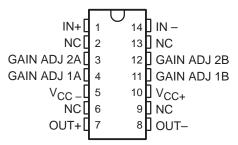
SLFS027A - NOVEMBER 1970 - REVISED MARCH 1993

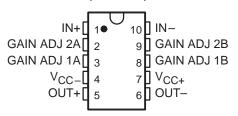
- 200-MHz Bandwidth
- 250-kΩ Input Resistance
- Selectable Nominal Amplification of 10, 100, or 400
- No Frequency Compensation Required
- Designed to be Interchangeable With Fairchild uA733C and uA733M

description

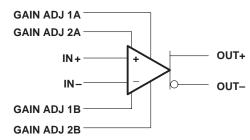

The uA733 is a monolithic two-stage video amplifier with differential inputs and differential outputs.

Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads, and all stages are current-source biased to obtain high commonmode and supply-voltage rejection ratios.

Fixed differential amplification of 10 V/V, 100 V/V, or 400 V/V may be selected without external components, or amplification may be adjusted from 10 V/V to 400 V/V by the use of a single external resistor connected between 1A and 1B. No external frequency-compensating components are required for any gain option.

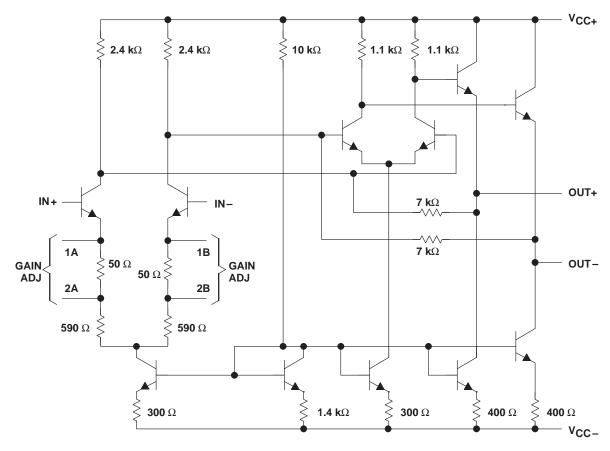

The device is particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general-purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

uA733C . . . D OR N PACKAGE uA733M . . . J PACKAGE (TOP VIEW)



NC - No internal connection

uA733M . . . U PACKAGE (TOP VIEW)



symbol

The uA733C is characterized for operation from 0° C to 70° C; the uA733M is characterized for operation over the full military temperature range of -55° C to 125° C.

schematic

Component values shown are nominal.

Component values shown are nominal.

SLFS027A - NOVEMBER 1970 - REVISED MARCH 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		uA733C	uA733M	UNIT
Supply voltage V _{CC+} (see Note 1)		8	8	V
Supply voltage V _{CC} _ (see Note 1)		-8	-8	V
Differential input voltage		± 5	± 5	V
Common-mode input voltage		± 6	± 6	V
Output current		10 10		
Continuous total power dissipation		See Dissi	able	
Operating free-air temperature range		0 to 70 - 55 to 125 °		
Storage temperature range	- 65 to 150	- 65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or U package		300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or N package	260		°C

[†] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential input voltages, are with respect to the midpoint between V_{CC+} and V_{CC}.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	500 mW	N/A	N/A	500 mW	N/A
J (uA733M)	500 mW	11.0 mW/°C	104°C	500 mW	269 mW
N	500 mW	N/A	N/A	500 mW	N/A
U	500 mW	5.4 mW/°C	57°C	430 mW	133 mW

