
MEETS IEEE STANDARD 488-1978 (GPIB)

- 8-Channel Bidirectional Transceiver
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . . 46 mW Max Per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance PNP Inputs
- Receiver Hysteresis . . . 650 mV Typ
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)
- Power-Up/Power-Down Protection (Glitch Free)
- Driver and Receiver Can Be Disabled Simultaneously

description

The SN75ALS165 eight-channel generalpurpose interface bus transceiver is a monolithic, high-speed, advanced low-power Schottky device designed for two-way data communications over single-ended transmission lines. It is designed to meet the requirements of IEEE Standard 488-1978. The transceiver features driver outputs

NOT RECOMMENDED FOR NEW DESIGN

Function Tables

EACH DRIVER EACH RECEIVER

INPUTS			OUTPUT	INPUTS			OUTPUT		
D	TE	PE	В	В	TE	PE	D		
Н	Н	Н	Н	L	L	Н	L		
L	Н	Χ	L	Н	L	Н	Н		
Н	Χ	L	z†	Χ	Н	Χ	Z		
Χ	L	Χ	z†	Χ	Χ	L	Z		

H = high level, L = low level, X = irrelevant,

that can be operated in either the passive-pullup or 3-state mode. If talk enable (TE) is high, these ports have the characteristics of passive-pullup outputs when pullup enable (PE) is low and of 3-state outputs when PE is high. Taking TE low places these ports in the high-impedance state. Taking TE and PE low places both the drivers and receivers in the high-impedance state. The driver outputs are designed to handle loads up to 48 mA of sink current.

An active turn-off feature is incorporated into the bus-terminating resistors so that the device exhibits a high impedance to the bus when $V_{CC} = 0$. When combined with the SN75ALS161 or SN75ALS162 management bus transceiver, the pair provides the complete 16-wire interface for the IEEE 488 bus.

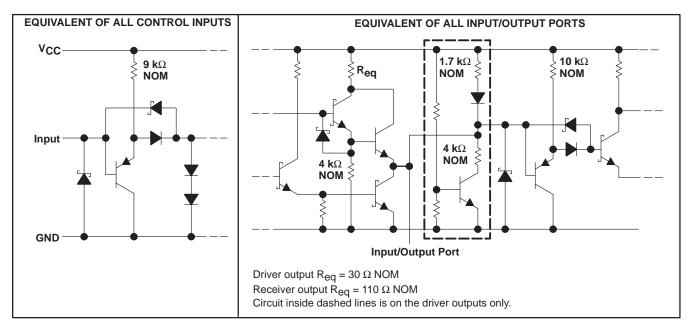
The SN75ALS165 is manufactured in a 20-pin package and is characterized for operation from 0°C to 70°C.

Z = high-impedance state

[†] This is the high-impedance state of a normal 3-state output modified by the internal resistors to V_{CC} and GND.

logic symbol[†]

M1 [3S]/G5 M2 [0C] TE EN3 [XMT] 5EN4 [RCV] \triangleright D1 2 В1 3 (1 ▽ /2 会) ▽4 Л 18 3 D2 B2 4 17 В3 D3 16 5 В4 D4 6 15 D5 **B5** 7 14 В6 D6 13 8 В7 D7 12 9 В8 D8


- [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
- ∇ Designates 3-state outputs

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	5.5 V
Low-level driver output current	100 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range	0°C to 70°C
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds	260°C

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING		
DW	1025 mW	8.2 mW/°C	656 mW		
N	1150 mW	9.2 mW/°C	736 mW		

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}				5.25	V
High-level input voltage, V _{IH}		2			V
Low-level input voltage, V _{IL}				0.8	V
High level cutout current I	Bus ports with pullups active			-5.2	mA
High-level output current, IOH	Terminal ports			-800	μΑ
Landard and an extended	Bus ports			48	A
Low-level output current, IOL	Terminal ports			16	mA
Operating free-air temperature, T _A				70	°C

SN75ALS165 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVER

SLLS023B – JUNE 1986 – REVISED AUGUST 1989

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS			TYP [†]	MAX	UNIT	
VIK	Input clamp voltage		I _I = –18 mA			-0.8	1.5	V	
V _{hys}	Hysteresis (V _{T+} – V _{T-})	Bus			0.4	0.65		V	
, t	Lligh level cutout voltage	Terminal	$I_{OH} = -800 \mu A$	TE at 0.8 V	2.7	3.5		_ v	
VOH [‡]	High-level output voltage	Bus	$I_{OH} = -5.2 \text{ mA},$	PE and TE at 2 V	2.5	3.3			
\/a:	Low lovel output voltage	Terminal	I _{OL} = 16 mA,	TE at 0.8 V		0.3	0.5	V	
VOL	Low-level output voltage	Bus	$I_{OL} = 48 \text{ mA},$	TE at 2 V		0.35	0.5		
Ц	Input current at maximum input voltage	Terminal	V _I = 5.5 V			0.2	100	μА	
ΙΗ	High-level input current	Terminal and	V _I = 2.7 V			0.1	20	μА	
I _{IL}	Low-level input current	control inputs	V _I = 0.5 V			-10	-100	μΑ	
V1/0/1>	Voltage at bus port		Driver disabled	$I_{I(bus)} = 0$	2.5	3	3.7	V	
VI/O(bus)	voltage at bus port			$I_{I(bus)} = -12 \text{ mA}$			-1.5		
	Current into bus port	Power on	Driver disabled	$V_{I(bus)} = -1.5 \text{ V to } 0.4 \text{ V}$	-1.3			mA	
				$V_{I(bus)} = 0.4 V \text{ to } 2.5 V$	0		-3.2		
I _{I/O(bus)}				V _{I(bus)} = 2.5 V to 3.7 V			2.5 -3.2		
				V _{I(bus)} = 3.7 V to 5 V	0		2.5		
				$V_{I(bus)} = 5 V \text{ to } 5.5 V$	0.7		2.5		
		Power off	$V_{CC} = 0$, $V_{I(bus)} = 0$ to 2.5 V				40	μΑ	
loo	Short-circuit output	Terminal			-15	-35	-75	mA	
los	current	Bus			-25	-50	-125	111/4	
loc	Supply current		No load	Terminal outputs low and enabled		42	65	mA	
ICC			140 loau	Bus outputs low and enabled		52 80 ''		111/4	
C _{I/O(bus)}	Bus-port capacitance		$V_{CC} = 5 V \text{ to } 0,$	$V_{I/O} = 0$ to 2 V, $f = 1$ MHz		30		pF	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ V_{OH} applies for 3-state outputs only.

SN75ALS165 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVER

SLLS023B - JUNE 1986 - REVISED AUGUST 1989

switching characteristics over recommended range of operating free-air temperature (unless otherwise noted), $V_{CC} = 5 \text{ V}$

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр†	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	Terminal	Bus	C _L = 30 pF,		7	20	no
tPHL	Propagation delay time, high-to-low-level output	Terriiriai	Dus	See Figure 1		8	20	ns
tPLH	Propagation delay time, low-to-high-level output	Bus	Terminal	C _L = 30 pF,		7	14	no
tPHL	Propagation delay time, high-to-low-level output	Dus	rerminai	See Figure 2		9	14	ns
^t PZH	Output enable time to high level					19	30	
t _{PHZ}	Output disable time from high level	TE	Bus	C _L = 15 pF, See Figure 3		5	12	ns
tPZL	Output enable time to low level	16				16	35	
tPLZ	Output disable time from low level					9	20	
^t PZH	Output enable time to high level					13	30	
tPHZ	Output disable time from high level	TE	Terminal	C _L = 15 pF,		12	20	
tPZL	Output enable time to low level	16	rerminal	See Figure 4		12	20	ns
tPLZ	Output disable time from low level					11	20	
t _{en}	Output pullup enable time	PE	Terminal	C _L = 15 pF,		11	22	no
^t dis	Output pullup disable time	FE	reminal	See Figure 5		6	12	ns

 $[\]uparrow$ All typical values are at $T_A = 25^{\circ}$ C.

PARAMETER MEASUREMENT INFORMATION

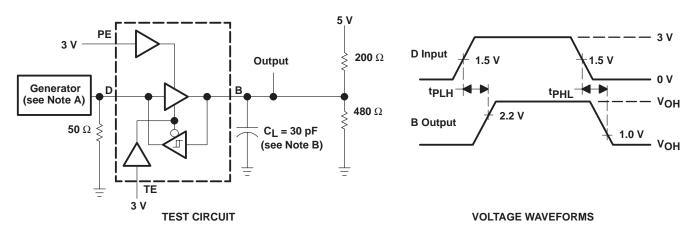


Figure 1. Terminal-to-Bus Test Circuit and Voltage Waveforms

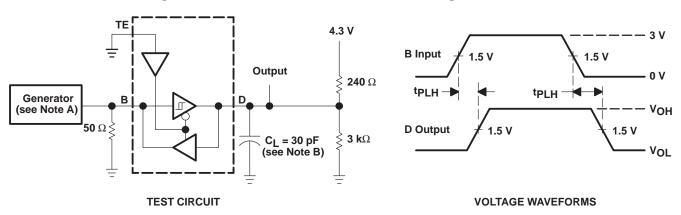


Figure 2. Bus-to-Terminal Test Circuit and Voltage Waveforms

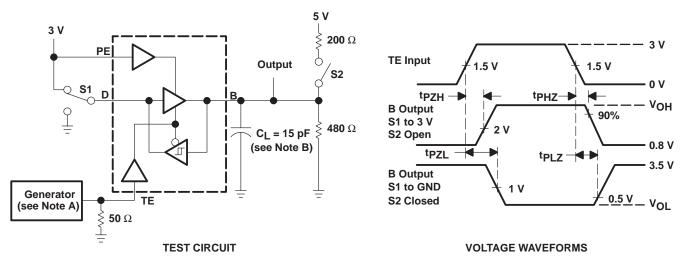


Figure 3. TE-to-Bus Test Circuit and Voltage Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, t_f
 - B. C_L includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION

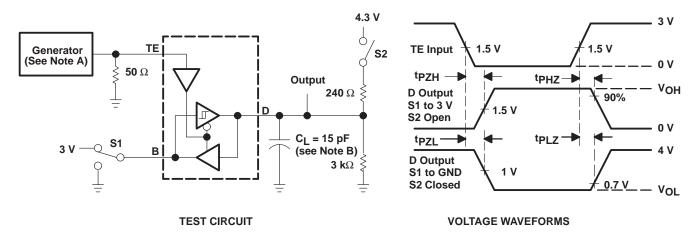


Figure 4. TE-to-Terminal Test Circuit and Voltage Waveforms

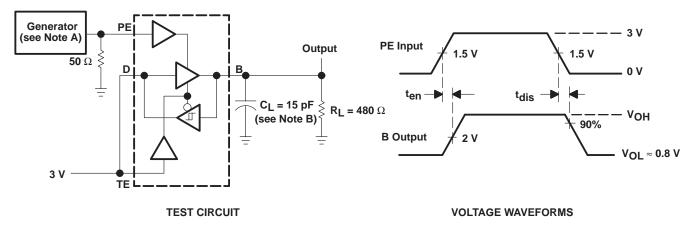
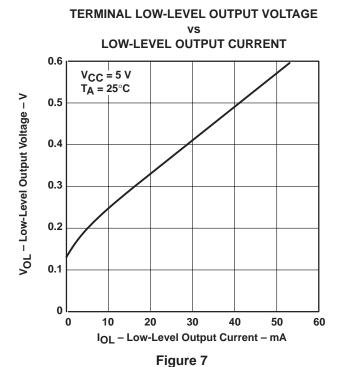


Figure 5. PE-to-Bus Test Circuit and Voltage Waveforms


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, t_f

B. C_L includes probe and jig capacitance.

TYPICAL CHARACTERISTICS

TERMINAL HIGH-LEVEL OUTPUT VOLTAGE **HIGH-LEVEL OUTPUT CURRENT** $V_{CC} = 5 V$ T_A = 25°C 3.5 V_{OH} - High-Level Output Voltage - V 3 2.5 2 1.5 1 0.5 0 0 -10 -15 -20 -25 -30 -35 -40IOH - High-Level Output Current - mA

Figure 6

TERMINAL OUTPUT VOLTAGE vs

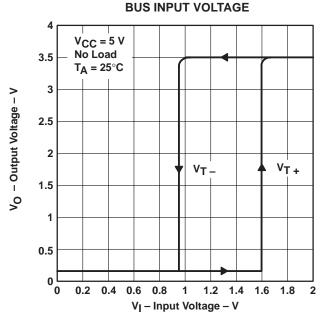
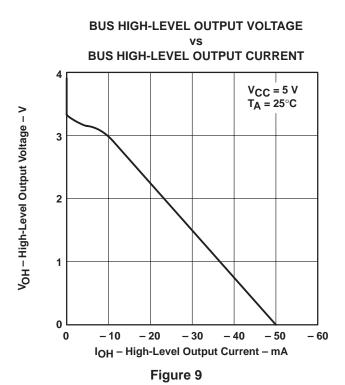



Figure 8

TYPICAL CHARACTERISTICS

BUS LOW-LEVEL OUTPUT VOLTAGE
vs
BUS LOW-LEVEL OUTPUT CURRENT
VCC = 5 V

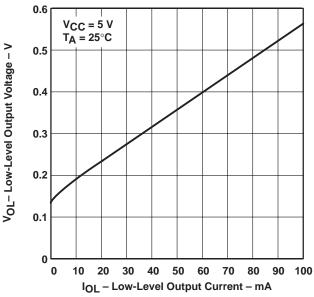
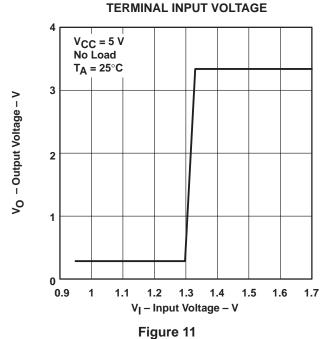



Figure 10

BUS OUTPUT VOLTAGE vs

TEXAS INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated