TC5012BP/BF

TC5012BP/TC5012BF HEX NON-INVERTING 3-STATE BUFFER

TC5012BP/BF contains six circuits of noninverting buffers having three state output. Since DISABLE inputs to disable the outputs are provided separately, one common for four circuits and another common for other two circuits, this is suitable for controlling four bit data lines. Large output current enables to directly control one TTL input.

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} = 0.5 \sim V_{SS} + 20$	v
Input Voltage	VIN	$V_{SS-0.5} \sim V_{DD+0.5}$	v
Output Voltage	VOUT	$V_{SS} = 0.5 \sim V_{DD} + 0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	-40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

CIRCUIT DIAGRAM

TRUTH TABLE

DISABLE INPUT	INPUT	OUTPUT
L	L	L
L	Н	Н
Н	*	HZ

(TOP VIEW)

: DON'T CARE

HZ : HIGH IMPEDANCE

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	v
Input Voltage	V _{IN}	0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (Vgg=0V)

STATIC ELECTRIC	TE CITAL	ALTERISTICS (VSS		40	°C	Γ	25°C		05	° C	l .
CHARACTERISTIC	SYMBOL	TEST CONDITION	ADD	-40°C		MIN. TYP.		MAX.	85°C		UNITS
High-Level	v _{OH}	$ I_{OUT} < 1_{\mu}A$	(V) 5	4.95	_	4.95	5.00		4.95	-	
Output Voltage	-On	$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	10 15	9.95 14.95	-		10.00 15.00		9.95 14.95	ı	
Low-Level	.,	I _{OUT} <1μA	5	-	0.05	-	0.00	0.05	_	0.05	v
Output Voltage	V _{OL}	$v_{IN}=v_{SS}$, v_{DD}	10 15	_	0.05	-	0.00	0.05		0.05	,
•		V _{OH} =4.6V V _{OH} =2.5V	5	-	-	-	0.00	-	_	0.05	
Output High	I _{OH}	V _{OH} =2.5V V _{OH} =9.5V	5	-1.4	-	-1.25		-	-1.0	_	
Current		V _{OH} =13.5V	10	-1.4	-	-1.25		-	-3.0	-	
		VIN=VSS, VDD	15	-4.0	_	-3.75		-	-3.0		mA
Output Low	IOL	V _{OL} =0.4V V _{OL} =0.5V	5 10	3.5 6.0	-	3.2 5.0		_ _	2.5 3.6	- -	
Current	-	V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	15	26.0	-	24.0		-	18.0	_	
		V _{OUT} =0.5V, 4.5V		3.5	_	3.5	2.75	_	3.5	_	
Input High	ν _{IH}	V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		I _{OUT} <1μA	15	11.0	_	11.0	8.25	-	11.0	-	v
Input Low		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	_	-	1.5	-	2.25	15	_	1.5] `
Voltage	v_{IL}	V _{OUT} =1.5V,13.5V	10	-	3.0	-	4.5	3.0	_	3.0	
		$ I_{OUT} <1_{\mu}A$	15	-	4.0	-	6.75	4.0	_	4.0	
Input "H" Level	IIH	V _{IH} =18V	18	_	0.3	-	10 ⁻⁵	0.3	-	1.0	
Current "L" Level	IIL	Λ ¹ Γ=0Λ	18	-	-0.3		-10 ⁻⁵	-0.3	-	-1.0	
3-State "H" Output Level	1 _{DH}	V _{OUT} =18V	18	-	0.5	_	10-4	0.5	-	30	
Leakage "L" Current Level	I _{DL}	v _{OUT} =0v	18	_	-0.5	-	-10-4	-0.5	-	-30	μA
Quiescent	I _{DD}	V-v-Vac V	5	-	4.0		0.002	4.0	-	30	
Device Current	מטי	V _{IN} =V _{SS} ,V _{DD}	10 15	_	8.0 16.0		0.004 0.008	8.0 16.0	-	60 120	

^{*} All valid input combinations.

INVIAMIL FIFLIRICAL CHARACTERISTICS (18=25 C, VSS=0V, CL-	TICS (Ta=25°C, $V_{SS}=0V$, $C_L=50pF$)
---	---

CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{\mathrm{DD}}(\mathrm{V})$	MIN.	TYP.	MAX.	UNITS
			5	_	130	400	
Output Transition Time	tTLH		10	-	65	200	
(Low to High)			15		50	100	
Out Tuesdities Time	i		5	-	70	200	
Output Transition Time	$^{ extsf{t}}_{ extsf{THL}}$,	10	-	40	100	
(High to Low)			15	_	35	80	
Description Dolay Time	1.5		5	-	320	4 30	
Propagation Delay Time	t _{pLH}		10	- 1	150	220	
(IN - OUT)			15	_	110	200	
Propagation Delay Time (IN - OUT)			5		280	380	
	t _{pHL}		10	-	130	220	
	P	İ	15	-	100	200	ns
Three State Disable Time			5	_	320	500	113
	t _{pHZ}	$R_L = 1k\Omega$	10	-	280	450	
(DISABLE - OUT)		_	15	_	250	400	
			5	_	420	600]
Three State Disable Time	t _{pLZ}	$R_{L}=1k\Omega$	10	_	320	500	
(DISABLE - OUT)			15	-	270	450]
Maria Chara Disable Time			5	-	280	400	
Three State Disable Time	t _{pZH}	$R_{L=1k\Omega}$	10	-	140	200	
(DISABLE - OUT)	p2n		15	_	120	180	
			5	-	300	450] .
Three State Disable Time	t _{pZL}	$R_{L}=1k\Omega$	10	-	، 150	225	
(DISABLE - OUT)	PAL		15	-	1 30	200	
Input Capacitance	CIN			-	7.5	15	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