uA733C, uA733M DIFFERENTIAL VIDEO AMPLIFIERS

SLFS027A - NOVEMBER 1970 - REVISED MARCH 1993

electrical characteristics, $V_{\mbox{CC}\pm}$ = ± 6 V, $T_{\mbox{A}}$ = 25°C

PARAMETER		FIGURE TEST CONDITIONS		GAIN	uA733C			uA733M			UNIT
		FIGURE	TEST CONDITIONS	OPTION†	MIN TYP		MAX	MIN	TYP	MAX	ONIT
AVD	Large-signal differential	1	V _{OD} = 1 V	1 2	250 80	400 100	600 120	300 90	400 100	500 110	V/V
7.VD	voltage amplification		1.00	3	8	10	12	9	10	11	" '
	· ·			1		50			50		
BW	Bandwidth	2	$R_S = 50 \Omega$	2		90			90		MHz
				3		200			200		
IIO	Input offset current			Any		0.4	5		0.4	3	μΑ
I_{IB}	Input bias current			Any		9	30		9	20	μΑ
VICR	Common-mode input voltage range	1		Any	±1			±1			٧
Voc	Common-mode output voltage	1		Any	2.4	2.9	3.4	2.4	2.9	3.4	V
V ₀₀	Output offset	1		1		0.6	1.5		0.6	1.5	V
VOO	voltage	'		2 & 3		0.35	1.5		0.35	1	
VOPP	Maximum peak- to-peak output voltage swing	1		Any	3	4.7		3	4.7		٧
				1		4			4		
rį	Input resistance	3	V _{OD} ≤ 1 V	2	10	24		20	24		kΩ
				3		250			250		
r _O	Output resistance					20			20		Ω
Ci	Input capacitance	3	V _{OD} ≤ 1 V	2		2			2		pF
CMRR	Common-mode	4	V _{IC} = ± 1 V, f ≤ 100 kHz	2	60	86		60	86		dB
rejection ration		V _{IC} = ± 1 V, f = 5 MHz	2		70			70		u.b	
ksvr	Supply voltage rejection ratio (ΔV _{CC} /(ΔV _{IO})	1	$\Delta V_{CC\pm} = \pm 0.5 \text{ V}$	2	50	70		50	70		dB
V _n	Broadband equivalent input noise voltage	5	BW = 1 kHz to 10 MHz	Any		12			12		μV
t _{pd} Propagation delay time			1		7.5			7.5			
		2	R _S = 50 Ω, Ourput voltage step = 1 V	2		6.0	10		6.0	10	ns
	,		o an p and a company of a compa	3		3.6			3.6		
t _r	Rise time	2	R _S = 50 Ω, Ourput voltage step = 1 V	1		10.5			10.5		
				2		4.5	12		4.5	10	ns
			, ,	3		2.5			2.5		
I _{sink(max)}	Maximum output sink current			Any	2.5	3.6		2.5	3.6		mA
ICC	Supply current		No load, No signal	Any		16	24		16	24	mA

[†] The gain option is selected as follows:

Gain Option 1 . . . Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2 . . . Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

Gain Option 3 . . . All four gain-adjust pins are open.

SLFS027A - NOVEMBER 1970 - REVISED MARCH 1993

electrical characteristics, $V_{CC\pm}$ = ± 6 V, T_A = 0°C to 70°C for uA733C, - 55°C to 125°C for uA733M

PARAMETER		FIGURE TEST CONDITIONS		GAIN	uA733C		uA733M		UNIT
		FIGURE	TEST CONDITIONS	OPTIONT	MIN	MAX	MIN	MAX	UNIT
				1	250	600	200	600	
A _{VD}	Large-signal differential voltage amplification	1	V _{OD} = 1 V	2	80	120	80	120	V/V
	voltage amplification			3	8	12	8	12	1
lio	Input offset current			Any		6		5	μΑ
I _{IB}	Input bias current			Any		40		40	μΑ
VICR	Common-mode input voltage range	1		Any	± 1		± 1		V
\/aa	Output offset voltage	1		1		1.5		1.5	V
Voo	Output onset voltage	'		2 & 3		1.5		1.2	V
VOPP	Maximum peak-to-peak output voltage swing	1		Any	2.8		2.5		٧
rį	Input resistance	3	V _{OD} ≤ 1 V	2	8		8		kΩ
CMRR	Common-mode rejection ratio	4	V _{IC} = +1 V, f ≤ 100 kHz	2	50		50		dB
ksvr	Supply voltage rejection ratio ($\Delta V_{CC}/(\Delta V_{IO})$	1	$\Delta V_{CC\pm} = \pm 0.5 \text{ V}$	2	50		50		dB
Isink(max)	Maximum output sink current			Any	2.5		2.2		mA
Icc	Supply current		No load, No signal	Any		27		27	mA

[†] The gain option is selected as follows:

Gain Option 1 . . . Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2 . . . Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

Gain Option 3 . . . All four gain-adjust pins are open.

PARAMETER MEASUREMENT INFORMATION

test circuits

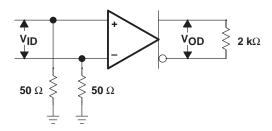
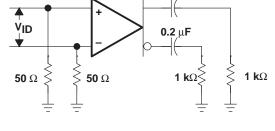



Figure 1

 $\textbf{0.2}~\mu\textbf{F}$

Figure 2

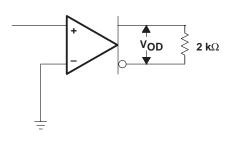


Figure 3

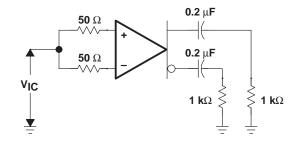


Figure 4

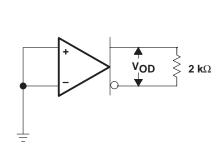
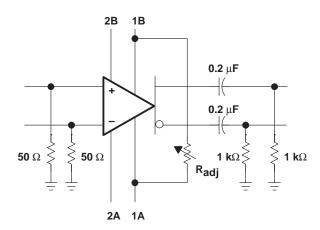



