
E

R
R

F
IF

O
A

C
K

SECONDS COUNT CYCLE COUNT

Control

TA
G

1

TA
G

2

M
O

N
TA

G

ISYNCRCVN

IR
C

V
A

LL

MSB LSB

LI
N

K
O

N
LI

N
K

O
N

E
N

A
_I

N
S

E
R

T
_I

D
LE

NOTES: A. All dark gray areas (bits) are reserved bits.
B. All light gray areas are read-only bits. All remaining are read/write bits.

PACKET PER BLOCK

IRPORT1

ATFAVAIL

NODECNT

IRPORT2

ACK

CYCLE OFFSET

PING VALUE

2–3

Table 2–2. Header Usage for CFRs 38h–44h

DIRECTION
OF DM DATA
TRANSFER

PACKET TYPE
AUTO HEADER

INSERT/
EXTRACT

HEADER REGISTER

YES
Header 0 CFR formatted for isochronous transmission.
Header1 – Header3 are used for additional channels.

TRANSMIT

Isochronous

NO
Isochronous header supplied by DM interface. Header0 CFR
is automatically written with extracted (from transmitted
packet) isochronous header.

(to 1394 Bus)

Asynchronous/
YES

Header0–Header3 CFRs formatted for asynchronous trans-
mission.y

asynchronous
streaming NO

Asynchronous header supplied by DM interface. Header0 –
Header3 CFRs are automatically written with extracted (from
transmitted packet) header.

Isochronous/
YES

Header0 – Header3 are always automatically updated. The
isochronous header is streamed through the DM port. The
trailer quadlet is always appended to the data stream.

RECEIVE

asynchronous
streaming

NO

Header0 – Header3 are always automatically updated. The
isochronous header is streamed through the DM port along
with the payload data. The trailer quadlet is always appended
to the data stream.

(from 1394
Bus)

Asynchronous

YES

Header0 – Header3 are always automatically updated.
Asynchronous headers are not streamed through the DM
port. The trailer quadlet is always appended to the data
stream.

Asynchronous

NO

Header0 – Header3 are always automatically updated.
Asynchronous headers are streamed through the DM port
along with data. The trailer quadlet is always appended to the
data stream.

2–4

2.2 Configuration Register Definitions
2.2.1 Version Register at 00h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0

This register uniquely identifies this device to the software. The value is fixed at 7115_38A0’h . This register
is read only.

2.2.2 Data Mover Control Register at 04h
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

PACKET PER BLOCK
E

N
D

S
W

A
P

H
A

N
D

S
H

K

A
U

T
O

U
P

DMACK

D
M

H
D

R

A
R

0

A
R

1

D
M

A
S

Y
N

C

D
M

R
X

C
H

N
LC

N
T

D
M

E
N

S
P

E
E

D

B
Y

T
E

M
O

D
E

This register controls the Data Mover port and must be set up before using the port. The power-up reset
value of this register = 0000_0000’h

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0–11 PACKET PER-
BLOCK

Packets per
Block

R/W Number of packets per block. A packet is the size of the
data payload and is specified as part of the header. The
data mover logic uses this value to deactivate DMDONE.
This field is only used in transmit mode.

12 ENDSWAP Endian Swap R/W Swap endian. When this bit is set, the quadlet formed by
stacking the DM data will be byte reversed, (i.e. the
quadlet formed by fetching doublet AB01 then ‘CD02’ will
be 02CD–01AB instead of AB01CD02). In byte mode the
quadlet formed by fetching AB, 01, CD, 0 will be
02CD01AB instead of AB01CD02.

13 BYTEMODE Byte Mode R/W Byte mode. When this bit is set the DM port will only look
at DM0–DM7. DM8–DM15 will be ignored for transmit
and will not be driven on receive. In this mode, the
maximum speed allowed is 200 Mbps.

14 HANDSHK Handshake
Mode

(CPLynx
Mode)

R/W Handshake. When this bit is 1 DMREADY and DMDONE
are in strict handshake mode (i.e., TSB12LV31
compatible mode). DMREADY must not be deactivated
until DMDONE activates. When this bit is set to 0,
DMREADY may be deactivated before DMDONE
activates.

15 AUTOUP Automatic
Address Up-

date

R/W Automatic update offset address. Valid only for
asynchronous transmit using header insert mode (bit 27
DMHDR set to 1). For write request asynchronous
packets, header quadlet 2 contains the destination offset
low address for the write. When this bit is set, header
quadlet 2 will be updated by the value of the payload size
(rounded up to the nearest quadlet boundary).

16–20 DMACK DM
Acknowledge

R DM acknowledge. This is the ack received from the
receiving node. This is updated only when the transfer is
from the DM port.

21 RESERVED RESERVED

22–23 SPEED DM Speed
Code

R/W Speed code. This is valid for isochronous transmit and
asynchronous transmit through the DM port. The DM
logic uses this field to specify to the Phy the speed of the
isochronous transfer.

2–5

BIT
NUMBER DESCRIPTIONDIRFUNCTIONBIT NAME

24–25 CHNLCNT Channel
Count

R/W Channel count. This field is valid only in isochronous
transmit. This field allows the node to transmit multiple
packets during a single isochronous period. Each packet
must have a different channel number, however,
hardware does not check this. When the isochronous
transmit header is supplied by the DM interface or
automatically inserted by the hardware, a maximum of
four different channels may be accessed in one
isochronous period. In isochronous transmit with
automatic header insert, Header0–Header3 CFRs are
used as the isochronous header registers.

26 DMEN DM Enable R/W DMEN controls the transmission of packets from the DM
port. If this bit is 0, transmission through from the DM port
is inhibited. This is used for asynchronous flow control. In
normal operation, if an asynchronous packet trans-
mitted from the DM port receives an acknowledge from
the receiving node other than ack complete, this bit will
be set to 0 and DMERROR is asserted high. Software will
need to set this bit to allow further transmission of
asynchronous packets from the DM port. The default and
power-up value is 0.

27 DMHDR DM Header
Insert Control

R/W DM header insert bit. When set to 0, the hardware will
automatically insert the header(s) into the DM transmit
data. In receive, setting this bit to 0 will strip off the
header(s) before routing packet to the DM. Header(s) are
always written to the CFR header registers regardless of
the value of DMHDR.

28–29 AR0, AR1 Receive
Control
Routing

R/W Receive packet routing control encoded bits. These bits
in conjunction with DMASYNC and DMRX bits in the DM
control register controls the routing of the received
packet to either the data mover port or to the GRF. Refer
to Table 4–1.

30 DMASYNC DM
Asynchronous

R/W If this bit is set to 1 the DM port is configured for
asynchronous traffic only. The DM port can not accept
both asynchronous and isochronous traffic. It must be
configured for asynchronous (DMASYNC = 1) or
isochronous (DMASYNC = 0).

31 DMRX DM Receive R/W If this bit is set to 1 the DM port is configured to receive.
The DM port cannot both transmit and receive data at the
same time, it must be configured for either transmit or
receive.

2–6

2.2.3 Control Register at 08h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

R
S

T
T

X

R
S

T
R

X

C
T

N
D

R
S

TA
T

C
T

N
D

R
IS

IN

F
LS

H
E

R
R

R
X

S
ID

F
U

LL
S

ID

P
H

Y
_P

K
T

_E
N

A

B
S

Y
C

T
R

L

T
X

E
N

R
X

E
N

E
N

A
_A

C
C

E
L

E
N

A
_C

O
N

C
A

T

B
U

S
N

R
S

T

B
D

IV
0

B
D

IV
1

D
M

A
C

K
C

O
M

P

F
IF

O
A

C
K

C
O

M
P

C
Y

M
A

S

C
Y

S
R

C

C
Y

T
E

N

C
LS

ID
E

R

SIDERCODE

C
M

A
U

T
O

IR
P

1E
N

IR
P

2E
N

E
N

A
_I

N
S

E
R

T
_I

D
LE

The control register dictates the basic operation of the TSB12LV32. The power-up reset value of this register
equals E004_0200’h

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0 FLSHERR Flush GRF
on error

R/W This bit controls the flushing of the GRF when a packet with
a data CRC error is detected. The power–up value is 1,
which means flush the GRF when a data CRC error is
detected.

1 RXSID Received
Self-ID
packets

R/W If set, the self-identification (SID) packets generated by Phy
devices during the bus initialization are received and placed
into the GRF as a single packet. The default setting of this
bit is 1. When set to 0, the SIDs are not placed into the GRF.

2 FULLSID Save full
Self-ID Packet

in GRF

R/W Save the full self-ID packets.When this bit is 1 the self-ID
data quadlet and its inverse quadlet are saved in the GRF.
When this bit is 0 only the self-ID data quadlet is saved in the
GRF.

3 PHY_PKT_ENA Phy Packets
Receive
Enable

R/W Phy packet enable allows reception of all Phy packets. If this
bit is reset to 0, all Phy packets, except for self-IDs, will be
rejected and interrupt HDERR (if not masked) will be
generated. One HDERR interrupt will be generated for
every Phy packet received.

4 BSYCTRL Busy Control R/W BSYCTRL controls which busy status the chip returns to
incoming packets. When this bit is 0 the chip follows normal
busy/retry protocol, only send busy when necessary. When
this bit is 1 the chip sends a busy acknowledge to all
incoming packets following the normal busy/retry protocol.

5 TXEN Transmit
Enable

R/W When TXEN is cleared, the transmitter does not arbitrate or
send packets. TXEN bit is cleared following a bus reset, and
all traffic through the DM port will be interrupted. TXEN must
be set before packet transmit can resume. Power-on reset
value of TXEN is 0

6 RXEN Receive
Enable

R/W When RXEN is cleared, the receiver does not receive any
packets. This bit is not affected by a bus reset and is set to 0
after a power-on reset.

7 ENA_ACCEL Acceleration
Enable

R/W Enable acceleration. When this bit is set, fly-by acceleration
and accelerated arbitration are enabled. This bit cannot be
set while TXEN and RXEN are set. This bit must only be
used with a 1394a capable Phy.

8 ENA_CONCAT Concatenation
Enable

R/W Enable concatenation. When this bit is set it allows the link
to concatenate multiple isochronous or asynchronous
packets. This bit must only be used with a 1394a capable
Phy.

2–7

BIT
NUMBER DESCRIPTIONDIRFUNCTIONBIT NAME

9 ENA_
INSERT_IDLE

Insert Idle
Enable

R/W Per P1394a, the link is required to insert an idle state on the
control lines after the Phy grants the link control of the
Phy/link interface. If using a P1394a Phy, this bit should be
set to 1 in order for the link to drive an idle state following the
grant state from the Phy. For 1394-1995 Phys this bit must
remain low.

10 RSTTX Transmitter
Reset

R/W When RSTTX is set, the entire transmitter resets
synchronously. This bit clears itself.

11 RSTRX Receiver
Reset

R/W When RSTRX is set, the entire receiver resets
synchronously. This bit clears itself.

12 CTNDRSTAT Contenter
status

R/W Contender status. On power up, this bit reflects the status of
the CONTNDR pin. When bit 13, CTNDRISIN, is 0 this bit
will be driven out to the CONTNDR pin. If CTNDRISIN is 1
this bit is not used. (Only use on 1394–1995 Phys, or
P1394a Phys when using hardware reset, otherwise, use
the 1394a Phy registers to set the nodes contender status).

13 CTNDRISIN Contender
Driver Enable

R/W Driver enable for the CONTNDR pin. On power up this bit is
set to 1 which disables the driver and allows reading of the
state of the CONTNDR pin. Writing a 0 to this bit will enable
the driver and will drive bit 12, CTNDRSTAT, to the
CONTNDR pin.

14 RESERVED Reserved

15 BUSNRST Bus number
reset enable

R/W When this enable is set to high, the bus number field clears
to 3FFh when a local bus reset is received.

16–17 BDIV0, BDIV1 BCLK divisor
encode bits

R/W BCLK divisors encode bits. Used to divide down the BCLK
to generate the link power status (LPS) clock to the Phy.

BDIV0 BDIV1 DESCRIPTION

0 0 Divide by 16. Default power on value.
Recommended for BCLK frequencies in
the range of 8 – 88 MHz.

0 1 Divide by 2. Recommended for BCLK
frequencies in the range of 1 – 11 MHz.

1 0 Divide by 4. Recommended for BCLK
frequencies in the range of 2 – 22 MHz.

1 1 Divide by 32. Recommended for BCLK
frequencies in the range of 16 – 176
MHz

18 DMACKCOMP Data Mover
Acknowledge

Complete

R/W Data mover acknowledge complete. This bit controls the
acknowledge response to an asynchronous packet
received and routed to the DM port. The default and power
on value is 0 which means to respond with ack pending. A 1
means to respond with an ack complete for write request
packets.

19 FIFOACKCOMP FIFO
Acknowledge

Complete

R/W FIFO acknowledge complete. This bit controls the
acknowledge response to an asynchronous packet
received and routed to the GRF. The default and power on
value is 0 which means to respond with ack pending. A 1
means to respond with ack complete.

2–8

BIT
NUMBER DESCRIPTIONDIRFUNCTIONBIT NAME

20 CYMAS Cycle Master R/W When CYMAS is set and the TSB12LV32 is attached to the
root Phy, the cyclemaster function is enabled. When the
cycle_count field of the cycle timer register increments, the
transmitter sends a cycle-start packet.

21 CYSRC Cycle Source R/W When CYSRC is set, the cycle_count field increments and
the cycle_offset field resets for each positive transition of
CYCLEIN. When CYSRC is cleared, the cycle_count field
increments when the cycle_offset field rolls over.

22 CYTEN Cycle timer
enable

R/W When CYTEN is set, the cycle_offset field increments.

23 CLRSIDER Self-ID
error-code

clear

W When CLRSIDER is set, the SIDERCODE field (bits 24–27)
is cleared.This bit clears itself.

24–27 SIDERCODE Self-ID error
code

R SIDERCODE contains the error code of the first Self-ID
Error. The error code is as follows:

0000 No error

0001 Last self-ID received was not all child ports

0010 Received Phy ID in self-ID not as expected

0011 Quadlet not inverted (phase error)

0100 Phy ID sequence error (two or more gaps in IDs)

0101 Phy ID sequence error (large gap in IDs)

0110 Phy ID error within packet

0111 Quadlet not the inversion of the prior quadlet

1000 Reserved

28 CMAUTO Auto set cycle
master

R/W When CMAUTO is high, the TSB12LV32 automatically
enables CYMAS when the this node becomes the root
following a bus reset.

29 IRP1EN IR port 1
enable

R/W When IRP1EN is set, the receiver accepts isochronous
packets when the channel number matches the value in the
IR port1 field at18h

30 IRP2EN IR port 2
enable

R/W When IRP2EN is set, the receiver accepts isochronous
packets when the channel number matches the value in the
IR Port2 field at18h

31 RESERVED Reserved

2–9

2.2.4 Interrupt/Interrupt Mask Register at 0Ch and 10h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

P
H

IN
T

S
E

LF
ID

E
N

D

AT
S

TA
R

T
E

D

S
E

LF
ID

E
R

R
X

D
M

P
K

T

P
H

R
R

X

S
N

T
R

J

C
Y

D
N

E

C
Y

S
E

C

C
Y

S
T

C
Y

LS
T

C
A

R
B

F
L

IA
R

B
F

L

A
R

B
G

P

S
U

B
G

P

H
D

R
E

R
R

IN
T

AT
F

E
M

P
T

Y

P
H

R
S

T

C
M

D
R

S
T

D
M

E
R

R
O

R

R
X

G
R

F
P

K
T

AT
S

T
K

T
C

E
R

R

M
C

E
R

R
O

R

D
M

A
C

K
E

R
R

F
IF

O
A

C
K

LI
N

K
O

N

The interrupt and interrupt mask register work in tandem to inform the host bus interface when the state of
the TSB12LV32 changes. The interrupt register is at 0Ch, the interrupt mask register is at 10h. The interrupt
register powers up all 0s, however, the interrupt mask register powers up with the INT and the MCERROR
bit set, i.e. 8000_1000h. The mask bits allows individual control for each interrupt. A 1 in the mask bit field
allows the corresponding interrupt in the interrupt register to be generated. Once an interrupt is generated
it must be cleared by writing a 1 to the bit in the interrupt register. For testing, each interrupt bit can be set
manually. This is done by first setting the REGRW bit at20h and then setting the individual interrupt bit. This
is also true for bit 0 at0Ch. In this test mode, the interrupt mask register is not used and has no effect.

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0 INT Interrupt R/W INT contains the value of all interrupt and interrupt mask bits
ORed together

1 PHINT Phy chip
interrupt

R/W When PHINT is set, the Phy has signalled an interrupt
through the Phy interface

2 PHRRX Phy register
information

received

R/W When PHRRX is set, a register value has been transferred to
the Phy access register (offset 24h) from the Phy interface

3 PHRST Phy reset
started

R/W When PHRST is set, a Phy-LLC reconfiguration has started
(1394 bus reset)

4 SELFIDEND Self-ID
validated

R/W Self-ID end. This bit is set at the end of the self-ID reporting
process. When this bit is set, the contentF of the bus reset
CFR at34h is valid.

5 ATSTARTED Asynchronous
transfer started

R/W Asynchronous transfer started. Activated when the bus has
been granted and the first quadlet from the FIFO is about to
be popped from the ATF.

6 RXGRFPKT GRF packet
received

R/W Receive packet to GRF. This bit is set whenever a complete
packet has been confirmed into the GRF (asynchronous or
isochronous).

7 CMDRST CSR register
reset request

R/W If CMDRST is set, the receiver has been sent a quadlet write
request to the Reset_Start CSR register(target address is
FFFF_F000_000Ch)

8 DMERROR Data Mover
error

R/W DM error. This bit will be set whenever there is an error in the
DM stream. For transmit, if the DM port is configured for byte
access and the speed code in the DM control register or the
asynchronous header register is set for 400 Mbps then this
bit will be set. Under this condition DMEN will be reset to 0
preventing further transmit. For receive this bit will be set if
there is a header or data CRC error or if the DM port is config-
ured for byte access and the data is received at 400 Mbps.

9 RXDMPKT Data Mover
packet receive

R/W Receive packet to DM. This bit is set whenever a packet is
received to the DM port.

10 SELFIDER Self-ID packet
error

R/W Set if an error in the self-ID quadlet/packet has been de-
tected.

2–10

BIT
NUMBER DESCRIPTIONDIRFUNCTIONBIT NAME

11 LINKON Link-ON detect R/W Set if a link-on pulse is detected on the LINKON input termi-
nal. This bit should be used by software to reactivate the LPS
output to the Phy.

12 ATSTK Transmitter is
stuck (AT)

R/W When ATSTK is set, the transmitter has detected invalid data
at the asynchronous transmit-FIFO interface. If the first
quadlet of a packet is not written to the ATF_First or
ATF_First&Update, the underflow of the ATF also causes an
ATStuck interrupt. When this state is entered, no asynchro-
nous packets can be sent until the ATF is cleared by way of
the CLR ATF control bit. Isochronous packets can be sent
while in this state.

13 ATFEMPTY ATF empty
interrupt

R/W ATFEMPTY. This bit is set to 1 when the ATF is empty.

14 SNTRJ Busy
acknowledge

sent by receiver

R/W When SNTRJ is set, the receiver is forced to send a busy ac-
knowledge to a packet addressed to this node because the
GRF overflowed.

15 HDRERR Header error R/W When HDRERR is set, the receiver detected a header CRC
error on an incoming packet that may have been addressed
to this node.

16 TCERR Transaction
code error

R/W When TCERR is set, the transmitter detected an invalid
transaction code in the data at the transmit-FIFO interface.

17 DMACKERR Data Mover
acknowledge

error

R/W DM acknowledge error. Set to 1 when the acknowledge re-
ceived is not ack complete. When this occurs, DMEN(bit 26)
of the DM Control CFR at04h will be reset to 0 and no more
asynchronous transmit from the DM port will be allowed to
take place until DMEN is set to 1.

18 FIFOACK FIFO
acknowledge

interrupt

R/W FIFO ack interrupt. This bit will be set when an acknowledge
from a previous ATF transmit has been received.

19 MCERROR Micro-interface
error

R/W Micro-interface error. Set whenever the microcontroller write
protocol is violated.

20 CYSEC Cycle second
incremented

R/W When CYSEC is set, the cycle-second field in the cycle timer
register has incremented. This occurs about every second
when the cycle timer is enabled.

21 CYST Cycle started R/W When CYST is set, the transmitter has sent or the receiver
has received a cycle-start packet.

22 CYDNE Cycle done R/W When CYDNE is set, an arbitration gap has been detected
on the bus after the transmission or reception of a cycle-start
packet. This indicates that the isochronous cycle is over.

23 RESERVED RESERVED

24 CYLST Cycle lost R/W When CYLST is set, the cycle timer has rolled over twice
without the reception of a cycle-start packet. This occurs
only when this node is not the cycle master. All isochronous
traffic stop once CYLST is set. However, asynchronous and
asynchronous streaming traffic will not be affected.

25 CARBFL Cycle
arbitration failed

R/W When CARBFL is set, the arbitration to send a cycle-start
packet has failed.

26 ARBGP Arbitration gap R/W When ARBGP is set, the serial bus has been idle for an ar-
bitration reset gap.

2–11

BIT
NUMBER DESCRIPTIONDIRFUNCTIONBIT NAME

27 SUBGP Subaction gap R/W When SUBGP is set, the serial bus has been idle for a subac-
tion gap time (fair-gap). This bit can be set only when the
REGRW bit has been set in the diagnostics register at 20h.

28–30 RESERVED RESERVED

31 IARBFL Isochronous
arbitration failed

R/W When IARFL is set, the arbitration to send an isochronous
packet has failed.

2.2.5 Cycle Timer Register at 14h
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

SECOND COUNT CYCLE OFFSETCYCLE COUNT

This register must be written to as a quadlet. The power-up reset value of this register = 0000_0000’h

BIT NUMBER BIT NAME FUNCTION NAME DIR DESCRIPTION

0–6 Seconds_count Seconds count R/W 1-Hz cycle timer counter

7–19 Cycle_count Cycle count R/W 8,000-Hz cycle timer counter

20–31 Cycle_offset Cycle offset R/W 24.576-MHz cycle timer counter

2–12

2.2.6 Isochronous Port Register at 18h
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

TA
G

1

TA
G

2

M
O

N
TA

G

IRPORT1 IRPORT2 ISYNCRCVN

IR
C

V
A

LL

The power-up reset value of this register = 0000_0000h

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0–1 TAG1 Tag Field 1 R/W The TAG1 field can further qualify the isochronous reception
for isochronous Receive PORT1 when the MONTAG bit is set.

2–7 IRPORT1 Isochronous
receive port
1 channel
number

R/W IR port1 contains the channel number of the isochronous
packets that the receiver accepts. The receiver accepts
isochronous packets with this channel number when the
IRP1EN is set.

8–9 TAG2 Tag Field 2 R/W The TAG2 field can further qualify the isochronous reception
for isochronous Receive PORT2 when the MONTAG bit is set.

10–15 IRPORT2 Isochronous
receive port
2 channel
number

R/W IR port2 contains the channel number of the isochronous
packets that the receiver accepts. The receiver accepts
isochronous packets with this channel number when the
IRP2EN is set.

16–23 RESERVED Reserved

24–27 ISYNCRCVN Synchronous
Enable

R/W In isochronous receive mode to the DM port, when the
ISYNCRCVN enable bits are high, the DMPRE terminal pulses
when an isochronous packet is received whose SYNC bit field
in its header matches the bit pattern in this field. The default is
0000b.

28 IRCVALL Receive all
isochronous

packets

R/W When the IRCVALL bit is set high, the TSB12LV32 receives all
isochronous packets regardless of the channel number or tag
number. The default is off.

29–30 RESERVED Reserved

31 MONTAG Match on tag R/W MONTAG is set when the user wants to only accept
isochronous packets that match both the tag field and the
channel number field. When set, MONTAG indicates that
isochronous receive data is accepted. The default is off.

2–13

2.2.7 Maint_Control Register at 1Ch
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

PING VALUEACK

E
_H

C
R

C

E
_D

C
R

C

N
O

_P
K

T

F
_A

C
K

N
O

_A
C

K

This register is used to generate test conditions. The control bits in this register allow errors to be inserted
into various places in the packets generated by this node. After the completion of error insertion, enabled
error-insertion controls are disabled. The power-up reset value of this register = 0000_0000’h

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0 E_HCRC Header CRC
Error

R/W If E_HCRC is set, the packet header CRC component of the
next primary packet generated by this node shall be in error or
shall be invalid; otherwise, this bit has no effect. After the next
packet for this node is generated, this bit will be cleared.

1 E_DCRC Data CRC
Error

R/W If E_DCRC is set, the packet data CRC component of the next
primary packet generated by this node shall be in error or shall
be invalid; otherwise, this bit has no effect. After the next packet
for this node is generated, this bit will be cleared to zero im-
mediately upon transmission of the erroneous CRC.

2 NO_PKT No Packet R/W If NO_PKT is set, the next primary packet to be generated by
this node shall be discarded. This bit will be cleared to zero im-
mediately after the next packet for this node is discarded.

3 F_ACK Ack Field R/W If F_ACK is set, the ack field shall be used within the next ac-
knowledge packet generated by this node. This bit will be
cleared to zero immediately after the next acknowledge packet
for this node is generated.

4 NO_ACK R/W If NO_ACK is set, the next acknowledge packet (that would
normally have been generated by this node) is not sent. This bit
will be immediately cleared to zero when the next acknowledge
packet for this node is discarded.

5–7 RESERVED Reserved

8–15 ACK R/W The 8-bit ACK field contains the 8-bit acknowledge packet
(ack_code and ack_parity) to be supplied when the F_ACK bit
indicates a modified acknowledge packet is to be generated.

16–23 RESERVED Reserved

24–31 PINGVALUE Ping timer
value

R/W Ping timer value. This value reflects the time it takes a node
to respond to a ping packet. The granularity of this timer is
40 ns.

2–14

2.2.8 Diagnostic Register at 20h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128
B

2_
B

U
S

Y

B
3_

B
U

S
Y

B
0_

P
N

D

B
1_

P
N

D

B
2_

P
N

D

B
3_

P
N

D

R
A

M
T

E
S

T

R
E

G
R

W

B
0_

B
U

S
Y

B
1_

B
U

S
Y

STATESEL0 STATESEL1 STATESEL2

The power-up reset value of this register = 0000_4AD0’h

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0 B0_BUSY Byte 0 busy R Byte 0 busy. When this bit is set, no microinterface write to byte 0 of
any CFRs is allowed. The microinterface must first poll this bit
before writing to byte 0.

1 B1_BUSY Byte 1 busy R Byte 1 busy. When this bit is set, no microinterface write to byte 1 of
any CFRs is allowed. The microinterface must first poll this bit
before writing to byte 1.

2 B2_BUSY Byte 2 busy R Byte 2 busy. When this bit is set, no microinterface write to byte 2 of
any CFRs is allowed. The microinterface must first poll this bit
before writing to byte 2.

3 B3_BUSY Byte 3 busy R Byte 3 busy. When this bit is set, no microinterface write to byte 3 of
any CFRs is allowed. The microinterface must first poll this bit
before writing to byte 3.

4 B0_PND Byte 0
pending

R Byte 0 pending. When this bit is set, it indicates that byte 0 of a word
or quadlet write has been accepted and the hardware is waiting for
the remaining bytes to be written. When the full write is complete,
this bit will be cleared.

5 B1_PND Byte 1
pending

R Byte 1 pending. When this bit is set, it indicates that byte 1 of a word
or quadlet write has been accepted and the hardware is waiting for
the remaining bytes to be written. When the full write is complete,
this bit will be cleared.

6 B2_PND Byte 2
pending

R Byte 2 pending. When this bit is set, it indicates that byte 2 of a word
or quadlet write has been accepted and the hardware is waiting for
the remaining bytes to be written. When the full write is complete,
this bit will be cleared.

7 B3_PND Byte 3
pending

R Byte 3 pending. When this bit is set, it indicates that byte 3 of a word
or quadlet write has been accepted and the hardware is waiting for
the remaining bytes to be written. When the full write is complete
this bit will be cleared.

8 RAM_TEST R/W This bit can be set only when TESTMODE is high. When this bit is
set, the built in self test(BIST) for the FIFOs (transmit and receive)
will be run. On completion of the test hardware will reset this bit to 0
and simultaneously set bit 30 and 31.

9 REGRW Register
read/write

access

R/W When REGRW is set, write-protected bits in various registers can
be written to.

10–15 RESERVED Reserved

16–19 STATSEL0 State0
select

R/W Status output select bits. Used to program the output of STAT0
terminal. See table in Operation section.

20–23 STATSEL1 State1
select

R/W Status output select bits. Used to program the output of STAT1
terminal. See table in Operation section.

24–27 STATSEL2 State2
select

R/W Status output select bits. Used to program the output of STAT2
terminal. See table in Operation section.

28–31 RESERVED Reserved

2–15

2.2.9 Phy Access Register at 24h
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

R
D

P
H

Y

PHYRGAD PHYRGDATA PHYRXAD PHYRXDATA

W
R

P
H

Y

The Phy access register allows access to the registers in the attached Phy. The most significant 16 bits send
read and write requests to the Phy registers. The least significant 16 bits are for the Phy to respond to a read
request sent by the TSB12LV32. The Phy access register also allows the Phy interface to send information
back to the TSB12LV32. When the Phy interface sends new information to the TSB12LV32, the Phy
register-information-receive (PhyRRx) interrupt is set. The Phy acess register is at address 24h and is a
read/write register. The power-up reset value of this register = 0000_0000’h .

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0 RDPHY Read Phy
register

R/W When RDPHY is set, the TSB12LV32 sends a read register
request with the address equal to the PHYRGAD field to the Phy
interface. This bit is cleared when the request is sent.

1 WRPHY Write Phy
register

R/W When WRPHY is set, the TSB12LV32 sends a write register
request with the address equal to the PHYRGAD field to the Phy
interface. This bit is cleared when the request is sent.

2–3 RESERVED RESERVED

4–7 PHYRGAD Phy-register
address

R/W PHYRGAD is the address of the Phy register that is to be
accessed.

8–15 PHYRGDATA Phy-register
data

R/W PHYRGDATA is the data to be written to the Phy register
indicated in PHYRGAD.

16–19 RESERVED RESERVED

20–23 PHYRXAD Phy-register
received ad-

dress

R/W PHYRXAD is the address of the register from which
PHYRXDATA came. For testing, these bits can be set only when
the REGRW bit has been set in the diagnostics register at20h.

24–31 PHYRXDATA Phy-register
received

data

R/W PHYRXDATA contains the data from the register addressed by
PHYRXAD. For testing, these bits can be set only when the
REGRW bit has been set in the diagnostics register at20h.

2.2.10 Reserved Registers at 28h – 2Ch

These registers are reserved for future use.

2–16

2.2.11 ���� ������ �	
���	
 �� ���

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

A
T

F
C

LR

A
T

F
F

U
LL

A
T

F
W

B
M

T
Y

G
R

F
E

M
P

T
Y

G
R

F
C

LR

ATFAVAIL C
D

ATACK GRFUSED

The power-up reset value of this register = 6083_0000’h

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0 ATFCLR ATF clear R/W ATF clear. When set to 1 will clear the ATF. This bit clears itself.

1 ATFWBMTY ATF write
buffer empty

R ATF write buffer empty. Set when the 4-quadlet FIFO write
buffer is empty.

2–11 ATFAVAIL ATF space
available

R Size of ATF available, in quadlets. The power-on value of this
field is 1000001000 (520 quadlets)

12 ATFFULL ATF full bit R When the ATF is full, this bit will be set.

13 GRFCLR GRF clear bit R/W GRF clear bit. Set to 1 to clear the contents of the GRF.

14 RESERVED Reserved

15 GRFEMPTY GRF empty R GRF empty. GRFEMPTY is set when the four-quadlet GRF
read buffer is empty.

16 CD Check 33rd bit
(GRF read)

R This bit is set to 1 when the quadlet pointed to by the GRF read
pointer is the first quadlet or the packet trailer.

17–21 ATACK ATF
acknowledge

R The acknowledge received in response to a packet sent via the
ATF.

22–31 GRFUSED GRF space
used

R GRF space used, in quadlets. This value is the amount of used
up quadlets in the GRF.

2–17

2.2.12 Bus Reset Register at 34h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

N
R

ID
V

A
L

NODECNT

R
O

O
T

C
O

N
T

E
N

D
E

R

IRMNODEID BUS NUMBER NODE NUMBER

The power-up reset value of this register = 81BF_FFC0’h .

NOTE:
The power-up reset value shown above assumes one node on the bus only. A
P1394a compliant Phy is assumed to be attached to the TSB12LV32. If a
1394-1995 Phy is attached to the TSB12LV32 link, the NODECNT filed will be 0.
This is due to the fact that a 1394-1995 compliant Phy does not report its self-ID
packet back to the local link.

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0 NRIDVAL Valid R When set, NRIDVAL indicates that the Node ID, IRM Node ID,
Node Count, and Root information are valid. This bit is read
only.

1 RESERVED Reserved

2–7 NODECNT Node count R NODECNT contains the number of nodes detected in the
system. This field is loaded with 1 following a power-on reset.
The NODECNT field is read only.

8 ROOT Root R Root is set when the current node is the root node. This bit is
read only.

9 CONTENDER Contender R Contender contains the status of the TSB12LV32 CONTNDR
terminal. This bit is read only.

10–15 IRMNODEID IRM node
identification

R IRMNODEID is the isochronous resource manager node
identification. If there is no IRM node present on the bus,
these bits will be equal to 3Fh. These bits are read only.

16–25 BUSNUMBER Bus number R/W BUSNUMBER is the 10-bit IEEE-1212 bus number. These
bits are set to 3FFh when RBUSNUM is set and there is a bus
reset.

26–31 NODENUMBER Node
number

R/W NODENUMBER is the node number of the current node.
These bits are automatically updated following a bus reset. To
change the node number of this node (spoofing), the
TESTMODE terminal must be set high.

2–18

2.2.13 Header0 Register at 38h

Header0 register must contain the isochronous header or the first quadlet of an asynchronous header if in
header insert mode. If not in header insert mode or if in receive mode, this register will be updated with the
received header. This register is write protected such that it cannot be written to unless automatic header
insert mode is enabled and DM is in transmit mode(i.e.,DMHDR=0 and DMRX=0). The power-up reset value
of this register = 0000_0000’h

ISOCHRONOUS HEADER FOR QUADLET 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

PACKET DATA LENGTH TAG CHANNEL NUMBER Tcode Sync Bits

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0–15 PacketData-
Length

Packet data
length

R/W Packet data length in bytes.

16–17 TAG Tag field R/W The tag field provides a high-level label for the format
of the data carried by the isochronous packet.

18–23 ChannelNumber Channel
number

R/W Channel number field

24–27 Tcode Transmission
code

R/W Packet transaction code

28–31 Syncbits Synchronization
code

R/W An application-specific control field

ASYNCHRONOUS HEADER FOR QUADLET 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

Tlabel Tcode PrioritySpeed Rt

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0–13 RESERVED RESERVED

14–15 Speed Speed R/W Speed at which the Phy is to transmit a packet:
00 => S100
01 => S200
10 => S400

16–21 Tlabel Transaction label R/W Transaction label

22–23 Rt Retry code R/W The retry code specifies whether this packet is a retry
attempt and the retry protocol to be followed by the
destination node.

24–27 Tcode Transaction code R/W The transaction code specifies the packet format and the
type of transaction that is to be performed.

28–31 Priority Priority field R/W Priority code (applies only to the backplane Phy)

2–19

2.2.14 Header1 Register at 3Ch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

Destination ID

Header1 register must contain the isochronous header or the second quadlet of an asynchronous header
if in header insert mode. If not in header insert mode or if in receive mode, this register will be updated with
the received header. This register powers up with all bits reset to 0. For multiple isochronous packets (within
the same isochronous cycle), this register would contain the isochronous header of the second isochronous
packet in the same format as the header0 register, if in header insert mode. This register is write protected
such that it cannot be written to unless automatic header insert mode is enabled and DM is in transmit mode
(i.e., DMHDR=0 and DMRX=0).

BIT
NUMBER BIT NAME FUNCTION DIR DESCRIPTION

0–15 DestinationID Destination ID R/W For asynchronous packets this field contains the destination
nodes ID.

16–31 RESERVED Reserved

2.2.15 Header2 Register at 40h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

HEADER2

Header2 register must contain the isochronous header or the third quadlet of a asynchronous header if in
header insert mode. If not in header insert mode or if in receive mode, this register will be updated with the
received header. This register powers up with all bits reset to 0. For multiple isochronous packets (within
the same isochronous cycle), this register would contain the isochronous header of the third isochronous
packet in the same format as the header0 register, if in header insert mode. This register is write protected
such that it cannot be written to unless automatic header insert mode is enabled and in transmit mode (i.e.,
DMHDR=0 and DMRX=0).

BIT
NUMBER BIT NAME DIR DESCRIPTION

0–31 Header2 R/W Header quadlet for asynchronous or isochronous packet.

2.2.16 Header3 Register at 44h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

HEADER3

Header3 register must contain the isochronous header or the fourth quadlet of an asynchronous header if
in header insert mode. If not in header insert mode or if in receive mode, this register will be updated with
the received header. This register powers up with all bits reset to 0. For multiple isochronous packets (within
the same isochronous cycle), this register would contain the isochronous header of the fourth isochronous
packet in the same format as the header0 register, if in header insert mode. This register is write protected
such that it cannot be written to unless automatic header insert mode is enabled and DM is in transmit mode
(i.e., DMHDR=0 and DMRX=0).

BIT
NUMBER BIT NAME DIR DESCRIPTION

0–31 Header3 R/W Header quadlet for asynchronous or isochronous packet.

2–20

2.2.17 Trailer Register at 48h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

NUMBER OF QUADLETS ACKCODE SPD

LP
S

_R
E

S
E

T

LP
S

_O
F

F

The power-up reset value of this register = 0000_0000’h .

BIT
NUMBER BIT NAME

FUNCTION
NAME DIR DESCRIPTION

0–1 RESERVED RESERVED

2–15 numofQuadlets Number of
Quadlets

R/W Total number of quadlets in the current packet (data payload
and header quadlets only)

16–18 RESERVED RESERVED

19–23 AckCode Acknowledge
Code

R/W This 5-bit field holds the acknowledge code sent by the
receiver for the current packet (see Note following the table):

Ack Code Name

00000 Reserved

00001 Ack_complete

00010 Ack_pending

00011 Reserved

00100 Ack_busy_X

00101 Ack_busy_A

00110 Ack_busy_B

00111 – 01100 Reserved

01101 Ack_data_error

01110 Ack_type_error

01111 Reserved

10000 No ack received These codes are add-
d b h li k l10001 Ack too long ed by the link layer

and are not part of the
10010 Ack too short

and are not art of the
IEEE 1394–1995

10011 – 11111 Reserved specification.

24–25 RESERVED RESERVED

26–27 SPD Speed Code R/W The spd field indicates the speed at which the current packet
was sent.
00 => 100 Mbit/s, 10 = > 400 Mbits/s,
01 => 200 Mbit/s, 11 is undefined.

28 – 29 RESERVED RESERVED

NOTE:
The acknowledge code specified by the IEEE 1394-1995 specification is a 4-bit
field. The AckCode field in this register is a 5-bit field. The TSB12LV32 logic core
is able to provide (specifiy) three additional ack codes, which are not part of the
original specification. The ack codes are 10000, 10001, and 10010.

2–21

BIT
NUMBER BIT NAME

FUNCTION
NAME DIR DESCRIPTION

30 LPS_RESET LPS Reset R/W Link power status reset. This bit is
set by software and is reset by
hardware. When this bit is set,
hardware will deactivate LPS for a
fixed period to ensure that the Phy
has reset the interface. It will then
reactivate LPS. When this bit is
cleared by hardware, a PHRST
interrupt will also be generated.

31 LPS_OFF LPS Off R/W Link power status off. If set to 1, this
bit will turn off the LPS pulsed
output to the Phy. This bit can also
be turned off from the Phy. Upon
detection of the LINKON pulsed
input signal, this bit will be turned off
allowing LPS to be driven to the
Phy which will, in turn, activate
SCLK and power up the link.

2.2.18 Asynchronous Retry Register at 4Ch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 3128

ASYNC RETRY COUNT RETRY INTERVAL

2.2.19 Asynchronous Retry Register at 4Ch

The power-up reset value of this register = 0000_0000’h .

BIT
NUMBER BIT NAME

FUNCTION
NAME DIR DESCRIPTION

0–7 ASYNC RETRY
COUNT

Retry count R/W Asynchronous retry count, specifies the number of times to
automatically retry sending asynchronous packets from the
ATF before giving up. After the retry count is exhausted
FIFOACK interrupt will be generated and the ATACK field in
CFR 30h will be updated to reflect the timeout.

8–15 RETRY
INTERVAL

Retry
interval

R/W Asynchronous retry interval, is the time in increments of
isochronous cycles, between asynchronous retries.

16–31 RESERVED RESERVED

2–22

3–1

3 Microcontroller Interface
The microcontroller interface allows the local microcontroller/microprocessor to communicate with the
internal control and configuration registers (CFR), asynchronous transfer FIFO (ATF) and general receive
FIFO (GRF). All microcontroller reads/writes are initiated by the microcontroller. The micro interface
supports read transactions from the CFR or GRF, and write transactions to the CFR or ATF.

The micro interface can operate in byte (8 bits) or word (16 bits) accesses. Each CFR, with the exception
of the cycle timer register at 14h and the Phy access register at 24h, can be addressed on byte or word
boundaries. The possible configurations for the interface are shown in Table 3–1. The TSB12LV32 can also
be directly connected to the Motorola 68000 and ColdFire line of MC/MP. Table 3–2 defines the mapping
of the micro interface pins between the TSB12LV32, the Motorola 68000 and the ColdFire microprocessor.

Table 3–1. Microcontroller Interface Modes of Operation

TSB12LV32 Mode-CONFIGURATION TERMINALS
MODE OF OPERATION

COLDFIRE M8BIT_SIZ0 MCMODE_SIZ1
MODE OF OPERATION

0 0 0 16-bit fixed timing mode.

0 0 1 16-bit MCS–MCA handshake mode.

0 1 0 8-bit fixed timing mode.

0 1 1 8-bit MCS–MCA handshake mode

1 0 0 ColdFire 4-byte (2-word) burst mode

1 0 1 ColdFire 2-byte (1-word) mode

1 1 0 ColdFire 1-byte mode (not supported)

1 1 1 ColdFire 16-byte (8-word) burst mode

Table 3–2. TSB12LV32 MP/MC Interface Terminal Function Matrix

TSB12LV32 Motorola 68000/ColdFire MICROCONTROLLER

TERMINAL NAME USAGE TERMINAL NAME USAGE

MA0 – MA6 Input A[6:0] Output

MD0 – MD15 I/O D[31:16] I/O

MCA Output TAZ Input

MCS Input TSZ Output

MWR Input R/WZ Output

MCMODE/SIZ1, M8BIT/SIZ0 Input SIZ1, SIZ0 Output

TEA Output TEAZ Input

BCLK Input SCLK / CLK Input

The Byte stacker allows the TSB12LV32 to be easily connected to most processors. The byte stacker
consists of a programmable 8-/16-bit data bus and a 7-bit address bus. The TSB12LV32 uses cycle-start
and cycle-acknowledge handshake signals to allow the local bus clock and the 1394 clock to be
asynchronous to one another. The TSB12LV32 is an interrupt driver to reduce cycling. All bus signal labeling
on the TSB12LV32 microcontroller interface use bit #0 to denote the most significant bit (MSB).

ColdFire is a trademark of Motorola, Inc.

3–2

3.1 Microcontroller Byte Stack (Write) Operation
The microcontroller byte stack (write) protocol is shown in Figure 3–1.

TSB12LV32 Write

M8BIT/SIZ0 = 1

Microcontroller Writes
MSByte (Byte 0)
to TSB12LV32

Microcontroller Writes
Byte 1 to TSB12LV32

Microcontroller Writes
Byte 2 to TSB12LV32

Microcontroller Writes
Byte 3 to TSB12LV32

TSB12LV32
Rejects
Quadlet

Write and
Issues a

MCERROR
Interrupt

Microcontroller Writes
MSDoublet (Doublet0) to

TSB12LV32

Microcontroller Writes
LSDoublet (Doublet1) to

TSB12LV32

TSB12LV32 Accepts Quadlet Write

No

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

No

No

No

No

No

No

Figure 3–1. Microcontroller Byte Stack Operation (Write)

3–3

3.2 Microcontroller Byte Unstack (Read)
The microcontroller byte unstack (read) protocol is shown in Figure 3–2.

TSB12LV32 Read

Yes

Microcontroller
Reads Same Quadlet

As Before

Microcontroller
Reads Same

Byte/Doublet As Before

TSB12LV32
Provides Updated
Byte/Doublet Data

TSB12LV32
Provides Held

Byte/Doublet Data

TSB12LV32
Provides Updated
Byte/Doublet Data

Yes No

Yes No

No

Figure 3–2. Microcontroller Byte Unstack Operation (Read)

3–4

3.3 Microcontroller Interface Read/Write Timing
The micro interface can be configured to operate in one of the following modes: handshake, fixed-timing,
or ColdFire mode. Burst transfers are only supported in the latter two modes.

3.3.1 Microcontroller Handshake Mode
Byte handshake read and word handshake read are shown in Figure 3–3 and Figure 3–4, respectively.

The MCS, MCA handshake timing sequence for a read transaction can be summarized as follows:

1. The host takes MCS low to signal the start of access. When the rising edge of BCLK samples
MCS low and MWR high, the MD[0:15] lines are enabled and driven with the read value. For an
8-bit data bus, MD[0:7] lines are not used.

2. Following the next rising edge of BCLK, the TSB12LV32 takes MCA low to signal that the
requested operation is complete. This is ensured to take place after two BCLK cycles. MCA
remains low with the MD lines containing valid read data until the micro interface releases MCS
(high state)

3. The host takes MCS high to signal the end of the process.

4. The TSB12LV32 takes MCA high to acknowledge the end of the access. This 3-states the MD
lines.

Another read or write transaction can begin after the next rising edge of BCLK. Note that data size is
determined by the MCMODE/SIZ1 and M8BIT/SIZ0 signals. The ColdFire signal is only asserted high when
the micro interface is operating in ColdFire mode.

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MCADR[0:6]

MD[0:7]

MD[8:15]

A1

D1 D2

A2

Figure 3–3. Byte Handshake Read

Figure 3–4 shows a word handshake read transaction. In this case, all 16 bits of the MD lines are used. Note
that MD[0] contains the MSB and MD[15] contains the LSB. As in the byte read case, another read or write
transaction can begin after the next rising edge of BCLK.

3–5

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

A1 A2

D2 D4

D1 D3

Figure 3–4. Word Handshake Read

Byte handshake write and word handshake write are shown in Figure 3–5 and Figure 3–6. In this case, the
micro interface asserts MCA low immediately after MCS is sampled low. The micro interface keeps MCA
low until it samples MCS high. For 8-bit accesses, the MD[0:7] lines are not used. If a transfer error condition
occurs, TEA will be asserted low for one BCLK cycle. An error condition can occur if the MCMODE/SIZ1
or M8BIT/SIZ0 line changes state during the access cycle.

3–6

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

A1 A2

D1 D2

Figure 3–5. Byte Handshake Write

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

A1 A2

D2 D4

D1 D3

Figure 3–6. Word Handshake Write

3–7

3.3.2 Microcontroller Fixed-Timing Mode

Byte and word fixed-timing reads shown in Figure 3–7 and Figure 3–8. Fixed-timing mode supports burst
transfers. If MCS is asserted low for more than one BCLK cycle, burst mode is enabled. The fixed-timing
burst mode does not have a limit on the maximum burst size allowed.

The timing sequence in the fixed-timing a read transaction can be summarized as follows:

1. The host pulses MCS low to signal the start of access. Pulsing MCS low for more than once clock
cycle will enable burst mode. The number of BCLK cycles during which MCS is asserted low
determines the burst size.

2. When the rising edge of BCLK samples MCS low and MWR high, the register value or GRF data
pointed to by MA is latched onto the MD lines. The MD lines will latch on every rising edge of BCLK
if MCS is asserted low.

3. After 2 BCLK cycles, the TSB12LV32 pulses MCA low for one clock cycle to signal the completion
of the requested operation. If MCS is pulsed low for n BCLK cycles, MCA will also be pulsed low
for n cycles. Note that MA needs only contain valid data during the first cycle in which MCS is low.
Except for the first one, every data transfer takes only one BCLK cycle. If a read transaction is
accessing the CFR, it may not cross any register boundary.

Another read or write transaction can begin after the next rising edge of BCLK. Note that data size is
determined by the MCMODE/SIZ1 and M8BIT/SIZ0 signals. The ColdFire signal is only asserted high when
the micro interface is operating in ColdFire mode.

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

A1 A2

D1 D2 D3 D4 D5

Figure 3–7. Byte Fixed-Timing Read

3–8

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

A1 A2

D2 D4 D6 D8 D10

D1 D3 D5 D7 D9

Figure 3–8. Word Fixed-Timing Read

Byte fixed timing write and word fixed timing write are shown in Figure 3–9 and Figure 3–10.

The first data transfer takes one extra wait cycle. All subsequent data transfers take only one BCLK cycle.
For an 8-bit data bus, MD[0:7] is not used (don’t care) and is driven with zeros. If the write transaction is
accessing the CFR register, it may not cross any register boundary. First write data for each ATF quadlet
must start at byte0. Write accesses to the ATF must be quadlet aligned. The micro interface will wait for all
bytes of each quadlet to be available before creating a write request to the ATF. If a transfer error condition
occurs, TEA will be asserted low for one BCLK cycle. An error condition can occur if the MCMODE/SIZ1
or M8BIT/SIZ0 lines transition during the access cycle.

3–9

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MA[0:6]

MD[0:7]

MD[8:15]

A1 A2

D2 D2 D3 D4 D5

MCS

MCA

Figure 3–9. Byte Fixed-Timing Write

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MCD[0:7]

MD[8:15]

A1 A2

D1

D2

D3 D5 D7 D9

D4 D6 D8 D10

Figure 3–10. Word Fixed-Timing Write

3–10

3.3.2.1 GRF READ

The timing requirements when performing a GRF read access in fixed–timing mode are different from other
access modes. In fixed–timing mode, the GRF must be accessed only on a quadlet boundary. In other
words, only quadlet fetches are legal. If the microinterface is configured for a byte access, this means that
MCSZ must be asserted low for 4 BCLK cycles, as shown in Figure 3–11. If configured for word access, then
MCSZ must only be asserted for 2 BCLK cycles, as shown in Figure 3–12.

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

XX XX

ZZ XX ZZ

ZZ ZZ

GRF ADDRESS

D1 D2 D3 D4

Figure 3–11. GRF Read Access (Byte Fixed-Timing Mode)

3–11

BCLK

COLDFIRE

M8BIT/SIZ0

MCMODE/SIZ1

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

XX XX

ZZ ZZ

ZZ ZZ

GRF ADDRESS

D2

D3

D4

D1

Figure 3–12. GRF Read Access (Word Fixed-Timing Mode)

3–12

3.3.3 Microcontroller ColdFire Mode
The TSB12LV32 supports a glueless interface to the ColdFire family of microcontrollers. To enable this
mode, the ColdFire pin must be asserted and kept high for the entire access cycle. The timing diagram for
a ColdFire read operation is shown in Figure 3–13.

The timing sequence for a ColdFire read access can be summarized as follows:

1. The ColdFire pulses MCS low for one BCLK cycle to signal the start of access.MCS must only
be asserted for one clock cycle.

2. When the rising edge of BCLK samples MCS low and MWR high, MD lines are enabled, but do
not yet contain valid data. The MA lines should contain the address information at this point. MA
is only required to be available for one BCLK cycle. The data transfer size is determined by the
state of the MCMODE/SIZ1 and M8BIT/SIZ0 lines.

3. The TSB12LV32 pulses MCA low for n clock cycles to signal the requested operation is complete.
The number n depends on the data transfer size specified by the MCMODE/SIZ1 and
M8BIT/SIZ0 lines. The CFR register value or GRF memory data pointed to by the MA lines is
latched onto the MD lines. MCA will pulse for one clock cycle on every word (2-Bytes) transfer.

The microinterface does burst transfers if the MCMODE/SIZ1 and M8BIT/SIZ0 lines indicate more than
2-bytes (1 word) of data. The TSB12LV32 does not support 1-byte transfers in the ColdFire mode. If a
transfer error condition occurs, TEA will be asserted low for one BCLK cycle. An error condition can occur
if the MCMODE/SIZ1 and M8BIT/SIZ0 lines specify a transfer size of 1-byte or if their state changes during
the access cycle. Note that all 16-bits of the MD lines are always used in this mode.

BCLK

COLDFIRE

MCMODE/SIZ1

M8BIT/SIZ0

MWR

MCS

MCA

MA[0:6]

MD[0:7]

MD[8:15]

A1 A2

D2 D6

A3

D1 D3

D4

D5

Figure 3–13. ColdFire Read

The ColdFire write transaction is shown in Figure 3–14. Unlike the handshake and fixed-timing write modes,
the ColdFire write operation requires the data on the MD lines be available one BCLK cycle after the address
on the MA lines is sampled. Violating this timing requirement may result in a transfer error, causing TEA to
be asserted low for one BCLK cycle.

3–13

BCLK

COLDFIRE

MCMODE/SIZ1

M8BIT/SIZ0

MWR

MCA

MA[0:6]

MD[0:7]

MD[8:15]

TEA

A1 A2

D2 D6

A3

D1 D3

D4

D5

MCS

Figure 3–14. ColdFire Write

3.3.4 Microcontroller Critical TIming †

PARAMETER TERMINAL NAME ACCESS TYPE MIN MAX UNIT

td0 MCA Read/Write 3.75 9.5

td1 Delay time (BCLK to Q) TEA Read/Write 3.75 9.5 ns

td2 MD[0:15] Read 2.5 10.5

tsu0 MWR Read/Write 4.5

tsu1 MCS Read/Write 6.5

tsu2
Setup time to BCLK

MA[0:6] Read/Write 6.5
ns

tsu3
Setup time to BCLK

M8BIT/SIZ0 Read/Write 5
ns

tsu4 MCMODE/SIZ1 Read/Write 3.5

tsu5 MD[0:15] Write 3

th0 MWR Read/Write 1.75

th1 MCS Read/Write 1.5

th2
Hold time from BCLK

MA[0:6] Read/Write 2
ns

th3
Hold time from BCLK

M8BIT/SIZ0 Read/Write 1.5
ns

th4 MCMODE/SIZ1 Read/Write 1.75

th5 MD[0:15] Write 1.5

† All parameters are referenced to the rising edge of BCLK.

3–14

BCLK

MWR

MCS

MCA

MA[0:6]

MD[0:15]

TEA

M8BIT/
SIZ0

MCMODE/
SIZ1

XX XX XX

XXXX XXXX XXXX

S0

S1

D0

S2

H0

H1

H2

S3

S4

H3

H4

D2

D1

S5
H5

ADDRESS

DATA

ADDRESS

DATA

3.3.5 Endian Swapping

The term endianness refers to the way data is referenced and stored in a processor’s memory. For example,
consider a 32-bit processor; any 32-word consists of four bytes which may be stored in memory in one of
two ways. Of the four bytes, either byte 3 will be considered the most significant byte and byte 0 the least
significant byte, or vice versa (see Figures 3–15 and 3–16). A little endian type memory considers byte 0
the least significant byte, whereas a big endian type memory considers byte 3 to be the least significant byte.

Byte #0

(Most Significant Byte)
Byte #1 Byte #2

Byte #3

(Least Significant Byte)

Figure 3–15. Big Endian Format

Byte #3

(Most Significant Byte)
Byte #2 Byte #1

Byte #0

(Least Significant Byte)

Figure 3–16. Little Endian Format

The TSB12LV32 configuration register space (CFR) and FIFO memory, both of which are 32-bits wide, use
a big endian architecture. The TSB12LV32 uses the same endianness as the internal P1394 link core. This
means that the most significant byte is the left-most byte (byte 0) and the least significant byte is the right
most byte (byte 3).

3.3.5.1 Data and Address Invariance for Little Endian Processors

For little-endian processors, there are two modes of byte swapping, address invariant and data invariant.
Address invariance preserves byte ordering between the internal system (GP2Lynx registers and FIFO) and
external system (microcontroller/processor). Data invariance preserves the bit significance of the data, but
changes the byte significance between the internal and external systems. The MDINV pin controls how the
write/read data is swapped at the data bus (i.e., determines how the received bytes from the microcontroller
are mapped into the TSB12LV32 internal registers and memory space). Note that when the COLDFIRE pin
is high, the MDINV pin has no affect and data is always interpreted in as big endian. Refer to Literature

3–15

Number SLLA021.pdf ENDIANNESS AND THE TSB12LV41 (MPEG2LYNX) MICROPROCESSOR
INTERFACE for a detailed description of endianness.

The pin settings for all the swapping operation are shown in Table 3–3. Note that in performing the byte
swapping operation in the little-endian mode, only the two least significant bits of the 32-bit address inside
are involved. This is because there is a total of four bytes associated with the swapping operation.

Table 3–3. Endian Swapping Operation

LENDIAN M8BIT/SIZ0 MDINV DESCRIPTION

0 X X Big endian mode, no manipulation on byte address and data bytes

1 1
(8-bits wide)

1 Little endian data invariance mode, swap the low order 2 bit address:
External low order 2-bit address Internal low order 2-bit address

Byte Address 00 ↔ Byte Address 11
Byte Address 01 ↔ Byte Address 10
Byte Address 00 ↔ Byte Address 11
Byte Address 11 ↔ Byte Address 00

1 01
(16-bits wide)

1 Little endian data invariance mode, swap the low order 2 bit address:
External low order 2-bit address Internal low order 2-bit address

Word Address 00 ↔ Word Address 10
Word Address 10 ↔ Word Address 00

1 1 0 16-bit little endian address invariance mode, swap data between MD[0:7] and
MD[8:15].

1 1 0 8-bit little endian address invariance mode, no manipulation on byte address
and data bytes.

Since the TSB12LV32’s microprocessor interface is either 8 bits or 16 bits wide, but the internal configuration
registers are 32 bits wide, a byte stacking (for writes) and a byte unstacking (for reads) operation must be
performed on the data bus. For little endian processors, the TSB12LV32 can perform the swapping of bytes
on the data bus required to allow both the processor and the TSB12LV42 to interpret the data the same.
There are two methods of swapping the data bytes, address invariant and data invariant. Both of these
methods are described below.

NOTE:
For the host processor to work correctly with the TSB12LV32, users must correctly
connect the address and data busses of their microprocessor to the TSB12LV32’s
microprocessor port. Users must connect the MSB (most significant bit) of their
address/data bus to the address/data MSB of the TSB12LV32. This must be done
regardless of bit number labeling or which type of endianness their microprocessor
uses.

3.3.5.2 Data Invariant System Design

Figure 3–17 shows a little endian data invariant system design example. In this system, the actual value of
the data as it was stored in the processor’s memory is preserved. Data invariant designs do not preserve
the addresses when mapping between endian domains. If the data represents an integer, it is interpreted
the same by both systems. If the data represents a string, an array, or some other type of byte indexed
structure, it is interpreted differently by both systems.

3–16

aa

Byte 3
(MSByte)

Little Endian Processor
Memory

dd

(MSByte)
Byte 0

TSB12LV32 CFR/Memory

bb

Byte 2

cc

Byte 1

cc

Byte 1

bb

Byte 2

dd

Byte 0
(LSByte)

aa

(LSByte)
Byte 3

Figure 3–17. Little-Endian Data Invariance Illustration Chart

aa

Byte 3
(MSByte)

Little Endian Processor
Memory

dd

(MSByte)
Byte 0

TSB12LV32 CFR/Memory

bb

Byte 2

cc

Byte 1

cc

Byte 1

bb

Byte 2

dd

Byte 0
(LSByte)

aa

(LSByte)
Byte 3

Figure 3–18. Little-Endian Address Invariance Illustration Chart

3.3.5.3 Address Invariant System Design

Figure 3–18 shows a little-endian address invariant system design example. In this case, the byte ordering
between both systems is preserved (i.e., byte address is preserved). For example, byte 3 in the little endian
processor memory is also byte 3 in the TSB12LV32 CFR space. As Figure 3–18 shows, the byte ordering
is automatically maintained by the TSB12LV32 when in the address-invariance mode by swapping the order
in which the incoming bytes on the microprocessor are written to the CFRs.

4–1

4 Link Core
This section describes the link core components and operations. Figure 4–1 shows the link core
components.

Transmitter

Cycle Timer

Cycle Monitor

CRC

Receiver
P

hy
si

ca
l I

nt
er

fa
ce

Figure 4–1. Link Core Components

4.1 Physical Interface
The physical (Phy) interface provides Phy-level services to the transmitter and receiver. This includes
gaining access to the serial bus, sending packets, receiving packets, and sending and receiving
acknowledge packets. The Phy interface module also interfaces to the Phy chip and implements Texas
Instruments patent-pending bus-holder galvanic isolation.

4.2 Transmitter
The transmitter retrieves data from either the asynchronous transmit FIFO (ATF) or the data mover (DM)
port and creates correctly formatted serial-bus packets to be transmitted through the Phy interface. When
data is present at the ATF interface to the transmitter, the TSB12LV32 Phy interface arbitrates for the serial
bus and sends a packet. When data is present at the DM Port, the TSB12LV32 arbitrates for the serial bus
during the next isochronous cycle. The transmitter autonomously sends the cycle-start packets when the
chip is a cycle master.

4.3 Receiver
The receiver takes incoming data from the Phy interface and determines if the incoming data is addressed
to this node. When the incoming packet is addressed to this node, the CRC of the packet is checked. If the
header CRC is good, the header is confirmed in the general-receive FIFO (GRF). For block and isochronous
packets, the remainder of the packet is confirmed one quadlet at a time. The receiver places a status quadlet
in the GRF after the last quadlet of the packet is confirmed in the GRF. The status quadlet contains the error
code for the packet. In the case of asynchronous packets, the error code is the acknowledge code that is
sent (returned) for that packet. For isochronous and broadcast packets that do not need acknowledge
packets, the error code is the acknowledge code that would have been sent. This acknowledge code tells
the transaction layer whether or not the data CRC is good or bad. If the header CRC is bad, the header is
flushed and the rest of the packet is ignored. When a cycle-start packet is received, it is detected and the
cycle-start packet data is sent to the cycle timer. Cycle-start packets are not placed in the GRF like other
quadlet packets.

4–2

4.4 Cycle Timer
The cycle timer is only used by nodes that support isochronous data transfer. The cycle timer is a 32-bit
cycle-timer register. Each node with isochronous data-transfer capability has a cycle-timer register as
defined by the IEEE 1394–1995 specification. In the TSB12LV32, the cycle-timer register is implemented
in the cycle timer located in the IEEE-1212 initial register space at location 200h and can also be accessed
through the local bus at TSB12LV32 CFR address 14h. The low-order 12 bits of the timer are a modulo 3072
counter, which increments once every 24.576-MHz clock periods (or 40.69 ns). The next 13 higher-order
bits are a count of 8,000-Hz (or 125-µs) cycles, and the highest 7 bits count seconds. The cycle timer
contains the cycle-timer register. The cycle-timer register consists of three fields: cycle offset, cycle count,
and seconds count. The cycle timer has two possible sources. First, when the cycle source (CYSRC) bit
in the configuration register (bit 21 at 08h) is set, then the CYCLEIN input causes the cycle count field to
increment for each positive transition of the CYCLEIN input (8 kHz) and the cycle offset resets to all zeros.
CYCLEIN should only be the source when the node is the cycle master. The timer can also be disabled using
the cycle-timer-enable bit (CYTEN) in the control register. The second cycle-source option is when the
CYSRC bit is cleared. In this state, the cycle-offset field of the cycle-timer register is incremented by the
internal 24.576-MHz clock. The cycle timer is updated by the reception of the cycle-start packet for the
non-cycle master nodes. The cycle-offset field in the cycle-start packet is used by the cycle-master node
to keep all nodes in phase and running with a nominal isochronous cycle of 125 µs. The cycle-start bit is
set when the cycle-start packet is sent from the cycle master node or received by a noncycle master node.

4.5 Cycle Monitor
The cycle monitor is only used by nodes that support isochronous data transfer. The cycle monitor observes
chip activity and handles scheduling of isochronous activity. When a cycle-start message is received or sent,
the cycle monitor sets the cycle-started interrupt bit. It also detects missing cycle-start packets and sets the
cycle-lost interrupt bit when this occurs. When the isochronous cycle is complete, the cycle monitor sets the
cycle-done-interrupt bit. The cycle monitor instructs the transmitter to send a cycle-start message when the
cyclemaster bit (CYMAS) is set in the control register.

4.6 Cyclic Redundancy Check (CRC)
The CRC module generates a 32-bit CRC for error detection. This is done for both the header and the data.
The CRC module generates the header and data CRC for transmitting packets and checks the header and
data CRC for received packets (see the IEEE-1394–1995 standard for details on the generation of the CRC).

4.7 Packet Routing Control Logic
Asynchronous and Isochronous receive packets will be routed to the DM port or the GRF via the receiver
routing control logic. Any asynchronous packet addressed in the range of 0 to 0000_FFFF_FFFF and is of
the write request type will be routed to the DM port according to Table 4–1. When bit IRCVALL (at 18h) is
set, all isochronous data will be routed according to Table 4–1. Note that self-ID packets and Phy packets
are always received by the GRF regardless of the routing control settings.

4–3

Table 4–1. Receiver Routing

AR0 AR1 DMASYNC DMRX DATA MOVER (DM) GENERAL-RECEIVE FIFO (GRF)

0 0 X 0 Receives no data;
Power-on default

Receives all data (asynchronous and
isochronous); power-on default

1 1 Receives Read Response
Packets with a tlabel of 11XXXX

Receives all other asynchronous
packets and isochronous packets

0 1 1 1 Receives asynchronous data
only

Receives isochronous/asynchronous
streaming data only

X 0 Receives no data Receives all data

0 1 Receives isochronous/
asynchronous streaming data
only

Receives asynchronous data

1 0 X 0 Receives no data Receives all data

0 1 Receive no data Receives all data

1 1 Receives addressed write
request asynchronous packets in
the address range of
0000_0000_0000 -
0000_FFFF_FFFFh

Receives addressed asynchronous
packets in the address range of
0001_0000_0000-FFFF_FFFF_FFFFh.
Also receives any asynchronous
packets not going to the DM port
regardless of the address. Receives
isochronous packets too.

1 1 X 0 Receives no data Receives all data

X 1 Receive all data (asynchronous
and isochronous)

Receives no data

4–4

5–1

5 Data Mover Port Interface
The data mover (DM) port in the TSB12LV32 is the physical medium by which autonomous streams of
different types are piped to/from an application that uses the TSB12LV32. The DM port is meant to handle
an external memory interface of large data packets.

The DM port can support three types of packets:

• Asynchronous
• Isochronous
• Asynchronous Streaming (1394a supported format)

The port can be configured to either transmit or receive data packets at one time (half duplex). A typical
system diagram is shown in Figure 5–1:

Application

Phy
Stream Process

(External Memory Interface) TSB12LV32

µProcessor/ µController
(ColdFire )

Data Mover I/F

Microcontroller Interface

Phy/Link I/F

Figure 5–1. A Typical System Diagram

The DM port will perform all operations synchronously, utilizing a 24.576 MHz output clock called DMCLK.
DMCLK is essentially SCLK/2. There is no asynchronous logic within the DM block. All data transfers are
synchronized to the DMCLK output. The DM operates by setting the DM control register at 04h and the
control register at 08h of the CFR. The DM interfaces internally with the configuration register (CFR) block
and the link core (Link) block and interfaces externally with the data mover external interface.

The advantages of the DM port can be summarized as follows:

• Transmits or receives large blocks of data at speeds up to 400 Mbits/s.
• Allows for a large external FIFO specific to an individual application.
• Handles asynchronous, isochronous, or asynchronous streaming packets.

5–2

Isochronous DM Idle
(DMDONE is high)

DMEN is 1, DMASYNC is 0
DMREADY is High?

Isochronous DM Go
(DMDONE is low)

New Isochronous Cycle Started?

Isochronous Arbitrate/Xmit
(DMDONE is low)

Arbitrate for Isochronous Transmit
and Send One Isochronous Packet

All Channels Done
(DMDONE is low)

End of All Channels?

Data Block Done
(DMDONE is low)
End of All Packets

For This Data Block?

Yes

Yes

Yes

Yes

No

No

Yes

No

Handshake
(DMDONE is high)
DMREADY is Low?

Yes

Handshake
Mode?

Yes

No

No

No

NOTE A: DMEN and DMASYNC are configuration register bits, DMREADY is an input terminal, and DMDONE is an
output terminal.

Figure 5–2. Isochronous DM Flow Control (TSB12LV32 Transmit)

5–3

Bit 0

MSB LSB

Data Mover Data
DMD0 – DMD15

1394 Packet Data . . .Bit 31

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15

Figure 5–3. Transmit Data Path

The DM isochronous transmit reads data from the DM interface (DMD[0–15] lines) and passes it to the 1394
isochronous transmit interface in accordance with Figure 5–2. The data path is shown in Figure 5–3. The
asynchronous header registers will contain the latest extracted header from the asynchronous stream when
the header is supplied via the DM port. For automatic header insertion, the datalength field in the header
register will be automatically updated by the payload size of the previous asynchronous transmit packet.
This option can be turned off by setting the appropriate bits in the DM control registers. The DM
asynchronous transmit reads data from the DM interface (DMD[0:15] lines) and passes it to the 1394
asynchronous interface in accordance with Figure 5–4

Asynchronous DM Idle
(DMDONE is high)

DMEN is 1, DMASYNC is 0
DMREADY is High?

Asynchronous Arbitrate/Xmit
(DMDONE is low)

Arbitrate for Asynchronous Transmit
and Send Asynchronous Packet

Wait for Acknowledge

Ack Complete received?

Data Block Done
(DMDONE is low)
End of All Packets

For This Data Block?

Yes

Yes

No

Yes

No

No

Yes

DM Disabled
Re-enable via

Software

NOTE: DMEN and DMASYNC are configuration register bits, DMREADY is an input terminal, and DMDONE is an output
terminal.

Figure 5–4. Asychronous DM Flow Control (TSB12LV32 Transmit)

The DM Interfaces to the configuration register (CFR), the link core (Link), and the external data mover
interface (DMI).

5–4

5.1 Data Mover Data Flow Diagram
The data mover has eight modes of operation. There are four modes for transmit and four modes for receive.

Definitions

• Data mover port configured to operate in transmit mode means that the packet data is received
through the data mover port and forwarded (unbuffered) to the link core transmit logic to be sent
to the physical layer device (Phy), which will, in turn, transmit the data onto the 1394 bus.

• Data mover port configured to operate in receive mode means that the packet data is received
by the link core receive logic from the 1394 bus through the Phy. The data is then routed by the
link core to the data mover port without any internal buffering.

5.1.1 Isochronous Receive

In all the isochronous receive modes, the packet header information is always loaded into the header
registers. The packet header quadlet is loaded into the Header0 register at 38h and the packet trailer quadlet
is loaded into the trailer register at 48h.

5.1.1.1 Isochronous Packet Receive Without Header and Trailer

Step 1: Isochronous packet is received through the receiver logic of the link core

Step 2: The packet header is stripped off from the packet and loaded into the header0 register at
38h.

Step 3: Packet data (payload only) is routed directly to the DM port without any buffering.

Step 4: Trailer quadlet is loaded into the trailer register at 48h

CFR REGISTER

Step 1Data
Mover
Port

Header0 Register at 38h

Trailer Register at 48h

LINK CORE

Transmitter

Receiver

Step 2

Step 4

Step 3 (Packet Data) Packet received from
1394 bus through the
Phy

Figure 5–5. Isochronous Receive Without Header and Trailer

5.1.1.2 Isochronous Packet Receive With Header and Trailer

Step 1: Isochronous packet is received through the receiver block of the link core.

Step 2: The header quadlet is both loaded into the header0 register at 38h and routed to the DM
port without any buffering.

Step 3: Packet data (payload only) is sent directly through the DM port only.

Step 4: Trailer quadlet is loaded into the trailer register at 48h. It is also forwarded to the DM port.

5–5

CFR REGISTER

Step 1Data
Mover
Port

Header0 Register at 38h

Trailer Register at 48h

LINK CORE

Transmitter

Receiver

Step 2

Step 4

Step 4 (trailer quadlet)

Packet received from
1394 bus through the
Phy

Step 3 (packet data)

Step 2 (header quadlet)

Figure 5–6. Isochronous Receive With Header and Trailer

5.1.2 Isochronous Transmit

There are two ways (modes of operation) to transmit isochronous data through the data mover:

• Isochronous packet transmit with automatic header insertion.
• Isochronous packet transmit without automatic header insertion.

The difference between the two modes lies in the mechanism in which the header information is inserted
into the data stream. However, in both cases the header information is always loaded into the link core
transmitter from the header register.

5.1.2.1 Isochronous Packet Transmit With Automatic Header Insertion

In this mode, the header information is first loaded into the header0 register through the microcontroller
interface. The header will subsequently be automatically inserted into the data once the data mover starts
streaming it through to the link core transmitter logic. The following steps further illustrate the process:

CFR REGISTER

Step 4

Data
Mover
Port

Header0 Register at 38h

LINK CORE

Transmitter

Receiver

Step 2

Step 3

Step 3 (Packet Data)

Packet sent
to 1394 bus
through the
Phy

Step 1

(packet data)

Micro-
controller
Interface Header

loaded

Step 1

Write
Header

Information

Figure 5–7. Isochronous Transmit With Auto Header Insertion

5–6

Step 1: Isochronous header quadlet is loaded into header0 register at 38h through a write
operation from the microcontroller interface.

Step 2: Header quadlet is forwarded to the transmitter of the link core.

Step 3: Packet data (payload only) is transmitted through the data mover directly to the transmitter
of the link core.

Step 4: Isochronous packet is sent to the 1394 bus through the Phy.

NOTE:
The data coming through the data mover port is typically supplied by an external
fast memory block (i.e., FIFO, DRAM). This external memory logic may begin
transmitting data through to the data mover port exactly one DMCLK cycle after the
DMPRE output pin on the GP2Lynx is asserted high.

5.1.2.2 Isochronous Packet Transmit Without Automatic Header Insertion

In this mode, the packet header and data information is loaded through the data mover port. This mode is
sometimes called isochronous packet transmit with manual header insertion. This is because the header
quadlet is not preloaded into the header0 register via the microcontroller interface. Instead, it is inserted
manually into the data stream at the same time as the rest of the packet. The following steps further illustrate
the process:

Step 1: Isochronous header information (only one header quadlet in this case) is fetched into the
header0 register at 38h through the data mover port.

Step 2: Header quadlet is forwarded to the transmitter of the link core.

Step 3: Packet data (payload only) is transmitted through the data mover directly to the transmitter
of the link core.

Step 4: Isochronous packet is sent to the 1394 bus through the Phy.

CFR REGISTER

Step 4

Data
Mover
Port

Header0 Register at 38h

LINK CORE

Transmitter

Receiver

Step 2

Step 3 (Packet Data)
Packet sent
to 1394 bus
through the
Phy

Step 1 (header fetched)

Step 1
(header supplied)

Step 3
(packet data)

Figure 5–8. Isochronous Transmit Without Auto Header Insertion

5–7

5.1.3 Asynchronous Receive

In all the asynchronous receive modes, the packet header information is always loaded into the header
registers. In quadlet receive mode, the first three header quadlets are loaded into the header0at 38h,
header1at 3Ch, and header2at 40h registers, respectively. The trailer quadlet is loaded into the trailer
register at 48h. In block receive mode, the only additional step performed is loading the fourth header
quadlet received into the header3 register at 44h.

5.1.3.1 Asynchronous Packet Receive Without Headers and Trailer

Step 1: Asynchronous packet is received through the receiver logic of the link core

Step 2: The packet headers are stripped off from the packet and loaded into the header registers:

a) If in quadlet receive mode, the three header quadlets are loaded into the header0–
header2 registers.

b) If in block receive mode, the four header quadlets are loaded into the header0–
header3 registers.

Step 3: Packet data (payload only) is routed directly to the DM port without any buffering.

Step 4: Trailer quadlet is loaded into the trailer register at 48h

CFR REGISTER

Step 1
Data

Mover
Port

Header0 Register at 38h

Trailer Register at 48h

LINK CORE

Transmitter

Receiver

Quadlet#0

Step 4

Packet received
from 1394 bus
through the Phy

Step 3 (packet data)

Header1 Register at 3Ch
Quadlet#1

Header2 Register at 40h
Quadlet#2

Header3 Register at 42h
Quadlet#3

Step 2

Loaded only in
Block Receive

Figure 5–9. Asynchronous Receive Without Headers and Trailer

5–8

5.1.3.2 Asynchronous Packet Receive With Headers and Trailer

Step 1: Asynchronous packet is received through the receiver logic of the link core.

Step 2: The header quadlets are loaded into their respective header registers AND routed to the
DM port without any buffering.

Step 3: Packet data is routed directly to the DM port (no buffering performed).

Step 4: Trailer quadlet is loaded into the trailer register at 48h.

CFR REGISTER

Step 1

Header0 Register at 38h

Trailer Register at 48h

LINK CORE

Transmitter

Receiver

Quadlet#0

Packet received
from 1394 bus
through the Phy

Header1 Register at 3Ch
Quadlet#1

Header2 Register at 40h
Quadlet#2

Header3 Register at 42h
Quadlet#3

Loaded only in
Block Receive

Data
Mover
Port

Step 4 (trailer quadlet)
Step 3 (packet data)

Step 2 (header quadlet)

Figure 5–10. Asynchronous Receive With Headers and Trailer

5.1.4 Asynchronous Transmit

There are two ways (modes of operation) to transmit asynchronous data through the data mover:

• Asynchronous packet transmit with automatic header insertion.
• Asynchronous packet transmit without automatic header insertion.

The difference between the two modes lies in the mechanism in which the header information is inserted
into the data stream. However, in both cases, the header information is always loaded into the link core
transmitter from the header registers.

5–9

5.1.4.1 Asynchronous Packet Transmit With Automatic Header Insertion

In this mode, the header information is first loaded into the header0–header3 registers through the
microcontroller interface. The headers will subsequently be automatically inserted into the data once the
data mover starts streaming it through to the link core transmitter logic. The following steps further illustrate
the process:

Step 1: Asynchronous header quadlets (3 quadlets in quadlet receive mode and 4 quadlets in block
receive mode) are loaded into header0–header3 registers through a write operation from
the microcontroller interface. Loading one header requires a single write operation.

Step 2: Header quadlets are forwarded to the transmitter of the link core.

Step 3: Packet data (payload only) is transmitted through the data mover directly to the transmitter
of the link core.

Step 4: Asynchronous packet is sent to the 1394 bus through the Phy.

NOTE:
The data coming through the data mover port is typically supplied by an external
fast memory block (i.e., FIFO, DRAM). This external memory logic may begin
transmitting data through to the data mover port exactly one DMCLK cycle after the
DMPRE output pin on the GP2Lynx is asserted high.

CFR REGISTER

Step 4

Header0 Register at 38h

LINK CORE

Transmitter

Receiver

Quadlet#0

Packet sent
to 1394 bus
through the
Phy

Header1 Register at 3Ch
Quadlet#1

Header2 Register at 40h
Quadlet#2

Header3 Register at 42h
Quadlet#3

Loaded only in
Block Receive

Data
Mover
Port

Step 3 (packet data)

Step 2

Step 3

Step 1Micro-
controller
Interface Headers

loaded

Step 1
Write

Header
Quadlets

Figure 5–11. Asynchronous Transmit With Auto Header Insertion

5–10

5.1.4.2 Asynchronous Packet Transmit Without Automatic Header Insertion

In this mode, the packet headers and data information are loaded through the data mover port. This mode
is sometimes called asynchronous packet transmit with manual header insertion. This is because the
header quadlets are not preloaded into the header registers via the microcontroller interface. Instead, they
are inserted manually into the data stream at the same time as the rest of the packet. The following steps
further illustrate the process:

Step 1: Asynchronous header quadlets (3 quadlets in quadlet receive mode and 4 quadlets in block
receive mode) are fetched into the header registers through the data mover port.

Step 2: The header quadlets are then forwarded to the transmitter of the link core.

Step 3: Packet data (payload only) is transmitted through the data mover directly to the transmitter
of the link core.

Step 4: Asynchronous packet is sent to the 1394 bus through the Phy.

CFR REGISTER

Step 4

Header0 Register at 38h

LINK CORE

Transmitter

Receiver

Quadlet#0

Packet sent
to 1394 bus
through the
Phy

Header1 Register at 3Ch
Quadlet#1

Header2 Register at 40h
Quadlet#2

Header3 Register at 42h
Quadlet#3

Data
Mover
PortStep 3 (packet data)

Step 2

Step 3
(package data)

Step 1
(headers fetched)

Step 1
(Headers supplied)

Figure 5–12. Asynchronous Transmit Without Auto Header Insertion

5.2 Data Mover Modes of Operation
The data mover (DM) port in the GP2Lynx is meant to handle an external memory interface of large data
packets. The port can be configured to either transmit or receive data packets. The data can be either
asynchronous or isochronous packets. All traffic through the data mover is synchronous to the rising edge
of DMCLK. DMCLK is an output signal at 25 MHz.

The data mover operates by setting the DM control registers. If the DM is configured for transmit mode, it
waits for DMREADY to be asserted before it can drive DMDONE low and fetch the entire block of data one
packet at a time. Upon transmitting the last packet in the block, the DM will drive DMDONE high for a
minimum of one DMCLK cycle (~ 40 ns). The next DMCLK cycle in which DMDONE finds DMREADY high,
the process will be restarted.

The data mover has eight modes of operation which are specified by the DMASYNC, DMHDR, and DMRX
bits in the DM control register at 04h. Table 5–1 shows all the DM modes of operation.

5–11

Table 5–1. Modes of Operation

DMASYNC DMHDR DMRX MODE OF OPERATION

0 0 0 Isochronous packet transmit with auto header insertion

0 0 1 Isochronous packet receive without header and trailer

0 1 0 Isochronous packet transmit without header insertion

0 1 1 Isochronous packet receive with header and trailer

1 0 0 Asynchronous packet transmit with auto header insertion

1 0 1 Asynchronous packet receive without headers and trailer

1 1 0 Asynchronous packet transmit without header insertion

1 1 1 Asynchronous packet receive with headers and trailer

5.2.1 Isochronous Transmit With Automatic Header Insertion

Upon receiving a high on DMREADY, the following sequence of operations is performed:

Step 1: DMDONE will be asserted low (deactivated) at the next DMCLK cycle.

Step 2: The data mover will take the header that has been loaded into the header0 register at 38h
and request the link core to transmit the data onto the 1394 bus.

Step 3: The link core will fetch the header from the header0 register.

Step 4: DMPRE will pulse for one DMCLK cycle before the first data quadlet is sent.

Step 5: The data mover will then begin to fetch the data payload by asserting DMRW high.

Step 6: When the link core has fetched the last data quadlet, the data mover checks if the number
of channels specified by the control registers have been sent. If all channels have been sent
the data mover waits for a subaction gap to occur before asserting DMDONE high to
indicate the end of the cycle. Otherwise the data mover will provide the header in the next
header register and then begin fetching the data payload until all channels are complete.

The timing diagrams in Figures 5–13 to 5–15 illustrate this mode of operation at different transmit speeds.
For simplification, these diagrams show three quadlets of data payload.

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–13. Isochronous Transmit With Auto Header Insertion at 400 Mbps

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–14. Isochronous Transmit With Auto Header Insertion at 200 Mbps

5–12

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–15. Isochronous Transmit With Auto Header Insertion at 100 Mbps

5.2.2 Isochronous Transmit Without Automatic Header Insertion

Upon receiving a high on DMREADY, the following sequence of operations is performed:

Step 1: DMDONE will be asserted low (deactivated) at the next DMCLK cycle.

Step 2: DMPRE will pulse for one DMCLK cycle before the first header quadlet is sent.

Step 3: The data mover will fetch the header by asserting DMRW high.

Step 4: The data mover will then load the header into the header0 register and request the data
to be transmitted out on the 1394 bus by the link core.

Step 5: The link will fetch the header.

Step 6: DMPRE will pulse for one DMCLK cycle before the first data quadlet is sent.

Step 7: The data mover will then begin to fetch the data payload by asserting DMRW high.

Step 8: When the last data quadlet has been fetched by the link, the data mover will check if the
number of channels specified by the control registers have been sent. If all channels have
been sent the data mover will wait for a subaction gap to occur before asserting DMDONE
high to indicate the end of the cycle. Otherwise the DM will fetch the next header and load
it into the next header register and then begin fetching the data payload until all channels
are complete.

Figure 5–16 shows the timing diagram for this mode at a data transmit rate of 400 Mbps. The dashed
sections indicate repetitive behaviour (when the payload is more than two quadlets long).

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–16. Isochronous Transmit Without Auto Header Insertion

5–13

5.2.3 Isochronous Packet Receive Without Header and Trailer
In this mode, when the link receives an isochronous packet that is addressed to it, the following sequence
of operations are performed:

Step 1: The packet router control logic will route the packet to the data mover. If the sync bit field
in the header quadlet matches a bit pattern in the ISYNCRCVN field of the isochronous port
register at 18h, DMPRE will be asserted high for one DMCLK cycle.

Step 2: After the header is sent through, DMDONE will be asserted high for one DMCLK cycle.
DMRW is then asserted high as the data payload comes through.

Step 3: After all data has been received on the DMD[0:15] lines, DMRW will be asserted low and
the trailer quadlet will then come out on the DMD[0:15] lines.

PKTFLAG is never asserted high in this mode. Figure 5–17 shows the timing diagram for this mode at
400 Mbps. Figure 5–17 shows the case where DMPRE is asserted high for one DMCLK cycle to indicate
that the sync bits of the received isochronous header matches the contents of the ISYNCRCVN field.

Trailer quadlet

Header quadlet

DMCLK

DMRW

DMD[0:15]

PKTFLAG

DMDONE

DMPRE

Figure 5–17. Isochronous Receive Without Header and Trailer

5.2.4 Isochronous Packet Receive With Header and Trailer
In this mode, when the link receives an isochronous packet that is addressed to it, the following sequence
of operations are performed:

Step 1: The packet router control logic will route the packet to the data mover. If the sync bit field
in the header quadlet matches a bit pattern in the ISYNCRCVN field of the isochronous port
register at 18h, DMPRE will be asserted high for one DMCLK cycle. At the same time
DMDONE will be asserted high for one DMCLK cycle.

Step 2: This is followed by DMRW asserted high as the packet comes through. PKTFLAG is only
asserted high when the header quadlet is being received.

Step 3: After all the data payload has been received on the DMD[0:15] lines, PKTFLAG will be
asserted high again as the trailer quadlet is being received. Once the entire packet is
received, the DMRW line will be asserted low.

Figure 5–18 shows the timing diagram for this mode at 400 Mbps. Also, Figure 5–18 shows the case where
DMPRE is asserted high for one DMCLK cycle to indicate that the sync bits of the received isochronous
header matches the contents of the ISYNCRCVN field.

DMCLK

DMRW

DMD[0:15]

PKTFLAG

DMDONE

DMPRE

Trailer quadletHeader quadlet

Figure 5–18. Isochronous Receive With Header and Trailer

5–14

Figure 5–19 shows the timing diagram at 200 Mbps when the received packet contains only one quadlet
of payload.

Packet payload

0000

DMCLK

DMRW

DMD[0:15]

PKTFLAG

DMDONE

DMPRE

0000

Trailer quadletHeader quadlet

Figure 5–19. Isochronous Receive With Header and Trailer at 200 Mbps

5.2.5 Asynchronous Packet Transmit With Automatic Header Insertion

Upon receiving a high on DMREADY, the following sequence of operations are performed:

Step 1: DMDONE will be asserted low (deactivated) at the next DMCLK cycle.

Step 2: The data mover will take the headers that have been loaded into the header0–header3
registers and request the link core to transmit the data onto the 1394 bus.

Step 3: The link core will fetch the headers from the header0–header3 registers.

Step 4: DMPRE will pulse for one DMCLK cycle before the first data quadlet is sent.

Step 5: The data mover will then begin to fetch the data payload by asserting DMRW high.

Step 6: When the link core has fetched the last data quadlet, the data mover waits until the
destination node returns an ack_complete immediate response. If an ack_complete is not
received, the data mover will assert DMERROR high and become disabled.

Figure 5–20 and Figure 5–21 show the timing diagram for this mode for the quadlet transmit and the block
transmit cases, respectively. For simplicity, a data block size of three quadlets was selected in Figure 5–20.
Figure 5–22 shows the block transmit case at 400 Mbps.

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–20. Asynchronous Quadlet Transmit With Automatic Header Insertion

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–21. Asynchronous Block Transmit With Automatic Header Insertion at 200 Mbps

5–15

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–22. Asynchronous Block Transmit With Automatic Header Insertion at 400 Mbps

5.2.6 Asynchronous Packet Transmit Without Automatic Header Insertion

Upon receiving a high on DMREADY, the following sequence of operations are performed:

Step 1: DMDONE will be asserted low (deactivated) at the next DMCLK cycle.

Step 2: DMPRE will pulse for one DMCLK cycle before the header quadlets are sent.

Step 3: The data mover will fetch the headers by asserting DMRW high.

Step 4: The data mover will then load the headers into the header0–header3 registers and request
the data to be transmitted out on the 1394 bus by the link core.

Step 5: The link will fetch the headers.

Step 6: DMPRE will pulse for one DMCLK cycle before the first data quadlet is sent.

Step 7: The data mover will then begin to fetch the data payload by asserting DMRW high.

Step 8: When the link core has fetched the last data quadlet, the data mover waits until the
destination node returns an ack_complete immediate response. If an ack_complete is not
received, the data mover will assert DMERROR high and become disabled.

Figure 5–23 and Figure 5–24 show the timing diagram for this mode for the quadlet transmit and the block
transmit cases, respectively. For simplicity, a data block size of three quadlets was selected in Figure 5–24.

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Header Quadlets Data Quadlet

Figure 5–23. Asynchronous Quadlet Transmit Without Automatic Header Insertion at 400 Mbps

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Header Quadlets Data Quadlets

Figure 5–24. Asynchronous Block Transmit Without Automatic Header Insertion at 400 Mbps

5–16

5.2.7 Asynchronous Packet Receive With Headers and Trailer

In this mode, when the link receives an isochronous packet that is addressed to it, the following sequence
of operations is performed:

Step 1: The packet router control logic will route the packet to the data mover. At the same time
DMDONE will be asserted high for one DMCLK cycle.

Step 2: This is followed by DMRW asserted high as the packet comes through. PKTFLAG is only
asserted high when the header quadlets are being received.

Step 3: After all the data payload has been received on the DMD[0:15] lines, PKTFLAG will be
asserted high again as the trailer quadlet is being received. Once the entire packet is
received, the DMRW line will be asserted low.

Figure 5–25 and Figure 5–26 show the timing diagram for this mode for the quadlet receive and the block
receive cases, respectively. For simplicity, a data block size of three quadlets was selected in Figure 5–26

DMCLK

DMRW

DMD[0:15]

PKTFLAG

DMDONE

Figure 5–25. Asynchronous Quadlet Receive With Headers and Trailer at 400 Mbps

DMCLK

DMRW

DMD[0:15]

PKTFLAG

DMDONE

Figure 5–26. Asynchronous Block Receive With Headers and Trailer at 400 Mbps

5.2.8 Asynchronous Packet Receive Without Headers and Trailer

In this mode, when the link receives an isochronous packet that is addressed to it, the following sequence
of operations are performed:

Step 1: The packet router control logic will route the packet to the data mover. After the headers
are sent through, DMDONE will be asserted high for one DMCLK cycle.

Step 2: DMRW is then asserted high as the data payload comes through.

Step 3: After all data has been received on the DMD[0:15] lines, DMRW will be asserted low and
the trailer quadlet will then come out on the DMD[0:15] lines.

5–17

Figure 5–27 and Figure 5–28 show the timing diagram for this mode for the quadlet receive and the block
receive cases, respectively. For simplicity, a data block size of three quadlets was selected in Figure 5–28

DMCLK

DMRW

DMD[0:15]

PKTFLAG

DMDONE

Figure 5–27. Asynchronous Quadlet Receive Without Headers and Trailer at 400 Mbps

DMCLK

DMRW

DMD[0:15]

PKTFLAG

DMDONE

Figure 5–28. Asynchronous Block Receive Without Headers and Trailer at 400 Mbps

5.3 Data Mover Byte Mode
In this mode the DMD lines are only 1 byte wide => the maximum speed is only 200 Mbit/sec. Only bits 0–7
will be used for the data bus. DMERROR will be asserted if transmission of a 400 Mbit/sec packet is
attempted.

5.4 Data Mover Endian Swapping
In this mode the DMD[0:15] bytes are swapped. If the data mover is in byte mode, the least significant byte
is fetched first (Figure 5–29). If the data mover is not in byte mode, the least significant word is fetched first
and the byte order is then swapped (Figure 5–30).

DMCLK

DMRW

DMD[0:15]

NORM_LINK_DATA

SWAP_LINK_DATA

01020304 A1B2C3D4

04030201 D4C3B2A1

01 02 03 04 A1 B2 C3 D4

Figure 5–29. Endian Swapping in Byte Mode

DMCLK

DMRW

DMD[0:15]

NORM_LINK_DATA

SWAP_LINK_DATA

01020304 A1B2C3D4

04030201 D4C3B2A1

0102 0304 A1B2 C3D4

Figure 5–30. Endian Swapping in Word Mode

5–18

5.5 Data Mover Handshake Mode
In this mode, when DMDONE is asserted high it will check for DMREADY low as an acknowledge. This is
equivalent to the mode used in the TSB12LV31 (GPLynx), as shown in Figure 5–31.

DMCLK

DMRW

DMD[0:15]

DMREADY

DMPRE

DMDONE

Figure 5–31. Data Mover Handshake Mode (GPLynx mode)

5.6 Data Mover Critical Timing
Table 5–2. CLK to Output Timing With Respect to DMCLK

PARAMETER TERMINAL NAME MIN MAX UNIT

td0 DMDONE 1.75 8.5

td1 DMRW 1.75 7.5

td2
Delay time (DMCLK to Q)

DMPRE 1.75 14.5
ns

td3
Delay time (DMCLK to Q)

DMERROR 1.5 11.5
ns

td4 PKTFLAG 1.75 8.5

td5 DMD[0:15] 0.5 9

tsu0
Setup time to DMCLK

DMREADY 14
ns

tsu1
Setup time to DMCLK

DMD[0:15] 14
ns

th0
Hold time from DMCLK

DMREADY –1
ns

th1
Hold time from DMCLK

DMD[0:15] –0.75
ns

NOTE: All timing parameters are with respect to the rising edge of DMCLK

5–19

DMCLK

DMDONE

DMRW

DMPRE

DMERROR

PKTFLAG

DMREADY

DMD[0:15] XXXX XXXX

D0

D1

D2

D3

D4

S0

H0

S1 H1

D5

DATA DATA

Figure 5–32. Clock to Output Timing With Respect to DMCLK

5–20

6–1

6 FIFO Memory Access
Access to all FIFO memories is fundamentally the same, only the addresses to where the write is made
changes. Figure 6–1 shows the FIFO-address access map. The FIFO is separated into an asynchronous
transmit FIFO (ATF) and a general receive FIFO (GRF), each of 517 quadlets (2 Kbytes). Since
asynchronous packets may also be transmitted through the data mover port and the ATF always has priority
and its data wil be transmitted first.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ATF_First

ATF_Continue

ATF_Continue & Update

GRF Data

50h

54h

58h

5Ch

60h

64h

68h ATF_First_Update

ATF_Burst_Write

Reserved

Figure 6–1. TSB12LV32 Controller-FIFO-Access Address Map

6.1 General
The suffix _First denotes a write to the FIFO location where the first quadlet of a packet should be written
when the writer wants to transmit the packet. The first quadlet is held in the FIFO until a quadlet is written
to an update location. The suffix _Continue denotes a write to the FIFO location where the second through
n-1 quadlets of a packet should be written. The second through n-1 quadlets are held in the FIFO until a
quadlet is written to an update location. The suffix_Continue & Update denotes a write to the FIFO location
where the last quadlet of a multiple quadlet packet should be written.

6.2 ATF Access
The procedure for accessing the ATF for a quadlet write operation is accomplished in three successive
steps. To ensure that an ATF underflow condition does not occur, loading of the ATF in the following manner
is highly recommended:

First Quadlet of the Packet

Successive (N–1) Quadlets of the Packet
•
•
•

Last (N th) Quadlet of the Packet

Figure 6–2. Asynchronous Packet With N Quadlets (ATV Loading Operation)

Each quadlet can be written into the ATF register on byte (8-bit) boundary or word (16-bit) boundary. To write
to the ATF in a byte fashion, the following steps should be followed:

Step 1: Writing the first quadlet of the packet:
a) Write the first 8-bits of the quadlet to ATF location 50h.
b) Write the second 8-bits of the quadlet to ATF location 51h.
c) Write the third 8-bits of the quadlet to ATF location 52h.
d) Write the fourth 8-bits of the quadlet to ATF location 53h.
The data is not yet confirmed for transmission.

6–2

Step 2: Writing the next (n-1) quadlets of the packet:
a) Write the first 8-bits of each quadlet to ATF location 54h.
b) Write the second 8-bits of each quadlet to ATF location 55h.
c) Write the third 8-bits of each quadlet to ATF location 56h.
d) Write the fourth 8-bits of each quadlet to ATF location 57h.
The data is not yet confirmed for transmission.

Step 3: Last (Nth) quadlet of the packet:
a) Write the first 8-bits of the quadlet to ATF location 58h.
b) Write the second 8-bits of the quadlet to ATF location 59h.
c) Write the third 8-bits of the quadlet to ATF location 5Ah.
d) Write the fourth 8-bits of the quadlet to ATF location 5Bh.
The data is now confirmed for transmission.

To write to the ATF in a word fashion, the following steps should be followed:

Step 1: Writing the first quadlet of the packet:
a) Write the first 16-bits of the quadlet to ATF location 50h.
b) Write the second 16-bits of the quadlet to ATF location 52h.
The data is not yet confirmed for transmission.

Step 2: Writing the next (n-1) quadlets of the packet:
a) Write the first 16-bits of each quadlet to ATF location 54h.
b) Write the second 16-bits of each quadlet to ATF location 56h.
The data is not yet confirmed for transmission.

Step 3: Last (Nth) quadlet of the packet:
a) Write the first 16-bits of the quadlet to ATF location 58h.
b) Write the second 16-bits of the quadlet to ATF location 5Ah.
The data is now confirmed for transmission.

All writes to the ATF must be quadlet aligned (i.e., only an even number of write accesses is allowed). If the
first quadlet of a packet is not written to the ATF_First location, the transmitter enters a state denoted by an
ATStuck interrupt. An underflow of the ATF also causes an ATSTK interrupt. When this state is entered, no
asynchronous packets can be sent until the ATF is cleared by way of the ATFCLR control bit (bit 0 at CFR
30h). However isochronous packets may still be sent while the ATF is in this state.

6.3 ATF Burst Access
It is allowable to perform a burst write into location 54h (ATF_Continue), which allows multiple quadlets to
load into ATF, but the data is not confirmed for transmission. It is also allowable to perform burst write to
location 58h (ATF_Continue & Update), which allows multiple quadlets to load into ATF, and the data is
confirmed for transmission. Write accesses to address 5Ch (ATF_Burst Write) writes the whole packet into
the ATF. The first quadlet written into ATF has the control bit set to 1 to indicate this is the first quadlet of
the packet, and the rest of the quadlets have the CD bit set to 0. The last quadlet written into ATF confirms
the packet for transmission.

To do a burst write operation the host bus master must continually drive MCS low. The TSB12LV32 loads
MD0–MD15 to the ATF during each rising edge of BCLK while MCS is low. At the same time it asserts MCA
(MCA is always one cycle behind MCS) low. The CD bit is 0 for ATF_Continue and ATF_Continue & Update.

The ATF_First_Update is a unique address location optimised for transmitting zero length isochronous
packets (including asynchronous streaming packets). A zero-length packet contains no data payload, and
only the packet header and header CRC are transmitted.

6.4 General-Receive-FIFO (GRF)
Access to the GRF is done with a read from the GRF, which requires a read from address 60h. The GRF
will accumulate self-ID packets upon bus-reset. All quadlets of a self-ID packet are saved in the GRF after

6–3

power up. Hardware will check to insure the second quadlet is indeed the complement (logical inverse) of
the first quadlet. If there are any errors associated with the self-ID process, a self-ID interrupt will be
generated and the self-ID check register at 38h will be updated to reflect the error(s). This option can be
turned off by setting the FULLSID bit in the control register at 08h to 0.

6.5 GRF Stored Data Format
Each quadlet in the GRF is internally 33-bits wide. The most significant bit (extra bit) is used to indicate
whether it is a packet token or a regular received quadlet (received header CRC and data CRC are checked
and not stored in GRF). This bit is called the CD bit, which value is reflected in bit #16 of the FIFO status
register. If CD bit is 1, the next quadlet read from the GRF is a packet token. If the CD bit is 0, the next quadlet
read from the GRF is a regular received quadlet. A packet token is stored as the first quadlet for each
received confirmed packet. The definition for packet token is shown in Table 6-1. Bit 0 is most significant
bit and bit 32 is the least significant bit.

Table 6–1. Packet Token Definition

BITS NAME DESCRIPTION

0 CD CD bit is 1 for packet token. This bit should only be read from the FIFO status
Register at 30h

1–2 Reserved Reserved

3–16 QUADLET_COUNT Expected quadlet count after packet token for this received packet.

17–19 Reserved Reserved

20–24 ackCode If bit 20 is 0, bits[21:24] are used as the Ack code that was sent back to the
transmitting node. If bit 20 is 1, it is an error condition and an error Ack code is sent to
the transmitting node.

25–26 Reserved Reserved

27–28 SPEED The speed code for the received packet.
00 – 100 Mb/s
01 – 200 Mb/s
10 – 400 Mb/s

29–32 Reserved Reserved

6–4

7–1

7 TSB12LV32 Data Formats
The data formats for transmission and reception of data are shown in the following sections. The transmit
format describes the expected organization of data presented to the TSB12LV32 at the host-bus interface.
The receive formats describe the data format that the TSB12LV32 presents to the host-bus interface.

7.1 Asynchronous Transmit (Host Bus to TSB12LV32)
Asynchronous transmit refers to the use of the asynchronous-transmit FIFO (ATF) interface. The
general-receive FIFO (GRF) is shared by asynchronous data and isochronous data. There are two basic
formats for data to be transmitted and received. The first is for quadlet packets, and the second is for block
packets. For transmits, the FIFO address indicates the beginning, middle, and end of a packet. For receives,
the data length, which is found in the header of the packet, determines the number of bytes in a block packet.

7.1.1 Quadlet Transmit

The quadlet-transmit format is shown in Figure 7–1 and 7–2, are described in Table 7–1. The first quadlet
contains packet control information. The second and third quadlets contain the 64-bit, quadlet-aligned
address. The fourth quadlet is data used only for write requests and read responses. For read requests and
write responses, the quadlet data field is omitted.

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

prioitytCoderttLabelspd

desinationOffsetHighdestinationID

desinationOffsetLow

quadlet data

Figure 7–1. Quadlet-Transmit Format (Write Request)

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

prioitytCoderttLabelspd

rCodedestinationID

quadlet data

Figure 7–2. Quadlet-Transmit Format (Read Response)

7–2

Table 7–1. Quadlet-Transmit Format Functions

FIELD NAME DESCRIPTION

spd The spd field indicates the speed at which the current packet is to be sent. 00 = 100 Mb/s,
01 = 200 Mb/s, and 10 = 400 Mb/s, and 11 is undefined for this implementation.

tLabel The tLabel field is the transaction label, which is a unique tag for each outstanding transaction
between two nodes. This field is used to pair up a response packet with its corresponding
request packet.

rt The rt field is the retry code for the current packet is: 00 = new, 01 = retry_X, 10 = retryA, and
11 = retryB.

tCode The tCode field is the transaction code for the current packet (see Table 6–10 of IEEE–1394
standard).

priority The priority field contains the priority level for the current packet. For cable implementation,
the value of the bits must be zero (for backplane implementation, see clause 5.4.1.3 and
5.4.2.1 of the IEEE–1394 standard).

destinationID The destinationID field is the concatenation of the 10-bit bus number and the 6-bit node
number that forms the destination node address of the current packet.

destination OffsetHigh,
destination OffsetLow

The concatenation of these two fields addresses a quadlet in the destination node address
space. This address must be quadlet aligned (modulo 4).

quadlet data For write requests and read responses, the quadlet data field holds the data to be transferred.
For write responses and read requests, this field is not used and should not be written into the
FIFO.

rcode Specifies the result of the read request transaction. The response codes that may be
returned to the requesting agent are defined as follows:

Response
Code

Name Description

0

1–3
4

5
6

7
8-Fh

resp_complete

reserved
resp_conflict_error

resp_data_error
resp_type_error

resp_address_error
reserved

Node successfully completed requested operation

Resource conflict detected by responding agent.
Request may be retried.
Hardware error. Data not available.
Field within request packet header contains un
supported or invalid vallue.
Address location within specified node not accessible

7.1.2 Block Transmit

The block-transmit format is shown in Figure 7–3 and is described in Table 7–2. The first quadlet contains
packet-control information. The second and third quadlets contain the 64-bit address. The first 16 bits of the
fourth quadlet contains the dataLength field. This is the number of bytes of data in the packet. The remaining
16 bits represent the extended_tCode field (see Table 6–11 of the IEEE–1394 standard for more information
on extended_tCodes). The block data, if any, follows the extended_tCode.

7–3

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

prioitytCoderttLabelspd

destinationID

dataLength

destinationOffsetHigh

destinationOffsetLow

block data

extended_tCode

Figure 7–3. Block-Transmit Format

Table 7–2. Block-Transmit Format Functions

FIELD NAME DESCRIPTION

Spd The spd field indicates the speed at which the current packet is to be sent. 00 = 100 Mb/s,
01 = 200 Mb/s, and 10 = 400 Mb/s, and 11 is undefined for this implementation.

TLabel The tLabel field is the transaction label, which is a unique tag for each outstanding transaction
between two nodes. This field is used to pair up a response packet with its corresponding
request packet.

Rt The rt field is the retry code for the current packet is 00 = new, 01 = retry_X, 10 = retryA, and
11 = retryB.

TCode tCode is the transaction code for the current packet (see Table 6–10 of IEEE–1394 standard).

priority The priority level for the current packet. For cable implementation, the value of the bits must
be zero. For backplane implementation, see clause 5.4.1.3 and 5.4.2.1 of the IEEE–1394
standard.

destinationID The destinationID field is the concatenation of the 10-bit bus number and the 6-bit node
number that forms the node address to which the current packet is being sent.

destination OffsetHigh,
destination OffsetLow

The concatenation of the destination OffsetHigh and the destination OffsetLow fields
addresses a quadlet in the destination node address space. This address must be quadlet
aligned (modulo 4). The upper 4 bits of the destination OffsetHigh field are used as the
response code for lock-response packets and the remaining bits are reserved.

dataLength The dataLength filed contains the number of bytes of data to be transmitted in the packet.

extended_tCode The block extended_tCode to be performed on the data in the current packet (see Table 6–11
of the IEEE–1394 standard).

block data The block data field contains the data to be sent. If dataLength is 0, no data should be written
into the FIFO for this field. Regardless of the destination or source alignment of the data, the
first byte of the block must appear in byte 0 of the first quadlet.

7.1.3 Quadlet Receive

The quadlet-receive format through the FIFO is shown in Figure 7–4 and is described in Table 7–3. The first
quadlet (trailer) contains the packet-reception status that is added by the TSB12LV32. The first 16 bits of
the second quadlet contain the destination node and bus ID, and the remaining 16 bits contain
packet-control information. The first 16 bits of the third quadlet contain the node and bus ID of the source,
and the remaining 16 bits of the third quadlet and the fourth quadlet contain the 48-bit, quadlet-aligned
destination offset address. The last quadlet contains data that is used by write requests and read responses.
For read requests and write responses, the quadlet data field is omitted.

7–4

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

spdnumofQuadlets

sourceID destinationOffsetHigh

00 00 0 ackCode 00 00 0 0

prioitytCoderttLabeldestinationID

destinationOffsetLow

quadlet data (for write request and read response)

Figure 7–4. FIFO Quadlet-Receive Format

The quadlet-receive format through the DM is shown in Figure 7–5 and is described in Table 7–3. This format
is similar to the quadlet receive format for the TSB12LV31(GPLynx). The first 16 bits of the first quadlet
contain the destination node and bus ID, and the remaining 16 bits contain packet-control information. The
first 16 bits of the second quadlet contain the node and bus ID of the source, and the remaining 16 bits of
the second and third quadlets contain the 48-bit, quadlet-aligned destination offset address. The fourth
quadlet contains data that is used by write requests and read responses. For read requests and write
responses, the quadlet data field is omitted. The last quadlet (trailer) contains the packet-reception status
that is added by the TSB12LV32.

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

spdnumofQuadlets

sourceID destinationOffsetHigh

00 00 0 ackCode 00 00 0 0

prioitytCoderttLabeldestinationID

destinationOffsetLow

quadlet data (for write request and read response)

Figure 7–5. Data Mover Quadlet-Receive Format

7–5

Table 7–3. Quadlet–Receive Format Functions

FIELD NAME DESCRIPTION

numofQuadlets Total number of quadlets in the current packet (payload and header quadlets only).

ackCode This 5-bit field holds the acknowledge code sent by the receiver for the current packet (see
Table 6-13 in the draft standard).

Spd The spd field indicates the speed at which the current packet was sent. 00 = 100 Mbits/s,
01 =200 Mbits/s, 10 = 400 Mbits/s, and 11 is undefined for this implementation.

destinationID The destinationID field contains the concatenation of the 10-bit bus number and the 6-bit
node number that forms the node address to which the current packet is being sent.

tLabel The tLabel field is the transaction label, which is a unique tag for each outstanding transaction
between two nodes. This field is used to pair up a response packet with its corresponding
request packet.

rt The rt field is the retry code for the current packet is 00 = new, 01 = retry_X, 10 = retryA, and
11 = retryB.

tCode The tCode field is the transaction code for the current packet (see Table 6-10 of the
IEEE–1394 standard).

priority The priority field contains the priority level for the current packet. For cable implementation,
the value of the bits must be zero (for backplane implementation, see clause 5.4.1.3 and
5.4.2.1 of the IEEE–1394 standard).

sourceID The sourceID field contains the node ID of the sender of the current packet.

destination OffsetHigh,
destination OffsetLow

The concatenation of the destination OffsetHigh and the destination OffsetLow fields ad-
dresses a quadlet in the destination nodes address space. This address must be quadlet
aligned (modulo 4). (The upper four bits of the destination OffsetHigh field are used as the
response code for lock-response packets, and the remaining bits are reserved.)

quadlet data For write requests and read responses, the quadlet data field holds the transferred data. For
write responses and read requests, this field is not present.

7.1.4 Block Receive

The block-receive format through the FIFO is shown in Figure 7-6 and is described in Table 7-5. The first
16 bits of the first quadlet contain the node and bus ID of the destination node, and the last 16 bits contain
packet-control information. The first 16 bits of the second quadlet contain the node and bus ID of the source
node, and the last 16 bits of the second quadlet and all of the third quadlet contain the 48-bit, quadlet-aligned
destination offset address. All remaining quadlets, except for the last one, contain data that is used only for
write requests and read responses. For block read requests and block write responses, the data field is
omitted. The last quadlet contains packet-reception status.

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

spdnumofQuadlets

sourceID destinationOffsetHigh

00 00 0 ackCode 00 00 0 0

prioitytCoderttLabeldestinationID

destinationOffsetLow

dataLength

block data (if any)

extended_tCode

Figure 7–6. FIFO Block-Receive Format

7–6

The block-receive format through the FIFO is shown in Figure 7-7.

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

spdnumofQuadlets

sourceID destinationOffsetHigh

00 00 0 ackCode 00 00 0 0

prioitytCoderttLabeldestinationID

destinationOffsetLow

dataLength

block data (if any)

extended_tCode

Figure 7–7. Data Mover Block-Receive Format

Table 7–4. Block-Receive Format Functions

FIELD NAME DESCRIPTION

numofQuadlets Total number of quadlets in the current packet (payload and header quadlets only)

ackCode This 5-bit field holds the acknowledge code sent by the receiver for the current packet (see
Table 6-13 in the draft standard).

destinationID The destinationID field is the concatenation of the 10-bit bus number and the 6-bit node
number that forms the node address to which the current packet is being sent.

tLabel The tLabel field is the transaction label, which is a unique tag for each outstanding transaction
between two nodes. This field is used to pair up a response packet with its corresponding
request packet.

rt The rt field contains the retry code for the current packet is 00 = new, 01 = retry_X, 10 = retryA,
and 11 = retryB.

tCode The tCode field is the transaction code for the current packet (see Table 6-10 of the
IEEE-1394 standard).

priority The priority field contains the priority level for the current packet. For cable implementation,
the value of the bits must be zero (for backplane implementation, see clause 5.4.1.3 and
5.4.2.1 of the IEEE-1394 standard).

sourceID The sourceID field contains the node ID of the sender of the current packet.

destination OffsetHigh,
destination OffsetLow

The concatenation of the destination OffsetHigh and the destination OffsetLow fields
addresses a quadlet in the destination nodes address space. This address must be quadlet
aligned (modulo 4). The upper 4 bits of the destination OffsetHigh field are used as the
response code for lock-response packets and the remaining bits are reserved.

dataLength For write request, read responses, and locks, the dataLength field indicates the number of
bytes being transferred. For read requests, the dataLength field indicates the number of
bytes of data to be read. A write-response packet does not use this field. Note that the number
of bytes does not include the head, only the bytes of block data.

extended_tCode The extended_tCode field contains the block extended_tCode to be performed on the data in
the current packet (see Table 6-11 of the IEEE-1394 standard).

block data The block data field contains any data being transferred for the current packet. Regardless of
the destination address or memory alignment, the first byte of the data appears in byte 0 of the
first quadlet of this field. The last quadlet of the field is padded with zeros out to four bytes, if
necessary.

spd The spd field indicates the speed at which the current packet was sent. 00 = 100 Mb/s,
01 = 200 Mb/s, 10 = 400 Mb/s, and 11 is undefined for this implementation.

7–7

7.2 Isochronous Transmit (Host Bus to TSB12LV32)
The format of the isochronous-transmit packet is shown in Figure 7–8 and is described in Table 7–5. The
data for each channel must be presented to the isochronous-transmit FIFO interface in this format in the
order that packets are to be sent. The transmitter sends any packets available at the isochronous-transmit
interface immediately following reception or transmission of the cycle-start message. The speed at which
the current packet is sent is determined by the speed field in the DM control register (bits 22-23)

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

isochronous data

01
sy

tCode
TAGdataLength chanNum

1 0

Figure 7–8. Isochronous-Transmit Format

Table 7–5. Isochronous-Transmit Functions

FIELD NAME DESCRIPTION

dataLength The dataLength field indicates the number of bytes in the current packet

TAG The TAG field indicates the format of data carried by the isochronous packet (00 = formatted,
01 – 11 are reserved).

chanNum The chanNum field carries the channel number with which the current data is associated.

tCode The transaction code for the current packet (tCode=Ah).

sy The sy field carries the transaction layer-specific synchronization bits.

isochronous data The isochronous data field contains the data to be sent with the current packet. The first byte of
data must appear in byte 0 of the first quadlet of this field. If the last quadlet does not contain four
bytes of data, the unused bytes should be padded with zeros.

7.2.1 Isochronous Receive (TSB12LV32 to Host Bus)

The format of the iscohronous-receive data through the DM is shown in Figure 7–8 and is described in
Table 7–6. The data length, which is found in the header of the packet, determines the number of bytes in
an isochronous packet. For iscohronous-receive through the FIFO, the last quadlet will be inserted as the
first quadlet in the receive data, as shown in Figure 7–9.

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

isochronous data

01
sy

tCode
TAGdataLength chanNum

1 0

spdnumofQuadlets00 00 0 errCode 00 00 0 0

Figure 7–9. Data Mover Isochronous-Receive Format

7–8

3210 7654 111098 15141312 19181716 20 21 31302928272625242322

isochronous data

01
sy

tCode
TAGdataLength chanNum

1 0

spdnumofQuadlets00 00 0 errCode 00 00 0 0

Figure 7–10. GRF Isochronous-Receive Format

Table 7–6. Isochronous-Receive Functions

FIELD NAME DESCRIPTION

dataLength The dataLength field indicates the number of bytes in the current packet.

TAG The TAG field indicates the format of data carried by isochronous packet (00 = formatted, 01 –- 11
are reserved).

chanNum The chanNum field contains the channel number with which this data is associated.

tCode The tCode field carries the transaction code for the current packet (tCode = Ah).

sy The sy field carries the transaction layer-specific synchronization bits.

isochronous data The isochronous data field has the data to be sent with the current packet. The first byte of data
must appear in byte 0 of the first quadlet of this field. The last quadlet should be padded with zeros.

spd The spd field indicates the speed at which the current packet was sent.

numofQuadlets Total number of quadlets in the current packet (payload and header quadlets only).

errCode The errCode field indicates whether the current packet has been received correctly. The
possibilities are Complete, DataErr, or CRCErr, and have the same encoding as the corresponding
acknowledge codes.

7–9

7.3 Phy Configuration
The format of the Phy configuration packet is shown in Figure 7-12 and is described in Table 7-8. The Phy
configuration packet transmit contains two quadlets, which are loaded into the ATF. The first quadlet is
written to address 50h. The second quadlet is written to address 58h. The 00E0h in the first quadlet (bits
16–31) tells the TSB12LV32 that this quadlet is the Phy configuration packet. The Eh is then replaced with
0h before the packet is transmitted to the Phy interface.

3210 7654 111098 15141312 1918 20 21 31302928272625242322

00 root_ID TR gap_cnt 0 0 0 0000011100

Logical inverse of first 16 bits of first quadlet 11 1 1 1111111111

tcode = ’E’
000

1716

1 1

Figure 7–11. Phy Configuration Packet Format

The Phy configuration packet can perform the following functions:

• Set the gap count field of all nodes on the bus to a new value. The gap count, if set intelligently,
can optimize bus performance.

• Force a particular node to be the bus root after the next bus reset.

It is not valid to transmit a Phy configuration packet with both the R bit and T bit set to zero. This would cause
the packet to be interpreted as an extended Phy packet.

Table 7–7. Phy Configuration Packet Functions

FIELD NAME DESCRIPTION

00 The 00 field is the Phy configuration packet identifier.

root_ID The root_ID field is the physical_ID of the node to have its force_root bit set (only meaningful when R
is set).

R† When R is set, the force-root bit of the node identified in root_ID is set and the force_root bit of all
other nodes are cleared. When R is cleared, root_ID is ignored.

T When T is set, the PHY_CONFIGURATION.gap_count field of all the nodes is set to the value in the
gap_cnt field.

gap_cnt The gap_cnt field contains the new value for PHY_CONFIGURATION.gap_count for all nodes. This
value goes into effect immediately upon receipt and remains valid after the next bus reset. After the
second reset, gap_cnt is set to 63h unless a new Phy configuration packet is received.

The format of a received Phy-configuration packet is shown in Figure 7–12 and is described in Table 7–8.
When PHY_PKT_ENA (bit 3 of the control register @08h) is set, all Phy packets will be received in the GRF.
One HDRERR interrupt will be generated for every Phy packet received.

7–10

3210 7654 111098 15141312 1918 20 21 31302928272625242322

00 Number of quadlets ackCode 0000spd00

Phy Configuration Quadlet

000

1716

Logical inverse of the Phy Configuration Quadlet

Figure 7–12. Received Phy Configuration Packet Format

Table 7–8. Receive Phy–Configuration Packet

FIELD NAME DESCRIPTION

numofQuadlets Total number of quadlets in the packet. This field is equal to 2 in this case.

ackCode This 5–bit field holds the acknowledge code sent by the receiver for the current
packet. In this case, the ackCode is equal to 1 (ack_complete)

spd The spd field indicates the speed at which the current packet was sent. In this
case, the spd field is equal to ‘00’ (S100)

7.3.1 Extended Phy Packets

7.3.1.1 Ping Packets

The reception of a Phy ping packet causes the node identified by Phy_ID to transmit Self-ID packet(s) that
reflect the current configuration and status of the Phy. The ping packet provides a method of measuring the
round-trip delay of packets between two nodes on the bus that are farthest from one another in terms of cable
hops. The format of this packet is shown in Figure 7–13 and described in Table 7–9.

00 Phy_ID 00 type (0) 00000000

Logical inverse of the first quadlet

transmitted first

transmitted last

0000000000

Figure 7–13. Ping Packet Format

Table 7–9. Ping Packet Fields

FIELD NAME DESCRIPTION

Phy_ID Physical node identifier of the destination of this packet

type Extended Phy packet type (zero identifies ping packet)

7–11

7.3.1.2 Remote Access Packets

The remote access packet provides a method for a node to access the Phy registers of another node on
the bus. The reception of a remote access packet causes the node identified by the Phy_ID field to read the
selected Phy register and subsequntly return a remote reply packet that contains the current value of the
Phy register. The format of this packet is shown in Figure 7–14 and described in Table 7–10.

00 Phy_ID 00 type (8) cmmd00111

Logical inverse of the first quadlet

transmitted first

transmitted last

port00 0 00 0

Figure 7–14. Remote Access Packet Format

Table 7–10. Remote Access Packet Fields

FIELD NAME DESCRIPTION

Phy_ID Physical node identifier of the destination of this packet

type Extended Phy packet type (8 identifies command packet)

port This field selects one of the Phy’s ports

cmmd Command:
0 = NOP (No operation)
1 = Transmit TX_DISABLE_NOTIFY then disable port
2 = Initiate suspend (i.e., become a suspend initiator)
4 = Clear the port’s Fault bit to zero
5 = Enable port
6 = Resume port

7.3.1.3 Remote Command Packets

The remote command packet provides a method for one node to issue a number of Phy-specific commands
to the selected port within the target Phy. The reception of a remote command packet shall request the node
identified by the Phy_ID field to perform the operation specified in the cmnd field and subsequently return
a remote confirmation packet. The format of this packet is shown in Figure 7–15 and described in Table 7–11.

00 Phy_ID 00 type (8) cmnd00111

Logical inverse of the first quadlet

transmitted first

transmitted last

0 0 0 port 0 0 0

Figure 7–15. Remote Command Packet Format

7–12

Table 7–11. Remote Command Packet Fields

FIELD NAME DESCRIPTION

Phy_ID Physical node identifier of the destination of this packet

type Extended Phy packet type (8 identifies command packet)

port This field selects one of the Phy’s ports

cmnd Command:
0 = NOP (No operation)
1 = Transmit TX_DISABLE_NOTIFY then disable port
2 = Initiate suspend (i.e., become a suspend initiator)
4 = Clear the port’s Fault bit to zero
5 = Enable port
6 = Resume port

7.3.1.4 Resume Packets

The resume packet is a broadcast packet to all the Phys on the bus. It commands all suspended ports on
the bus to resume normal operation. The reception of the resume packet causes any node to commence
resume operations for all Phy ports that are both connected and suspended. A resume packet requires no
reply. The format of this packet is shown in Figure 7–16 and described in Table 7–12.

00 Phy_ID 00 type (F 16) 00001

Logical inverse of the first quadlet

transmitted first

transmitted last

0 0 0 0 1 10 0 0 0 0

Figure 7–16. Resume Packet Format

Table 7–12. Resume Packet Fields

FIELD NAME DESCRIPTION

Phy_ID Physical node identifier of the source of this packet

type Extended Phy packet type (F identifies resume packet)

7–13

7.4 Receive Self-ID Packet
Based on the settings of the RXSID and FULLSID bits in the control register @08h, the self-ID packets can
be either ignored or received into the GRF. Refer to Table 7–13.

Table 7–13. GRF Receive Self-ID Setup Using Control Register Bits (RXSID and FULLSID)

RXSID
(bit 1)

FULLSID
(bit 2) OPERATION

0 X Self-ID packets are not received by the link.

1 0 Only the data quadlet (first quadlet) of the self-ID packets are received into the GRF.

1 1
soth the data quadlet (first quadlet) and the logical inverse quadlet (second quadlet) of all
Self-ID packets are received into the GRF.

Figures 7–17 and 7–18 show the format of a received self-ID packet. For completeness, the figures assume
the cable Phy on the bus implements the maximum number of ports allowed by the P1394a specification.
Both figures show one received self-ID packet. The contents are described in Table 7–14.

3210 7654 111098 15141312 1918 20 21 31302928272625242322

00 numofQuadlets 00spd00ackCode

Self-ID Data Quadlet #0

000

1716

LP
S

_R
E

S
E

T

LP
S

_O
F

F

Logical Inverse of the Self-ID Quadlet #0

Self-ID Data Quadlet #1

Logical Inverse of the Self-ID Quadlet #1

Self-ID Data Quadlet #2

Logical Inverse of theSelf-ID Quadlet #2

Figure 7–17. Receive Self-ID Packet Format (RXSID=1, FULLSID=1)

Figure 7–18 shows the format of the received self-ID packet when the FULLSID is cleared. In this case, only
the first quadlet of each self-ID packet is received in the GRF.

3210 7654 111098 15141312 1918 20 21 31302928272625242322

00 0011

Self-ID Data Quadlet #0

000

1716

Self-ID Data Quadlet #1

Self-ID Data Quadlet #2

0 0 00 0 0 00 0 0 00 0 0 0 01 00000 0

Figure 7–18. Receive Self-ID Packet Format (RXSID=1, FULLSID=0)

Table 7–14. Receive Self-ID Function

FIELD NAME DESCRIPTION

Self-ID Data Quadlet First 32-bits of the first self-ID packet

Logical Inverse of the
Self-ID Quadlet

Second 32-bits of the first self-ID packet

ACK When the ACK field is set (0001), the data in the Self-ID packet is correct. When ACK is ≠ 0001,
the data in the self-ID packet is incorrect.

7–14

The cable Phy sends one to three self-ID packets at the base rate (100 Mbits/s) during the self-ID phase
of arbitration or in response to a ping packet. The number of self-ID packets sent depends on the number
of ports. Figures 7–19, 7–20, and 7–21 show the format of the cable Phy self-ID packets. Inside the GRF,
the first received quadlet of a self-ID packet is always 0000_00E0h, and the final quadlet is always the
quadlet containing the acknowledgement code.

3210 7654 111098 15141312 1918 20 21 31302928272625242322

01 Phy_ID p2p1p0pwrrsvsp

1716

Logical inverse of first quadlet

L0 gap_cnt c mi

Figure 7–19. Phy Self-ID Packet #0 Format

3210 7654 111098 15141312 1918 20 21 31302928272625242322

01 Phy_ID p10p9p8rsv

1716

Logical inverse of first quadlet

n(0)1 mrp3 p4 p5 p6 p7

Figure 7–20. Phy Self-ID Packet #1 Format

3210 7654 111098 15141312 1918 20 21 31302928272625242322

01 Phy_ID reservedrsv

1716

Logical inverse of first quadlet

n(1)1 p11 p12 p13 p14 p15

Figure 7–21. Phy Self-ID Packet #2 Format

When there is only one node (i.e., one Phy/link pair) on the bus, following a bus reset, the GRF contains
0000_00E0h and the acknowledge quadlet only.

Example: If there are three 1394.a compliant nodes on the bus, each with a Phy containing three or less
ports, the GRF of any one of the links is shown below. The FULLSID bit is assumed to be set
in this example.

GRF CONTENTS DESCRIPTION

0000_00E0h Header quadlet for Self-ID Phy packet

Self-ID1 Self_ID quadlet for Phy #1

Self-ID1 (inverse) Logical inverse quadlet for Self_ID of Phy #1

Self-ID2 Self_ID quadlet for Phy #2

Self-ID2 (inverse) Logical inverse quadlet for Self_ID of Phy #2

Self-ID3 Self_ID quadlet for Phy #3

Self-ID3 (inverse) Logical inverse quadlet for Self_ID of Phy #3

0000_000_ACK Trailing acknowledgement quadlet

GRF contents (following a bus reset) with three nodes on the bus

7–15

Table 7–15. Phy Self-ID Packet Fields

FIELD
NAME

DESCRIPTION

10 The 10 field is the self-ID packet identifier.

L If set, this node has an active link and transaction layers. In discrete Phy implementations, this shall be the
logical AND of Link_active and LPS active.

gap_cnt The gap_cnt field contains the current value for the current node PHY_CONFIGURATION.gap_count
field.

sp The sp field contains the Phy speed capability. The code is:

00 98.304 Mbits/s
01 98.304 Mbits/s and 196.608 Mbits/s
10 98.304 Mbits/s 196.608 Mbits/s, and 393.216 Mbits/s
11 Extended speed capabilities reported in Phy register 3

c If set and the link_active flag is set, this node is contender for the bus or isochronous resource manager as
described in clause 8.4.2 of IEEE Std 1394–1995.

pwr Power consumption and source characteristics:

000 Node does not need power and does not repeat power.
001 Node is self-powered and provides a minimum of 15W to the bus.
010 Node is self-powered and provides a minimum of 30W to the bus.
011 Node is self-powered and provides a minimum of 45W to the bus.
100 Node may be powered from the bus and is using up to 3W. No additional power is needed to enable

the link‡.
101 Reserved for future standaraization.
110 Node is powered from the bus and is using up to 3W. An additional 3W is needed to enable the link‡.
111 Node is powered from the bus and is using up to 3W. An additional 7W is needed to enable the link‡.

p0 – p15 The p0 – p15 field indicates the port connection status. The code is:

00 Not present on the current Phy
01 Not connected to any other Phy
10 Connected to the parent node
11 Connected to the child node

i If set, this node initiated the current bus reset (i.e., it started sending a bus_reset signal before it received
one)†.

m If set, another self-ID packet for this node will immediately follow (i.e., if this bit is set and the next Self-ID
packet received has a different Phy_ID, the a self-ID packet was lost)

n Extended self-ID packet sequence number

rsv Reserved and set to all zeros
† There is no way to ensure that exactly one node has this bit set. More than one node can be requesting a bus reset at

the same time.
‡ The link is enabled by the link-on Phy packet described in clause 7.5.2 of the IEEE 1394.a spec.; this packet may also

enable application layers.

7–16

8–1

8 TSB12LV32/Phy Interface
This section provides an overview of the digital interface between a TSB12LV32 and a physical layer device
(Phy). The information that follows can be used as a guide through the process of connecting the
TSB12LV32 to a 1394 Phy. The part numbers referenced, the TSB41LV03A and the TSB12LV32, represent
the Texas Instruments implementation of the Phy (TSB41LV03A) and link (TSB12LV32) layers of the IEEE
1394-1995 and P1394a standards.

The specific details of how the TSB41LV03A device operates are not discussed in this document. Only those
parts that relate to the TSB12LV32 Phy interface are mentioned.

8.1 Principles of Operation
The TSB12LV32 is designed to operate with a Texas Instruments physical-layer device. The following
paragraphs describe the operation of the Phy-LLC interface assuming a TSB41LV03A Phy. The
TSB41LV03A is an IEEE 1394a three port cable transceiver/arbiter Phy capable of 400 Mbits/s speeds.

The interface to the Phy consists of the SCLK, CTL0–CTL1, D0–D7, LREQ, LPS, LINKON, and DIRECT
terminals on the TSB12LV32, as shown in Figure 8–1. Refer to Texas Instruments Application Report
SLLA044 for a detailed description of the electrical interface between the TSB12LV32 and TSB41LV03.

TSB12LV32

DIRECT

LINKON

LPS

SCLK

LREQ

D0–D7

CTL0–CTL1

Link-Layer
Controller

TSB41LV03A

ISO

C/LKON

LPS

SYSCLK

LREQ

D0–D7

CTL0–CTL1

Physical-Layer
Device

ISODIRECT

Phy/LLC Interface

Figure 8–1. Phy-LLC Interface

The SYSCLK from the Phy terminal provides a 49.152 MHz interface clock. All control and data signals are
synchronized to, and sampled on, the rising edge of SYSCLK.

The CTL0 and CTL1 terminals form a bidirectional control bus, which controls the flow of information and
data between the TSB41LV03A and TSB12LV32.

The D0–D7 terminals form a bidirectional data bus, which is used to transfer status information, control
information, or packet data between the devices. The TSB41LV03A supports S100, S200, and S400 data
transfers over the D0–D7 data bus. In S100 operation only the D0 and D1 terminals are used; in S200
operation only the D0–D3 terminals are used; and in S400 operation all D0–D7 terminals are used for data

8–2

transfer. When the TSB41LV03A is in control of the D0–D7 bus, unused Dn terminals are driven low during
S100 and S200 operations. When the TSB12LV32 is in control of the D0–D7 bus, unused Dn terminals are
ignored by the TSB41LV03A.

The LREQ terminal is controlled by the TSB12LV32 to send serial service requests to the Phy in order to
request access to the serial-bus for packet transmission, read or write Phy registers, or control arbitration
acceleration.

The LPS and LINKON terminals are used for power management of the Phy and TSB12LV32. The LPS
terminal indicates the power status of the TSB12LV32, and may be used to reset the Phy-LLC interface or
to disable SYSCLK. The C/LKON terminal is used to send a wake-up notification to the TSB12LV32 and
to indicate an interrupt to the TSB12LV32 when either LPS is inactive or the Phy register LCtrl bit is zero.

The DIRECT and ISO terminals are used to enable the output differentiation logic on the CTL0–CTL1 and
D0–D7 terminals. Output differentiation is required when an Annex J type isolation barrier is implemented
between the Phy and TSB12LV32.

The TSB41LV03A normally controls the CTL0–CTL1 and D0–D7 bidirectional buses. The TSB12LV32 is
allowed to drive these buses only after the TSB12LV32 has been granted permission to do so by the Phy.
There are four operations that may occur on the Phy-LLC interface: link service request, status transfer, data
transmit, and data receive. The TSB12LV32 issues a service request to read or write a Phy register, to
request the Phy to gain control of the serial-bus in order to transmit a packet, or to control arbitration
acceleration.

The Phy may initiate a status transfer either autonomously or in response to a register read request from
the TSB12LV32. The Phy initiates a receive operation whenever a packet is received from the serial-bus.
The Phy initiates a transmit operation after winning control of the serial-bus following a bus-request by the
TSB12LV32. The transmit operation is initiated when the Phy grants control of the interface to the
TSB12LV32.

The encoding of the CTL0–CTL1 bus is shown in Table 8–1 and Table 8–2.

Table 8–1. CTL Encoding When the Phy Has Control of the Bus

CTL0 CTL1 NAME DESCRIPTION

0 0 Idle No activity (this is the default mode)

0 1 Status Status information is being sent from the Phy to the TSB12LV32.

1 0 Receive An incoming packet is being sent from the Phy to the TSB12LV32.

1 1 Grant The TSB12LV32 has been given control of the bus to send an outgoing packet.

Table 8–2. CTL Encoding When the TSB12LV32 Has Control of the Bus

CTL0 CTL1 NAME DESCRIPTION

0 0 Idle The TSB12LV32 releases the bus (transmission has been completed)

0 1 Hold The TSB12LV32 is holding the bus while data is being prepared for transmission, or
indicating that another packet is to be transmitted (concatenated) without arbitrating

1 0 Transmit An outgoing packet is being sent from the TSB12LV32 to the Phy.

1 1 Reserved Reserved

8–3

8.2 TSB12LV32 Service Request
To request access to the bus, to read or write a Phy register, or to control arbitration acceleration, the
TSB12LV32 sends a serial bit stream on the LREQ terminal as shown in Figure 8–2.

… …LR0 LR1 LR2 LR(n–2)LR3 LR(n–1)

NOTE: Each cell represents one clock sample time, and n is the number of bits in the request stream.

Figure 8–2. LREQ Request Stream

The length of the stream will vary depending on the type of request as shown in Table 8–3.

Table 8–3. Request Stream Bit Length

REQUEST TYPE NUMBER OF BITS

Bus Request 7 or 8

Read Register Request 9

Write Register Request 17
Acceleration Control Request 6

Regardless of the type of request, a start-bit of 1 is required at the beginning of the stream, and a stop-bit
of 0 is required at the end of the stream. The second through fourth bits of the request stream indicate the
type of the request. In the descriptions below, bit 0 is the most significant and is transmitted first in the request
bit stream. The LREQ terminal is normally low.

Encoding for the request type is shown in Table 8–4.

Table 8–4. Request Type Encoding

LR1–LR3 NAME DESCRIPTION

000 ImmReq Immediate bus request. Upon detection of idle, the Phy takes control of the bus immediately
without arbitration.

001 IsoReq Isochronous bus request. Upon detection of idle, the Phy arbitrates for the bus without waiting
for a subaction gap.

010 PriReq Priority bus request. The Phy arbitrates for the bus after a subaction gap, ignores the fair
protocol.

011 FairReq Fair bus request. The Phy arbitrates for the bus after a subaction gap, follows the fair protocol.

100 RdReg The Phy returns the specified register contents through a status transfer.

101 WrReg Write to the specified register.

110 AccelCtl Enable or disable asynchronous arbitration acceleration.

111 Reserved Reserved.

For a bus request the length of the LREQ bit stream is 7 or 8 bits as shown in Table 8–5.

Table 8–5. Bus Request

BIT(S) NAME DESCRIPTION

0 Start Bit Indicates the beginning of the transfer (always 1).

1–3 Request Type Indicates the type of bus request (see Table 8–4).

4–6 Request Speed Indicates the speed at which the Phy will send the data for this request (see Table 8–6)
for the encoding of this field.

7 Stop Bit Indicates the end of the transfer (always 0). If bit 6 is 0, this bit may be omitted.

The 3-bit request speed field used in bus requests is shown in Table 8–6.

8–4

Table 8–6. Bus Request Speed Encoding

LR4–LR6 DATA RATE

000 S100

010 S200

100 S400

All Others Invalid

NOTE:
The TSB41LV03A will accept a bus request with an invalid speed code and process
the bus request normally. However, during packet transmission for such a request,
the TSB41LV03A will ignore any data presented by the TSB12LV32 and will
transmit a null packet.

For a read register request the length of the LREQ bit stream is 9 bits as shown in Table 8–7.

Table 8–7. Read Register Request

BIT(S) NAME DESCRIPTION

0 Start Bit Indicates the beginning of the transfer (always 1).

1–3 Request Type A 100 indicating this is a read register request.

4–7 Address Identifies the address of the Phy register to be read.

8 Stop Bit Indicates the end of the transfer (always 0).

For a write register request the length of the LREQ bit stream is 17 bits as shown in Table 8–8.

Table 8–8. Write Register Request

BIT(S) NAME DESCRIPTION

0 Start Bit Indicates the beginning of the transfer (always 1).

1–3 Request Type A 101 indicating this is a write register request.

4–7 Address Identifies the address of the Phy register to be written to.

8–15 Data Gives the data that is to be written to the specified register address.

16 Stop Bit Indicates the end of the transfer (always 0).

For an acceleration control request the length of the LREQ bit stream is 6 bits as shown in Table 8–9.

Table 8–9. Acceleration Control Request

BIT(S) NAME DESCRIPTION

0 Start Bit Indicates the beginning of the transfer (always 1).

1–3 Request Type A 110 indicating this is a acceleration control request.

4 Control Asynchronous period arbitration acceleration is enabled if 1, and disabled if 0.

5 Stop Bit Indicates the end of the transfer (always 0).

For fair or priority access, the TSB12LV32 sends the bus request (FairReq or PriReq) at least one clock after
the Phy-LLC interface becomes idle. If the CTL terminals are asserted to the receive state (’b10) by the Phy,
then any pending fair or priority request is lost (cleared). Additionally, the Phy ignores any fair or priority
requests if the receive state is asserted while the TSB12LV32 is sending the request. The TSB12LV32 may
then reissue the request one clock after the next interface idle.

The cycle master node uses a priority bus request (PriReq) to send a cycle start message. After receiving
or transmitting a cycle start message, the TSB12LV32 can issue an isochronous bus request (IsoReq). The
Phy will clear an isochronous request only when the serial bus has been won.

8–5

To send an acknowledge packet, the TSB12LV32 must issue an immediate bus request (ImmReq) during
the reception of the packet addressed to it. This is required in order to minimize the idle gap between the
end of the received packet and the start of the transmitted acknowledge packet. As soon as the receive
packet ends, the Phy immediately grants control of the bus to the TSB12LV32. The TSB12LV32 sends an
acknowledgment to the sender unless the header CRC of the received packet is corrupted. In this case, the
TSB12LV32 does not transmit an acknowledge, but instead cancels the transmit operation and releases the
interface immediately; the TSB12LV32 must not use this grant to send another type of packet. After the
interface is released the TSB12LV32 may proceed with another request.

The TSB12LV32 may make only one bus request at a time. Once the TSB12LV32 issues any request for
bus access (ImmReq, IsoReq, FairReq, or PriReq), it cannot issue another bus request until the Phy
indicates that the bus request was lost (bus arbitration lost and another packet received), or won (bus
arbitration won and the TSB12LV32 granted control). The Phy ignores new bus requests while a previous
bus request is pending. All bus requests are cleared upon a bus reset.

For write register requests, the Phy loads the specified data into the addressed register as soon as the
request transfer is complete. For read register requests, the Phy returns the contents of the addressed
register to the TSB12LV32 at the next opportunity through a status transfer. If a received packet interrupts
the status transfer, then the Phy continues to attempt the transfer of the requested register until it is
successful. A write or read register request may be made at any time, including while a bus request is
pending. Once a read register request is made, the Phy ignores further read register requests until the
register contents are successfully transferred to the TSB12LV32. A bus reset does not clear a pending read
register request.

The TSB41LV03A includes several arbitration acceleration enhancements, which allow the Phy to improve
bus performance and throughput by reducing the number and length of interpacket gaps. These
enhancements include autonomous (fly-by) isochronous packet concatenation, autonomous fair and
priority packet concatenation onto acknowledge packets, and accelerated fair and priority request
arbitration following acknowledge packets. The enhancements are enabled when the EAA bit in Phy register
5 is set.

The arbitration acceleration enhancements may interfere with the ability of the cycle master node to transmit
the cycle start message under certain circumstances. The acceleration control request is therefore provided
to allow the TSB12LV32 to temporarily enable or disable the arbitration acceleration enhancements of the
TSB41LV03A during the asynchronous period. The TSB12LV32 typically disables the enhancements when
its internal cycle counter rolls over indicating that a cycle start message is imminent, and then re-enables
the enhancements when it receives a cycle start message. The acceleration control request may be made
at any time, however, and is immediately serviced by the Phy. Additionally, a bus reset or isochronous bus
request will cause the enhancements to be re-enabled, if the EAA bit is set.

8.3 Status Transfer
A status transfer is initiated by the Phy when there is status information to be transferred to the TSB12LV32.
The Phy waits until the interface is idle before starting the transfer. The transfer is initiated by the Phy
asserting status (‘b01) on the CTL terminals, along with the first two bits of status information on the D[0:1]
terminals. The Phy maintains CTL = status for the duration of the status transfer. The Phy may prematurely
end a status transfer by asserting something other than status on the CTL terminals. This occurs if a packet
is received before the status transfer completes. The Phy continues to attempt to complete the transfer until
all status information has been successfully transmitted. There is at least one idle cycle between
consecutive status transfers.

The Phy normally sends just the first four bits of status to the TSB12LV32. These bits are status flags that
are needed by the TSB12LV32 state machines. The Phy sends an entire 16-bit status packet to the
TSB12LV32 after a read register request, or when the Phy has pertinent information to send to the
TSB12LV32 or transaction layers. The only defined condition where the Phy automatically sends a register
to the TSB12LV32 is after self-ID, where the Phy sends the physical-ID register that contains the new node

8–6

address. All status transfers are either 4 or 16 bits unless interrupted by a received packet. The status flags
are considered to have been successfully transmitted to the TSB12LV32 immediately upon being sent, even
if a received packet subsequently interrupts the status transfer. Register contents are considered to have
been successfully transmitted only when all 8 bits of the register have been sent. A status transfer is retried
after being interrupted only if any status flags remain to be sent, or if a register transfer has not yet completed.

The definition of the bits in the status transfer are shown in Table 8–9 and the timing is shown in Figure 8–3.

Table 8–10. Status Bits

BIT(S) NAME DESCRIPTION

0 Arbitration Reset Gap Indicates that the Phy has detected that the bus has been idle for an arbitration
reset gap time (as defined in IEEE Std 1394–1995). This bit is used by the
TSB12LV32 in the busy/retry state machine.

1 Subaction Gap Indicates that the Phy has detected that the bus has been idle for a subaction gap
time (as defined in IEEE Std 1394–1995). This bit is used by the TSB12LV32 to
detect the completion of an isochronous cycle.

2 Bus Reset Indicates that the Phy has entered the bus reset start state.

3 Interrupt Indicates that a Phy interrupt event has occurred. An interrupt event may be a
configuration time-out, cable-power voltage falling too low, a state time-out, or a
port status change.

4–7 Address This field holds the address of the Phy register whose contents are being
transferred to the TSB12LV32.

8–15 Data This field holds the register contents.

00

00

(a)

01

(b)

00

00 S[14:15]S[0:1]D0, D1

CTL0, CTL1

SYSCLK

Figure 8–3. Status Transfer Timing

The sequence of events for a status transfer is as follows:

• Status transfer initiated. The Phy indicates a status transfer by asserting status on the CTL lines
along with the status data on the D0 and D1 lines (only 2 bits of status are transferred per cycle).
Normally (unless interrupted by a receive operation), a status transfer will be either 2 or 8 cycles
long. A 2-cycle (4-bit) transfer occurs when only status information is to be sent. An 8-cycle
(16-bit) transfer occurs when register data is to be sent in addition to any status information.

• Status transfer terminated. The Phy normally terminates a status transfer by asserting idle on the
CTL lines. The Phy may also interrupt a status transfer at any cycle by asserting receive on the
CTL lines to begin a receive operation. The Phy shall assert at least one cycle of idle between
consecutive status transfers.

8.4 Receive Operation
Whenever the Phy detects the data-prefix state on the serial bus, it initiates a receive operation by asserting
Receive on the CTL terminals and a logic 1 on each of the D terminals (data-on indication). The Phy indicates
the start of a packet by placing the speed code (encoded as shown in Table 8–11 on the D terminals, followed
by packet data. The Phy holds the CTL terminals in the receive state until the last symbol of the packet has

8–7

been transferred. The Phy indicates the end of packet data by asserting idle on the CTL terminals. All
received packets are transferred to the TSB12LV32. Note that the speed code is part of the Phy-LLC
protocol and is not included in the calculation of CRC or any other data protection mechanisms.

It is possible for the Phy to receive a null packet, which consists of the data-prefix state on the serial bus
followed by the data-end state, without any packet data. A null packet is transmitted whenever the packet
speed exceeds the capability of the receiving Phy, or whenever the TSB12LV32 immediately releases the
bus without transmitting any data. In this case, the Phy will assert receive on the CTL terminals with the
data-on indication (all 1s) on the D terminals, followed by idle on the CTL terminals, without any speed code
or data being transferred. In all cases, the TSB41LV03A sends at least one data-on indication before
sending the speed code or terminating the receive operation.

The TSB41LV03A also transfers its own self-ID packet, transmitted during the self-ID phase of bus
initialization, to the TSB12LV32. This packet it transferred to the TSB12LV32 just as any other received
self-ID packet.

00

001000
01

XX dnd0SPD

(a)

(e)(d)(b) (c)

FF (“data–on”)D0–D7

CTL0, CTL1

SYSCLK

Figure 8–4. Normal Packet Reception Timing

The sequence of events for a normal packet reception is as follows:

• Receive operation initiated. The Phy indicates a receive operation by asserting receive on the
CTL lines. Normally, the interface is idle when receive is asserted. However, the receive operation
may interrupt a status transfer operation that is in progress so that the CTL lines may change from
status to receive without an intervening idle.

• Data-on indication. The Phy asserts the data-on indication code on the D lines for one or more
cycles preceding the speed-code.

• Speed-code. The Phy indicates the speed of the received packet by asserting a speed-code on
the D lines for one cycle immediately preceding packet data. The link decodes the speed-code
on the first receive cycle for which the D lines are not the data-on code. If the speed-code is
invalid, or indicates a speed higher than that which the link is capable of handling, the link should
ignore the subsequent data.

• Receive data. Following the data-on indication (if any) and the speed-code, the Phy asserts
packet data on the D lines with receive on the CTL lines for the remainder of the receive operation.

• Receive operation terminated. The Phy terminates the receive operation by asserting idle on the
CTL lines. The Phy asserts at least one cycle of idle following a receive operation.

8–8

00

001000
01

XX dnd0SPD

(a)

(e)(d)(b) (c)

FF (“data–on”)D0–D7

CTL0, CTL1

SYSCLK

Figure 8–5. Null Packet Reception Timing

The sequence of events for a null packet reception is as follows:

• Receive operation initiated. The Phy indicates a receive operation by asserting receive on the
CTL lines. Normally, the interface is idle when receive is asserted. However, the receive operation
may interrupt a status transfer operation that is in progress so that the CTL lines may change from
status to receive without an intervening idle.

• Data-on indication. The Phy asserts the data-on indication code on the D lines for one or more
cycles.

• Receive operation terminated. The Phy terminates the receive operation by asserting idle on the
CTL lines. The Phy asserts at least one cycle of idle following a receive operation.

Table 8–11. Receive Speed Codes

D0–D7 DATA RATE

00XX XXXX S100

0100 XXXX S200

0101 0000 S400

1YYY YYYY Data-on indication

NOTE: X = Output as 0 by Phy, ignored by TSB12LV32.
Y = Output as 1 by Phy, ignored by TSB12LV3

8.5 Transmit Operation
When the TSB12LV32 issues a bus request through the LREQ terminal, the Phy arbitrates to gain control
of the bus. If the Phy wins arbitration for the serial bus, the Phy-LLC interface bus is granted to the
TSB12LV32 by asserting the grant state (’b11) on the CTL terminals for one SYSCLK cycle, followed by idle
for one clock cycle. The TSB12LV32 then takes control of the bus by asserting either idle (’b00), hold (’b01)
or transmit (’b10) on the CTL terminals. Unless the TSB12LV32 is immediately releasing the interface, the
TSB12LV32 may assert the idle state for at most one clock before it must assert either hold or transmit on
the CTL terminals. The hold state is used by the TSB12LV32 to retain control of the bus while it prepares
data for transmission. The TSB12LV32 may assert hold for zero or more clock cycles (i.e., the TSB12LV32
need not assert hold before transmit). The Phy asserts data-prefix on the serial bus during this time.

When the TSB12LV32 is ready to send data, the TSB12LV32 asserts transmit on the CTL terminals as well
as sending the first bits of packet data on the D lines. The transmit state is held on the CTL terminals until
the last bits of data have been sent. The TSB12LV32 then asserts either hold or idle on the CTL terminals
for one clock cycle, and then asserts idle for one additional cycle before releasing the interface bus and
placing its CTL and D terminals in high impedance. The Phy then regains control of the interface bus.

The hold state asserted at the end of packet transmission indicates to the Phy that the TSB12LV32 requests
to send another packet (concatenated packet) without releasing the serial bus. The Phy responds to this
concatenation request by waiting the required minimum packet separation time and then asserting grant
as before. This function may be used to send a unified response after sending an acknowledge, or to send

8–9

consecutive isochronous packets during a single isochronous period. Unless multispeed concatenation is
enabled, all packets transmitted during a single bus ownership must be of the same speed (since the speed
of the packet is set before the first packet). If multispeed concatenation is enabled (when the EMSC bit of
Phy register 5 is set), the TSB12LV32 must specify the speed code of the next concatenated packet on the
D terminals when it asserts hold on the CTL terminals at the end of a packet. The encoding for this speed
code is the same as the speed code that precedes received packet data as given in Table 8–11.

After sending the last packet for the current bus ownership, the TSB12LV32 releases the bus by asserting
Idle on the CTL terminals for two clock cycles. The Phy begins asserting Idle on the CTL terminals one clock
after sampling Idle from the link. Note that whenever the D and CTL terminals change direction between
the Phy and the TSB12LV32, there is an extra clock period allowed so that both sides of the interface can
operate on registered versions of the interface signals.

00

00 000001
0010

(f)

(g)(e)(d)(c)(b)(a)

01

00SPD
00 0000

000011

dnd0

Link controls CTL and D
Phy CTL and D outputs are High Impedance

D0–D7

CTL0, CTL1

SYSCLK

NOTE: SPD = Speed code, see Table 8–11, d0–dn = Packet data

Figure 8–6. Normal Packet Transmission Timing

The sequence of events for a normal packet transmission is as follows:

• Transmit operation initiated. The Phy asserts grant on the CTL lines followed by Idle to hand over
control of the interface to the link so that the link may transmit a packet. The Phy releases control
of the interface (i.e., it places its CTL and D outputs in a high-impedance state) following the idle
cycle.

• Optional idle cycle. The link may assert at most one Idle cycle preceding assertion of either hold
or transmit. This idle cycle is optional; the link is not required to assert Idle preceding either hold
or transmit.

• Optional hold cycles. The link may assert hold for up to 47 cycles preceding assertion of transmit.
These hold cycle(s) are optional; the link is not required to assert hold preceding transmit.

8–10

8.6 TSB12LV32/Phy Interface Critical Timing
PARAMETER† PIN NAME(S) MIN MAX UNIT

td0, delay time (SCLK to Q) LREQ 3 21 ns

td1, delay time (SCLK to Q) CTL[0:1] 3 21 ns

td2, delay time (SCLK to Q) D[0:7] 3.5 21 ns

tsu0, setup time to SCLK CYCLEIN 2 ns

tsu1, setup time to SCLK CONTNDR 3 ns

tsu2, setup time to SCLK CTL[0:1] 3 ns

tsu3, setup time to SCLK D[0:7] 3 ns

th0, hold time from SCLK CYCLEIN 2 ns

th1, hold time from SCLK CONTNDR 2 ns

th2, hold time from SCLK CTL[0:1] 0 ns

th3, hold time from SCLK D[0:7] 0 ns
† All timing parameters are referenced to the rising edge of SCLK on the TSB12LV32 side.

SCLK

LREQ

CYCLEIN

CONTNDR

CTL[0:1]

D[0:7]

X X

XX XX

D0

D2

D1

CONTROL

DATADATA

CONTROL

S3
S2

S0

S1 H3

H2

H1

H0

Figure 8–7. Critical Timing for the TSB12LV32/Phy Interface

9–1

9 Electrical Characteristics

9.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(Unless Otherwise Noted) †

Supply voltage range, VCC –0.5 V to 3.6 V.
Supply voltage range, VCC5V –0.5 V to 5.5 V.
Input voltage range, VI –0.5 V to VCC5V + 0.5 V.
Output voltage range, VO –0.5 V to VCC5V + 0.5 V.
Input clamp current, IIK (VI < 0 or VI > VCC ±20 mA.
Output clamp current, IOK (VO < 0 or VO > VCC ±20 mA.
Operating free-air temperature range: TSB12LV32 0°C to 70°C.

TSB12LV32I –40°C to 85°C.
Storage temperature range –65°C to 150°C.

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These
are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.

NOTES: 1. This applies to external input and bidirectional buffers. For 5-V tolerant terminals, use VI > VCC5V.
2. This applies to external output and bidirectional buffers. For 5-V tolerant terminals, use VI > VCC5V.

DISSIPATION RATING TABLE

PACKAGE
TA ≤ 25°C DERATING FACTOR TA = 70°C TA = 85°C

PACKAGE A
POWER RATING ABOVE TA = 25°C

A
POWER RATING

A
POWER RATING

PZ 1500 mW 16.9 mW/°C 737 mW 482 mW

9.2 Recommended Operating Conditions
MIN NOM MAX UNIT

Supply voltage, VCC 3 3.3 3.6 V

Supply voltage, VCC5V 3 4.5 5.5 V

Input voltage, VI 0 VCC5V V

Output voltage, VO† 0 VCC V

TSB12LV32, RESET 2.6 VCC5V

High–level input voltage, VIH TSB12LV32, other inputs 2.0 VCC5V V

TSB12LV32I 2.2 VCC5V

Low level input voltage VIL
TSB12LV32 0 0.8

VLow–level input voltage, VIL
TSB12LV32I 0 0.7

V

Input transition time, tf and tr (10% to 90%) 0 25 ns

Operating free-air temperature TA
TSB12LV32 0 25 70

°CO erating free-air tem erature, TA
TSB12LV32I –40 25 85

°C

Virtual junction temperature, TJC‡ 0 25 115 °C
† This applies to external output buffers.
‡ The junction temperatures listed reflect simulation conditions. The absolute maximum junction temperature is 150°C.

The customer is responsible for verifying the junction temperature.

9–2

9.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage
and Operating Free-Air Temperature (Unless Otherwise Noted)

PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT

VOH High-level output voltage IOH = –8 mA VCC–0.6 V

VOL Low-level output voltage IOL = 8 mA 0.5 V

IIL Low-level input current VI = VIL –20 µA

IIH High-level input current VI = VIH 20 µA

IOZ High-impedance output current VO = VCC or GND ±20 µA

ICC(Q) Static supply current IO = 0 10 µA

† All typical characteristics are measured at VCC = 3.3 V and TA = 25°C.

10–1

10 Mechanical Information

The TSB12LV32 is packaged in a high-performance 100-pin PZ package. The following shows the
mechanical dimensions of the PZ package.

PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK

4040149/B 11/96

50

26

0,13 NOM

Gage Plane

0,25

0,45
0,75

0,05 MIN

0,27

51

25

75

1

12,00 TYP

0,17

76

100

SQ

SQ
15,80
16,20

13,80

1,35
1,45

1,60 MAX

14,20

0°–7°

Seating Plane

0,08

0,50 M0,08

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

10–2

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

