SCLS331F - MARCH 1996 - REVISED JANUARY 2000 - **Members of the Texas Instruments** Widebus™ Family - **EPIC™** (Enhanced-Performance Implanted **CMOS) Process** - Operating Range 2-V to 5.5-V V_{CC} - Distributed V_{CC} and GND Pins Minimize **High-Speed Switching Noise** - Flow-Through Architecture Optimizes PCB Layout - Latch-Up Performance Exceeds 250 mA Per **JESD 17** - **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015 - **Package Options Include Plastic Shrink** Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package **Using 25-mil Center-to-Center Spacings** ### description These 16-bit buffers and bus drivers provide a high-performance bus interface for wide data paths. The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1 or OE2) input is high, all corresponding outputs are in the high-impedance state. SN54AHC16540 . . . WD PACKAGE SN74AHC16540 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW) To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN54AHC16540 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AHC16540 is characterized for operation from -40°C to 85°C. ### **FUNCTION TABLE** (each 8-bit buffer/driver) | | OUTPUT | | | |-----|--------|---|---| | OE1 | OE2 | Α | Y | | L | L | L | Н | | L | L | Н | L | | Н | X | Χ | Z | | Х | Н | Χ | Z | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC and Widebus are trademarks of Texas Instruments Incorporated. ### logic symbol[†] [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. ### logic diagram (positive logic) SCLS331F - MARCH 1996 - REVISED JANUARY 2000 ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage range, V _{CC} | | 0.5 V to 7 V | |--|---------------|----------------------------------| | Input voltage range, V _I (see Note 1) | | 0.5 V to 7 V | | Output voltage range, VO (see Note 1) | | 0.5 V to V _{CC} + 0.5 V | | Input clamp current, I _{IK} (V _I < 0) | | | | Output clamp current, I _{OK} (V _O < 0 or V _O > V _C | C) | ±20 mA | | Continuous output current, I_O ($V_O = 0$ to V_{CC}) | | ±25 mA | | Continuous current through each V _{CC} or GND | | ±75 mA | | Package thermal impedance, θ _{JA} (see Note 2) | : DGG package | 70°C/W | | | DGV package | 58°C/W | | | DL package | 63°C/W | | Storage temperature range, T _{stg} | | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. The package thermal impedance is calculated in accordance with JESD 51. ### recommended operating conditions (see Note 3) | | | | SN54AH | SN54AHC16540 | | C16540 | UNIT | |----------------|---|--|--------|--------------|------|-----------------|------| | | | | MIN | MAX | MIN | MAX | UNII | | Vcc | Supply voltage | | 2 | 5.5 | 2 | 5.5 | V | | | | V _{CC} = 2 V | 1.5 | | 1.5 | | | | VIН | High-level input voltage | V _{CC} = 3 V | 2.1 | | 2.1 | | V | | | VIH High-level input voltage VIL Low-level input voltage VI Input voltage VO Output voltage VO Output voltage VO VI High-level output current VO VI | V _{CC} = 5.5 V | 3.85 | | 3.85 | | | | | | V _{CC} = 2 V | | 0.5 | | 0.5 | | | VIL | /IL Low-level input voltage | V _{CC} = 3 V | | 0.9 | | 0.9 | V | | | | V _{CC} = 5.5 V | | 1.65 | | 1.65 | | | ٧ı | Input voltage | - | 0.0 | 5.5 | 0 | 5.5 | V | | ٧o | Output voltage | | .0 | Vcc | 0 | Vcc | V | | | | V _{CC} = 2 V | 20 | -50 | | - 50 | μΑ | | ІОН | High-level output current | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 70 | -4 | | -4 | mA | | | | $V_{CC} = 5 V \pm 0.5 V$ | | -8 | | -8 | mA | | | | V _{CC} = 2 V | | 50 | | 50 | μΑ | | lOL | Low-level output current | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | 4 | | 4 | A | | | | $V_{CC} = 5 V \pm 0.5 V$ | | 8 | | 8 | mA | | A4/A | land transition size on fall sate | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | 100 | | 100 | // | | Δt/Δv | Input transition rise or fall rate | $V_{CC} = 5 V \pm 0.5 V$ | | 20 | | 20 | ns/V | | T _A | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ## SN54AHC16540, SN74AHC16540 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCLS331F - MARCH 1996 - REVISED JANUARY 2000 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADAMETED | TEST CONDITIONS | Vaa | T, | Δ = 25°C | ; | SN54AHC | 16540 | SN74AHC16540 | | UNIT | |-----------------|--|--------------|------|----------|-------|---------|-------|--------------|------|------| | PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | | 2 V | 1.9 | 2 | | 1.9 | | 1.9 | | | | | I _{OH} = -50 μA | 3 V | 2.9 | 3 | | 2.9 | | 2.9 | | | | Voн | | 4.5 V | 4.4 | 4.5 | | 4.4 | | 4.4 | | V | | | I _{OH} = -4 mA | 3 V | 2.58 | | | 2.48 | | 2.48 | | | | | I _{OH} = -8 mA | 4.5 V | 3.94 | | | 3.8 | 4 | 3.8 | | | | | | 2 V | | | 0.1 | | 0.1 | | 0.1 | | | | I _{OL} = 50 μA | 3 V | | | 0.1 | | 0.1 | | 0.1 | | | V _{OL} | | 4.5 V | | | 0.1 | 9/ | 0.1 | | 0.1 | V | | | I _{OL} = 4 mA | 3 V | | | 0.36 | 35 | 0.5 | | 0.44 | | | | I _{OL} = 8 mA | 4.5 V | | | 0.36 | 90 | 0.5 | | 0.44 | | | lį | $V_I = V_{CC}$ or GND | 0 V to 5.5 V | | | ±0.1 | No. | ±1* | | ±1 | μΑ | | loz | $V_O = V_{CC}$ or GND,
$V_I (\overline{OE}) = V_{IL}$ or V_{IH} | 5.5 V | | | ±0.25 | | ±2.5 | | ±2.5 | μΑ | | Icc | $V_I = V_{CC}$ or GND, $I_O = 0$ | 5.5 V | | | 4 | | 40 | | 40 | μΑ | | C _i | V _I = V _{CC} or GND | 5 V | | 2 | 10 | | | | 10 | pF | | Co | $V_O = V_{CC}$ or GND | 5 V | | 3 | | | | | | pF | $^{^{\}star}$ On products compliant to MIL-PRF-38535, this parameter is not production tested at V_{CC} = 0 V. # switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | то | LOAD | T, | Δ = 25°(| C | SN54AH | C16540 | SN74AH0 | 16540 | UNIT | |--------------------|-----------|----------|------------------------|-----|-----------------|----------|--------|--------|---------|-------|------| | PARAMETER | (INPUT) | (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | t _{PLH} | А | Y | C _I = 15 pF | | 4.8** | 8.4** | 1** | 10** | 1 | 10 | ns | | t _{PHL} | Α | ' | CL = 13 pr | | 4.8** | 8.4** | 1** | 10** | 1 | 10 | 115 | | ^t PZH | ŌĒ | Y | C _L = 15 pF | | 6.8** | 10.6** | 1** | 12.5** | 1 | 12.5 | ns | | t _{PZL} | OE | ' | GL = 13 pr | | 6.8** | 10.6** | 1** | 12.5** | 1 | 12.5 | 115 | | ^t PHZ | <u>OE</u> | Y | C 15 pE | | 6.8** | 11.5** | 1** | 12.5** | 1 | 12.5 | ns | | t _{PLZ} | OE | <u>'</u> | C _L = 15 pF | | 6.8** | 11.5** | 1** | 12.5** | 1 | 12.5 | 115 | | tPLH | А | Y | C _I = 50 pF | | 7.7 | 11 | 1 | 12.5 | 1 | 12.5 | ns | | t _{PHL} | A | <u>'</u> | CL = 50 pr | | 7.3 | 11 | 251 | 12.5 | 1 | 12.5 | 115 | | ^t PZH | ŌĒ | Y | C ₁ = 50 pF | | 9.7 | 14.1 | 0 1 | 16 | 1 | 16 | ns | | t _{PZL} | OE | ' | CL = 30 pr | | 7.1 | 14.1 | Q 1 | 16 | 1 | 16 | 115 | | ^t PHZ | ŌĒ | Y | C _I = 50 pF | | 9.4 | 14 | 1 | 16 | 1 | 16 | 20 | | tPLZ | OE . | | GL = 50 pr | | 9.7 | 14 | 1 | 16 | 1 | 16 | ns | | ^t sk(o) | | | C _L = 50 pF | | | 1.5*** | | | | 1.5 | ns | $^{^{\}star\star}$ On products compliant to MIL-PRF-38535, this parameter is not production tested. ^{***} On products compliant to MIL-PRF-38535, this parameter does not apply. SCLS331F - MARCH 1996 - REVISED JANUARY 2000 # switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | то | LOAD | TA | √ = 25°C | ; | SN54AH0 | C16540 | SN74AH0 | 16540 | UNIT | | | | |--------------------|---------|------------|------------------------|-----|----------|------------|---------|--------|---------|-------|------|---|-----|-----| | PARAMETER | (INPUT) | (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNII | | | | | t _{PLH} | А | Y | C _I = 15 pF | | 3.7* | 6* | 1* | 7* | 1 | 7 | ns | | | | | t _{PHL} | ζ. | ' | CL = 13 pr | | 3.7* | 6* | 1* | 7* | 1 | 7 | 115 | | | | | ^t PZH | ŌĒ | Y | C _I = 15 pF | | 4.7* | 7.3* | 1* | 8.5* | 1 | 8.5 | ns | | | | | t _{PZL} | OE | ' | GL = 13 pr | | 4.7* | 7.3* | 1* | 8.5* | 1 | 8.5 | 115 | | | | | ^t PHZ | ŌĒ | Y | C _L = 15 pF | | 4.5* | 7.2* | 1* | 8.5* | 1 | 8.5 | ns | | | | | t _{PLZ} | OE | ' | ı | ' | ' | CL = 13 pr | | 4.5* | 7.2* | 1* 4 | 8.5* | 1 | 8.5 | 115 | | t _{PLH} | Α | Y | C ₁ = 50 pF | | 5.2 | 8 | 1 | 9 | 1 | 8.5 | ns | | | | | t _{PHL} | ζ | ' | С[= 30 рі | | 5.2 | 8 | 25 | 9 | 1 | 8.5 | 115 | | | | | ^t PZH | ŌĒ | Y | C _I = 50 pF | | 6.2 | 9.3 | 0 1 | 10.5 | 1 | 10.5 | ns | | | | | t _{PZL} | OE | ' | CL = 30 pr | | 6.2 | 9.3 | 2 1 | 10.5 | 1 | 10.5 | 115 | | | | | ^t PHZ | ŌE | Y | C _I = 50 pF | | 6 | 9.2 | 1 | 10.5 | 1 | 10.5 | ns | | | | | t _{PLZ} | OE T | CL = 50 pr | | 6 | 9.2 | 1 | 10.5 | 1 | 10.5 | 115 | | | | | | t _{sk(o)} | | · | C _L = 50 pF | | | 1** | | | | 1 | ns | | | | ^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested. # noise characteristics, $V_{CC} = 5 \text{ V}$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ (see Note 4) | | PARAMETER | SN74 | 540 | UNIT | | |--------------------|---|--|------|------|---| | | FARAWETER | SN74AHC16540 MIN TYP MAX 0.6 -0.3 4.7 3.5 | ONIT | | | | V _{OL(P)} | Quiet output, maximum dynamic VOL | | 0.6 | | V | | V _{OL(V)} | Quiet output, minimum dynamic V _{OL} | | -0.3 | | V | | VOH(V) | Quiet output, minimum dynamic VOH | | 4.7 | | V | | VIH(D) | High-level dynamic input voltage | 3.5 | | | V | | V _{IL(D)} | Low-level dynamic input voltage | | | 1.5 | V | NOTE 4: Characteristics are for surface-mount packages only. ## operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ | PARAMETER | TEST CONDITIONS | TYP | UNIT | |---|--------------------|-----|------| | C _{pd} Power dissipation capacitance | No load, f = 1 MHz | 13 | pF | ^{**} On products compliant to MIL-PRF-38535, this parameter does not apply. ### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq 3$ ns. $t_f \leq 3$ ns. - D. The outputs are measured one at a time with one input transition per measurement. Figure 1. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 2000, Texas Instruments Incorporated