Figure 5

VOLTAGE AMPLIFICATION ADJUSTMENT

Figure 6

TYPICAL CHARACTERISTICS

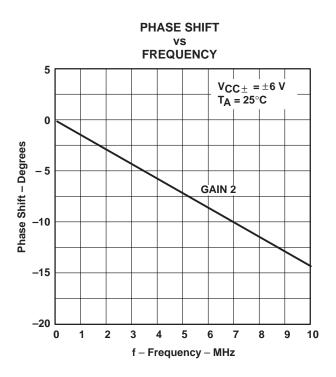


Figure 7

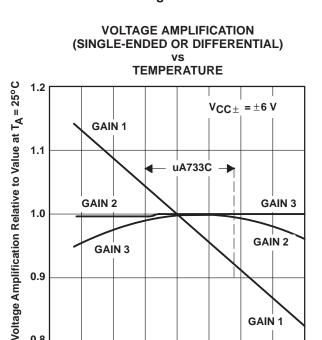


Figure 9

T_A - Free-Air Temperature - °C

25

50

75

100

125

0

-75

-50 -25

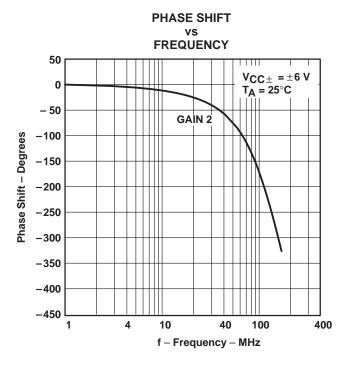
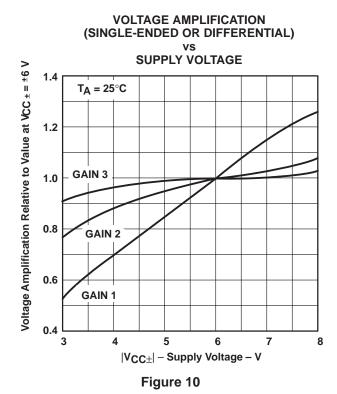



Figure 8

TYPICAL CHARACTERISTICS

DIFFERENTIAL VOLTAGE AMPLIFICATION VS RESISTANCE BETWEEN G1A AND G1B

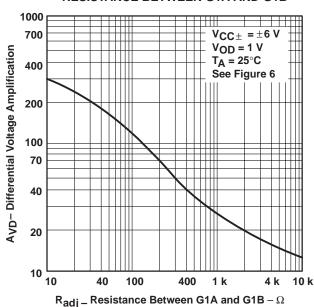


Figure 11

SUPPLY CURRENT

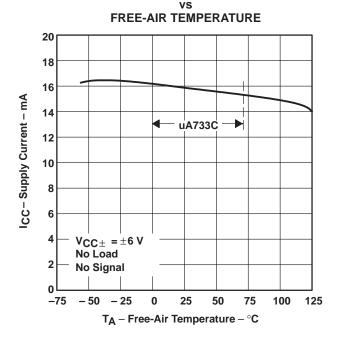


Figure 13

SINGLE-ENDED VOLTAGE AMPLIFICATION vs FREQUENCY

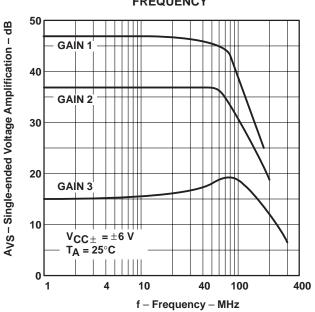


Figure 12

SUPPLY CURRENT vs SUPPLY VOLTAGE

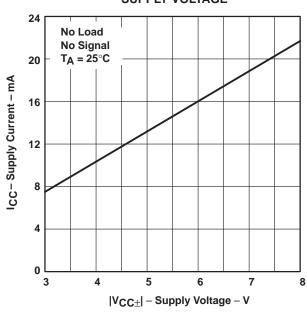


Figure 14

TYPICAL CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE

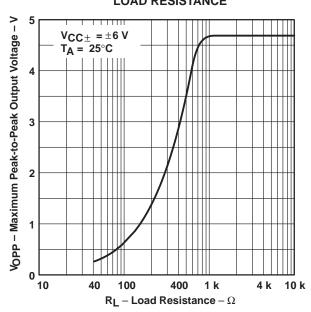


Figure 15

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

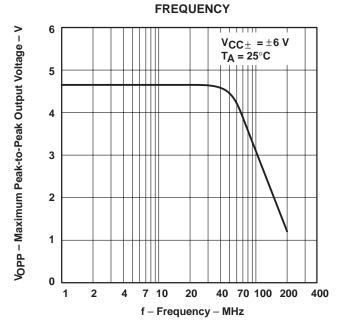


Figure 17

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE

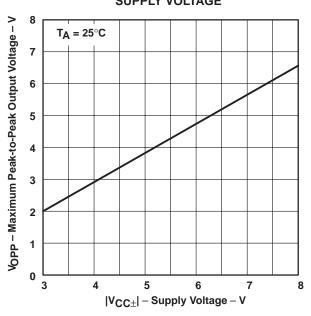


Figure 16

INPUT RESISTANCE vs FREE-AIR TEMPERATURE

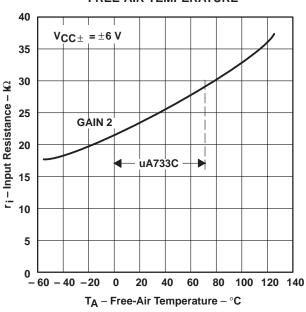


Figure 18

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated