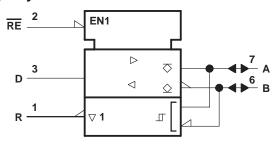
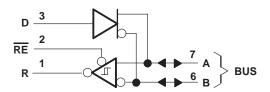

SLLS061 - D3407, JANUARY 1990


- Bidirectional Transceiver
- Designed for Multipoint Transmission in Noisy Environments Such as Automotive Applications
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability . . . ±10 mA Max
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates From Single 5-V Supply
- Low Power Requirements

description

The SN65076B and SN75076B differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for noisy environments, where a low-impedance termination to ground is required.



logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

The SN65076B and SN75076B combine a differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The receiver has an active-low enable. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

Function Tables

DRIVER

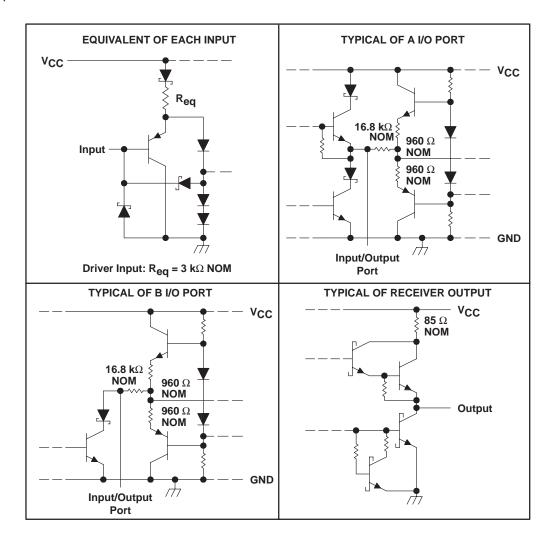
INPUT	OUTPUTS				
D	Α	В			
Н	H _.	L.			
L	L†	Η [†]			

[†] These levels assume that the open-collector outputs (A) and the open-emitter outputs (B) are connected to a pullup and pulldown resistor, respectively.

RECEIVER

DIFFERENTIAL INPUTS A – B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	L
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
V _{ID} ≤ -0.2 V	L	Н
X	Н	Z

H = high level, L = low level, ? = indeterminate;


X = irrelevant, Z = high impedance (off)

description (continued)

The driver is designed to handle loads up to 10 mA of sink and source current. The driver features positive- and negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C in the P package and 170°C in the D package. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

The SN65076B is characterized for operation from -40° C to 105° C and the SN75076B is characterized for operation from 0° C to 70° C.

SLLS061 - D3407, JANUARY 1990

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Voltage range at any bus terminal	10 V to 15 V
Enable input voltage	5.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range: SN65076l	3 –40°C to 105°C
SN75076I	3 0°C to 70°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from the ca	se for 10 seconds

NOTE 1: All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 105°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	261 mW
Р	1100 mW	8.8 mW/°C	702 mW	396 mW

recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V	
Voltage at any bus terminal (separately or common mode), V _I or V _{IC}				12	V	
				-7	V	
High-level input voltage, V _{IH}		D and RE	2			V
Low-level input voltage, V _{IL}		D and RE			0.8	V
Differential input voltage, V _{ID} (see Note 2)				±12	V	
High lovel output ourrent lass		Driver (A)			-10	mA
High-level output current, IOH		Receiver			-400	μΑ
Low-level output current, IOL		Driver (B)			10	mA
		Receiver			8	IIIA
Operating free-air temperature, TA	SN65076B		-40		105	°C
	SN75076B		0		70	C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TE	ST CONDITIONS	MIN	MAX	UNIT
٧ıK	Input clamp voltage	$I_{I} = -18 \text{ mA}$	$I_{I} = -18 \text{ mA}$		-1.5	V
٧o	Output voltage	V _I = 2 V,	IO = 0	0	6	V
V _{OD1}	Differential output voltage	IO = 0		1.5	6	V
V _{OD2}	Differential output voltage	See Figure 1		1.5	5	V
10	Output current	V ₁ = 0.8 V	V _O = 12 V		1	mA
10		V = 0.6 V	$V_0 = -7 \text{ V}$		-0.8	IIIA
lн	High-level input current	V _I = 2.4 V	V _I = 2.4 V		20	μΑ
I _I L	Low-level input current	V _I = 0.4 V	V _I = 0.4 V		-400	μΑ
	Short-circuit output current	$V_O = -7 V$	$V_O = -7 V$		-250	
		V _O = 0	V _O = 0		-150	mA
los		AO = ACC	VO = VCC		250	IIIA
		V _O = 12 V	V _O = 12 V		250	
Icc	Supply current (total package)	No load			30	mA

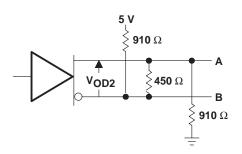
switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ton	Differential-output turn-on time	Coo Figure 2		60	90	ns
toff	Differential-output turn-off time	See Figure 3		75	110	ns

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

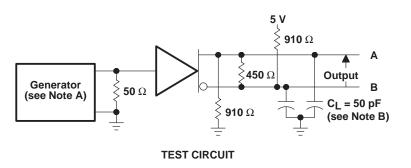
	PARAMETER	TEST CON	IDITIONS	MIN	TYP [†]	MAX	UNIT
V _{T+}	Positive-going input threshold voltage	V _O = 2.7 V,	$I_0 = -0.4 \text{ mA}$			0.2	V
V _T _	Negative-going input threshold voltage	$V_0 = 0.5 V$,	I _O = 8 mA	-0.2‡			V
V _{hys}	Hysteresis (V _{T+} – V _T –)				50		mV
٧ıK	Enable-input clamp voltage	I _I = –18 mA				-1.5	V
Vон	High-level output voltage	V _{ID} = −200 mV, See Figure 2	$I_{OH} = -400 \mu A,$	2.7			٧
VOL	Low-level output voltage	V _{ID} = −200 mV, See Figure 2	$I_{OL} = 8 \text{ mA},$			0.45	٧
loz	High-impedance-state output current	V _O = 0.4 V to 2.4	V			±20	μΑ
1 ₁	Line input current	Other input = 0 V, $V_I = -7 V$,	V _I = 12 V, See Note 3			1 -0.8	mA
lн	High-level enable-input current	V _{IH} = 2.7 V				20	μΑ
I _I L	Low-level enable-input current	V _{IL} = 0.4 V				-100	μΑ
rį	Input resistance			12			kΩ
los	Short-circuit output current		·	-15		-85	mA
ICC	Supply current (total package)	No load	·			30	mA

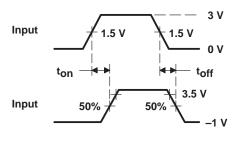

NOTE 3: This applies for both power on and power off.

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output	Vin - 0 to 3 V Soo Figure 4		21	35	ns
tPHL	Propagation delay time, high-to-low level output	V _{ID} = 0 to 3 V, See Figure 4		23	35	ns
^t PZH	Output enable time to high level	See Figure 5		10	20	ns
tPZL	Output enable time to low level	See Figure 5		12	20	ns
tPHZ	Output disable time from high level	Coo Figure 5		20	35	ns
t _{PLZ}	Output disable time from low level	See Figure 5		17	25	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for threshold voltage levels only.


PARAMETER MEASUREMENT INFORMATION



V_{ID} V_{OH} V_{OH}

Figure 1. Driver V_{OD2}

Figure 2. Receiver VOH and VOL

VOLTAGE WAVEFORMS

Figure 3. Driver Differential-Output Delay Times

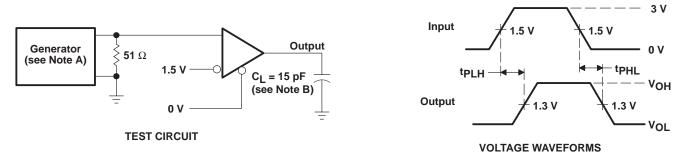
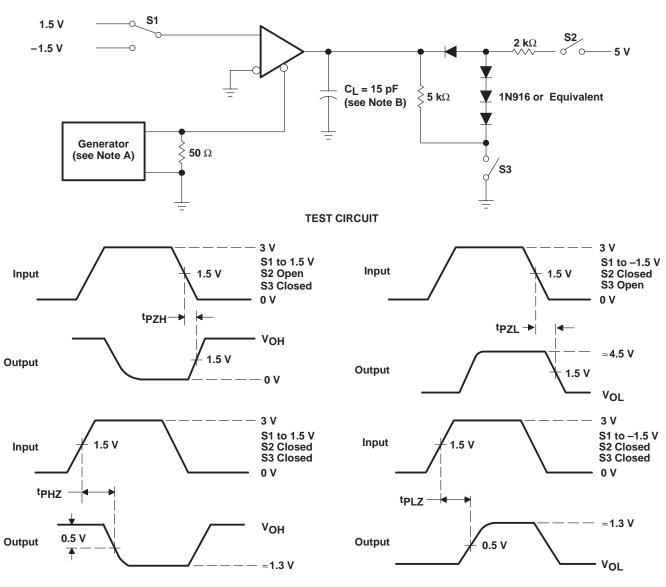



Figure 4. Receiver Test Circuit and Voltage Waveforms Propagation Delay Times

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, $t_$

B. C_L includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

Figure 5. Receiver Output Enable and Disable Times

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, $t_$

B. CL includes probe and jig capacitance.

TYPICAL CHARACTERISTICS

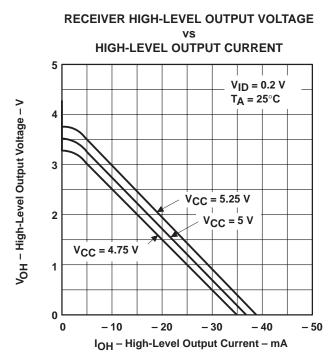
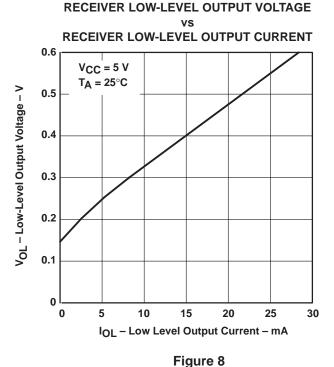



Figure 6

[†] Only the 0°C to 70°C portion of the curve applies for the SN75076B.

RECEIVER HIGH-LEVEL OUTPUT[†] FREE-AIR TEMPERATURE

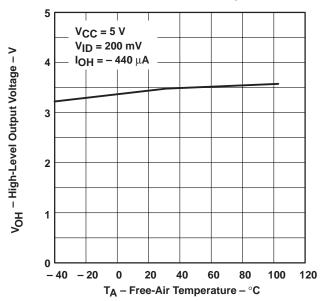


Figure 7

RECEIVER LOW-LEVEL OUTPUT VOLTAGE† vs

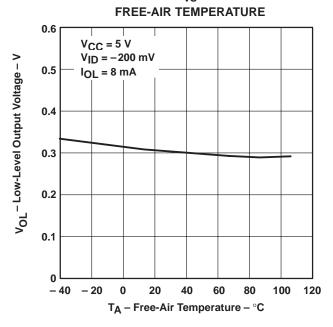


Figure 9

TYPICAL CHARACTERISTICS

V_O - Output Voltage - V

RECEIVER OUTPUT VOLTAGE ENABLE VOLTAGE $V_{\text{ID}} = 0.2 \text{ V}$ Load = 8 $k\Omega$ to GND $T_A = 25^{\circ}C$ $V_{CC} = 5.25 \text{ V}$ Vo - Output Voltage - V $V_{CC} = 4.75 \text{ V}$ $V_{CC} = 5 V$ 1 0 0.5 1.5 2.5 V_I - Enable Voltage - V Figure 10

RECEIVER OUTPUT VOLTAGE
vs
ENABLE VOLTAGE

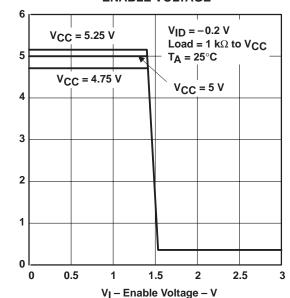
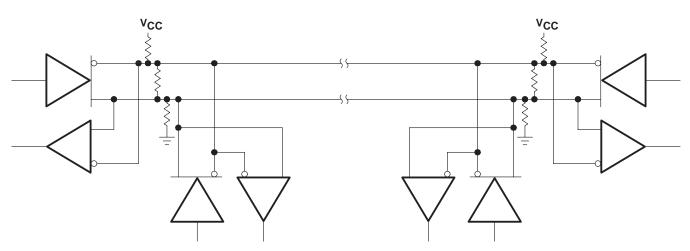



Figure 11

APPLICATION INFORMATION

Figure 12. Typical Application Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated