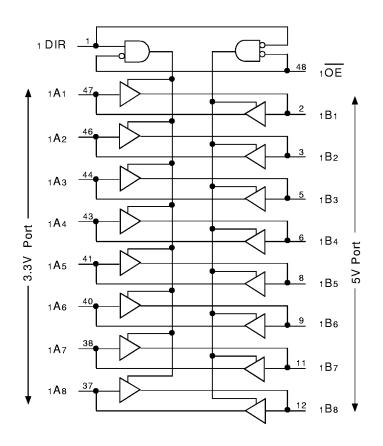
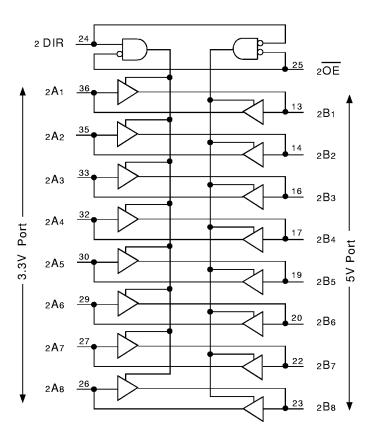


# FAST CMOS 16-BIT BIDIRECTIONAL 3.3V TO 5V TRANSLATOR

## *IDT74FCT164245T*

# **FEATURES:**

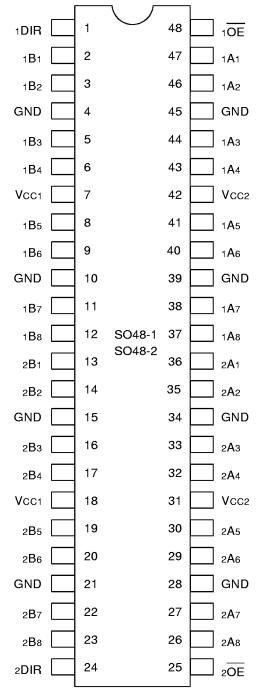

- 0.5 MICRON CMOS Technology
- Bidirectional interface between 3.3V and 5V buses
- Control inputs can be driven from either 3.3V or 5V circuits
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- 25 mil pitch SSOP and 19.6 mil pitch TSSOP packages
- Extended commercial range of -40°C to +85°C
- VCC1 = 5V ±10%, VCC2 = 2.7V to 3.6V
- High drive outputs (-32mA IOH, 64mA IOL) on 5V port
- Power off disable on both ports permits "live insertion"
- Typical Volp (Output Ground Bounce) < 0.9V at Vcc1 = 5V, Vcc2 = 3.3V, TA = 25°C</li>


## **DESCRIPTION:**

The FCT164245T 16-bit 3.3V-to-5V translator is built using advanced dual metal CMOS technology. This high-speed, low-power transceiver is designed to interface between a 3.3V bus and a 5V bus in a mixed 3.3V/ 5V supply environment. This enables system designers to interface TTL compatible 3.3V components with 5V components. The direction and output enable controls operate these devices as either two independent 8-bit transceivers or one 16-bit transceiver. The A port interfaces with the 3.3V bus; the B port interfaces with the 5V bus. The direction control (xDIR) pin controls the direction of data flow. The output enable pin ( $x\overline{OE}$ ) overrides the direction control and disables both ports. These control signals can be driven from either 3.3V or 5V devices.

The FCT164245T is ideally suited for driving high-capacitance loads and low-impedance backplanes. The output buffers are designed with power off disable capability to allow "hot insertion" of boards when used as backplane drivers. They also allow interface between a mixed supply system and external 5 volt peripherals.

# **FUNCTIONAL BLOCK DIAGRAM**






## **COMMERCIAL TEMPERATURE RANGE**

**AUGUST 1999** 

## PIN CONFIGURATION



SSOP/ TSSOP TOP VIEW

# **POWER SUPPLY SEQUENCING**

In the IDT74FCT164245T, the condition of Vcc1  $\geq$  (Vcc2 - 0.5V) must be maintained at all times. For the range of Vcc1 = (Vcc2 - 0.5V) to Vcc1 = (Vcc2 + 0.9V), both the A and B ports will remain in a High-Impedance state.

# **ABSOLUTE MAXIMUM RATINGS(1)**

| Symbol               | Rating                               | Max.                 | Unit |
|----------------------|--------------------------------------|----------------------|------|
| VTERM <sup>(2)</sup> | Terminal Voltage with Respect to GND | -0.5 to +7           | ٧    |
| VTERM <sup>(3)</sup> | Terminal Voltage with Respect to GND | -0.5 to VCC1<br>+0.5 | ٧    |
| TA                   | Operating Temperature                | -40 to +85           | °C   |
| TBIAS                | Temperature Under Bias               | -55 to +125          | ô    |
| Тѕтс                 | Storage Temperature                  | -55 to +125          | °C   |
| Рт                   | Power Dissipation                    | 1                    | W    |
| lout                 | DC Output Current                    | -60 to 120           | mA   |

#### NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. All device terminals except Vcc2.
- 3. Power supply terminals Vcc2.

# **CAPACITANCE** (TA = $+25^{\circ}$ C, f = 1.0MHz)

| Symbol | Parameter <sup>(1)</sup> | Conditions | Тур. | Max. | Unit |
|--------|--------------------------|------------|------|------|------|
| CIN    | Input Capacitance        | VIN = 0V   | 3.5  | 6    | pF   |
| CI/O   | I/O Capacitance          | Vout = 0V  | 3.5  | 8    | pF   |

## NOTE:

1. This parameter is measured at characterization but not tested.

## PIN DESCRIPTION

| Pin Names                    | Description                                  |
|------------------------------|----------------------------------------------|
| x <del>OE</del>              | Output Enable Input (Active LOW)             |
| xDIR Direction Control Input |                                              |
| xAx                          | Side A Inputs or 3-State Outputs (3.3V Port) |
| хВх                          | Side B Inputs or 3-State Outputs (5V Port)   |

## **FUNCTION TABLE(1)**

| Inputs               |   |                     |
|----------------------|---|---------------------|
| x <del>OE</del> xDIR |   | Outputs             |
| L                    | L | Bus B Data to Bus A |
| L                    | Н | Bus A Data to Bus B |
| Н                    | Х | High Z State        |

#### NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

# DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT, 3.3V)

Following Conditions Apply Unless Otherwise Specified:

 $Vcc1 = 5V \pm 10\%$ , Vcc2 = 2.7V to 3.6V; Commercial: TA = -40°C to +85°C

| Symbol      | Parameter                             | Test Condi                                         | Test Conditions <sup>(1)</sup> |           | Typ. <sup>(2)</sup> | Max. | Unit |
|-------------|---------------------------------------|----------------------------------------------------|--------------------------------|-----------|---------------------|------|------|
| <b>V</b> IH | Input HIGH Level (Input and I/O pins) | Guaranteed Logic HIGH Lev                          | Guaranteed Logic HIGH Level    |           | 1                   | 5.5  | ٧    |
| VIL         | Input LOW Level (Input and I/O pins)  | Guaranteed Logic LOW Lev                           | el                             | -0.5      | _                   | 0.8  | ٧    |
| Iн          | Input HIGH Current (Input pins)       | Vcc1 = Max.                                        | VI = 5.5V                      | _         | _                   | ±5   | μA   |
|             | Input HIGH Current (I/O pins)         | Vcc2 = Max.                                        | VI = VCC2                      | _         | _                   | ±15  |      |
| lıL         | Input LOW Current (Input pins)        |                                                    | Vı = GND                       |           | _                   | ±5   |      |
|             | Input LOW Current (I/O pins)          | 7                                                  | Vı = GND                       | _         | _                   | ±15  |      |
| Vıĸ         | Clamp Diode Voltage                   | VCC2 = Min., IN = -18mA                            |                                | _         | -0.7                | -1.2 | ٧    |
| Vон         | Output HIGH Voltage                   | VCC1 = VCC2 = Min.                                 | Iон = -0.1mA                   | Vcc2 -0.2 | _                   | _    | ٧    |
|             |                                       | VIN = VIH or VIL                                   |                                |           |                     |      |      |
|             |                                       | VCC2 = 3V                                          | Іон = −8mА                     | 2.4       | 3                   | _    |      |
|             |                                       | VIN = VIH or VIL                                   |                                |           |                     |      |      |
| Vol         | Output LOW Voltage                    | VCC1 = Min.                                        | IoL = 0.1mA                    |           | _                   | 0.2  | ٧    |
|             |                                       | VCC2 = Min.                                        | IoL = 16mA                     |           | 0.2                 | 0.4  |      |
|             |                                       | VIN = VIH or VIL                                   | IoL = 24mA                     |           | 0.3                 | 0.55 |      |
|             |                                       | Vcc = 3V                                           | IoL = 24mA                     | _         | 0.3                 | 0.5  |      |
|             |                                       | VIN = VIH or VIL                                   |                                |           |                     |      |      |
| loff        | Input/Output Power Off Leakage        | VCC1 = 0V, VCC2 = 0V, VIN 0                        | r Vo ≤ 4.5V                    | _         | _                   | ±100 | μA   |
| los         | Short Circuit Current <sup>(4)</sup>  | Vcc1 = Max., Vcc2 = Max., Vo = GND <sup>(3)</sup>  |                                | -70       | -105                | -150 | mA   |
| lo          | Output Drive Current                  | Vcc1 = Max., Vcc2 = Max., Vo = 1.5V <sup>(3)</sup> |                                | -40       | -60                 | -90  | mA   |
| VH          | Input Hysteresis                      | _                                                  |                                | _         | 150                 | _    | mV   |
| ICC2L       | Quiescent Power Supply Current        | Vcc1 = Max.                                        |                                |           | 0.35                | 2    | mA   |
| ICC2H       |                                       | Vcc2 = Max.                                        | Vcc2 = Max.                    |           |                     |      |      |
| ICC2Z       |                                       | VIN = GND or Vcc2                                  |                                |           |                     |      |      |

- 1. For conditions shown as Max, or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc1 = 5.0V, Vcc2 = 3.3V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. This parameter is guaranteed but not tested.

# DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT, 5V)

Following Conditions Apply Unless Otherwise Specified:

 $Vcc1 = 5V \pm 10\%$ , Vcc2 = 2.7V to 3.6V; Commercial: TA = -40°C to +85°C

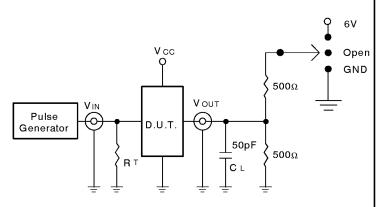
| Symbol | Parameter                             | Test Conditions <sup>(1)</sup>                     |                            | Min. | Typ. <sup>(2)</sup> | Max. | Unit |
|--------|---------------------------------------|----------------------------------------------------|----------------------------|------|---------------------|------|------|
| Vін    | Input HIGH Level (Input and I/O pins) | Guaranteed Logic HIGH Level                        |                            | 2    | _                   | 5.5  | ٧    |
| VIL    | Input LOW Level (Input and I/O pins)  | Guaranteed Logic LOW Lev                           | el                         | -0.5 | _                   | 0.8  | ٧    |
| lін    | Input HIGH Current (Input pins)       | Vcc1 = Max.                                        | VI = VCC1                  | _    | _                   | ±5   | μA   |
|        | Input HIGH Current (I/O pins)         | Vcc2 = Max.                                        |                            | _    | _                   | ±15  | 1    |
| lıL    | Input LOW Current (Input pins)        | 7                                                  | VI = GND                   | _    | _                   | ±5   | 1    |
|        | Input LOW Current (I/O pins)          | 7                                                  |                            | _    | _                   | ±15  |      |
| Vıĸ    | Clamp Diode Voltage                   | Vcc1 = Min., lin = -18mA                           |                            | _    | -0.7                | -1.2 | ٧    |
| Vон    | Output HIGH Voltage                   | Vcc1 = Min.                                        | Iон = -3mA                 | 2.5  | 3.5                 | _    | ٧    |
|        |                                       | VCC2 = Min.                                        | Iон = -15mA                | 2.4  | 3.5                 | _    |      |
|        |                                       | VIN = VIH or VIL                                   | Iон = -32mA <sup>(5)</sup> | 2    | 3                   | _    | 1    |
| Vol    | Output LOW Voltage                    | Vcc1 = Min.                                        | IoL = 64mA                 | _    | 0.2                 | 0.55 | ٧    |
|        |                                       | VCC2 = Min.                                        |                            |      |                     |      |      |
|        |                                       | VIN = VIH or VIL                                   |                            |      |                     |      |      |
| loff   | Input/Output Power Off Leakage        | VCC1 = 0V, VCC2 = 0V, VIN 0                        | r Vo ≤ 4.5V                | T -  | _                   | ±100 | μA   |
| los    | Short Circuit Current <sup>(4)</sup>  | Vcc1 = Max., Vcc2 = Max., V                        | /o = GND <sup>(3)</sup>    | -80  | -140                | -225 | mA   |
| lo     | Output Drive Current                  | Vcc1 = Max., Vcc2 = Max., Vo = 2.5V <sup>(3)</sup> |                            | -50  | -75                 | -180 | mA   |
| Vн     | Input Hysteresis                      | _                                                  |                            | _    | 150                 | _    | mV   |
| ICC1L  | Quiescent Power Supply Current        | Vcc1 = Max.                                        |                            | _    | 0.08                | 1.5  | mA   |
| Ісс1н  |                                       | Vcc2 = Max.                                        | Vcc2 = Max.                |      |                     |      |      |
| ICC1Z  |                                       | VIN = GND or VCC2                                  |                            |      |                     |      |      |

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- Tor conditions shown as total, or with, use appropriate value speed.
   Typical values are at Vcc1 = 5.0V, Vcc2 = 3.3V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. This parameter is guaranteed but not tested.
- 5. Duration of the condition cannot exceed one second.

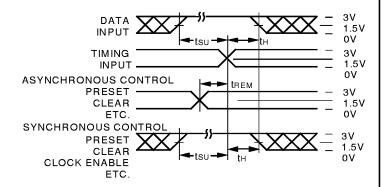
# **POWER SUPPLY CHARACTERISTICS**

| Symbol | Parameter                                      | Test Conditions <sup>(1)</sup>                                                                          |                               | Min. | Typ. <sup>(2)</sup> | Max.               | Unit       |
|--------|------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|------|---------------------|--------------------|------------|
| Δlcc   | Quiescent Power Supply Current TTL Inputs HIGH | Vcc1 = Max., Vcc2 = Max.<br>Vin = Vcc2 -0.6V <sup>(3)</sup>                                             |                               | _    | 12                  | 30                 | μA         |
| ICCD   | Dynamic Power Supply Current <sup>(4)</sup>    | Vcc1 = Max., Vcc2 = Max. Outputs Open  xOE = xDIR = GND One Input Toggling 50% Duty Cycle               | VIN = VCC2<br>VIN = GND       | _    | 75                  | 120                | μA/<br>MHz |
| IC     | Total Power Supply Current <sup>(6)</sup>      | VCC1 = Max., VCC2 = Max. Outputs Open fi = 10MHz 50% Duty Cycle xOE = xDIR = GND One Bit Toggling       | VIN = VCC2 -0.6V<br>VIN = GND | _    | 1.2                 | 4.7                | mA         |
|        |                                                | Vcc1 = Max., Vcc2 = Max. Outputs Open fi = 2.5MHz 50% Duty Cycle xOE = xDIR = GND Sixteen Bits Toggling | VIN = VCC2 -0.6V<br>VIN = GND | _    | 3.5                 | 8.5 <sup>(5)</sup> |            |

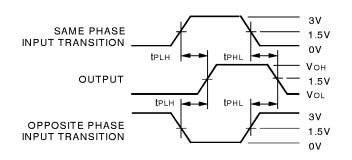
- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc1 = 5.0V, Vcc2 = 3.3V, +25°C ambient.
- 3. Per TTL driven input; all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
  - $IC = ICC1 + ICC2 + \Delta ICC DHNT + ICCD (fcpNcp/2 + fiNi)$
  - lcc1 = Quiescent Current (lcc1L, lcc1H and lcc1Z)
  - ICC2 = Quiescent Current (ICC2L, ICC2H and ICC2Z)
  - Δlcc = Power Supply Current for a TTL High Input
  - $\mathsf{DH} = \mathsf{Duty} \; \mathsf{Cycle} \; \mathsf{for} \; \mathsf{TTL} \; \mathsf{Inputs} \; \mathsf{High}$
  - N⊤ = Number of TTL Inputs at DH
  - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
  - fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
  - NCP = Number of Clock Inputs at fCP
  - fi = Input Frequency
  - Ni = Number of Inputs at fi


# **SWITCHING CHARACTERISTICS OVER OPERATING RANGE**

|              |                                                 |                          |                     | FCT164245 |      |
|--------------|-------------------------------------------------|--------------------------|---------------------|-----------|------|
| Symbol       | Parameter                                       | Condition <sup>(1)</sup> | Min. <sup>(2)</sup> | Max.      | Unit |
| tplh<br>tphl | Propagation Delay<br>A to B                     | CL = 50pF<br>RL = 500Ω   | 1.5                 | 5         | ns   |
| tplh<br>tphl | Propagation Delay<br>B to A                     |                          | 1.5                 | 5         | ns   |
| tpzh<br>tpzl | Output Enable Time<br>xOE to B                  |                          | 1.5                 | 6.5       | ns   |
| tphz<br>tplz | Output Disable Time<br>xOE to B                 |                          | 1.5                 | 6         | ns   |
| tpzh<br>tpzl | Output Enable Time<br>xOE to A                  |                          | 1.5                 | 6.5       | ns   |
| tphz<br>tplz | Output Disable Time xOE to A                    |                          | 1.5                 | 6         | ns   |
| tpzh<br>tpzl | Output Enable Time<br>xDIR to B <sup>(3)</sup>  |                          | 1.5                 | 6.5       | ns   |
| tphz<br>tplz | Output Disable Time<br>xDIR to B <sup>(3)</sup> |                          | 1.5                 | 6         | ns   |
| tpzh<br>tpzl | Output Enable Time<br>xDIR to A <sup>(3)</sup>  |                          | 1.5                 | 6.5       | ns   |
| tphz<br>tplz | Output Disable Time xDIR to A <sup>(3)</sup>    |                          | 1.5                 | 6         | ns   |


- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. This parameter is guaranteed but not tested.

# **TEST CIRCUITS AND WAVEFORMS**


# **TEST CIRCUITS FOR ALL OUTPUTS**



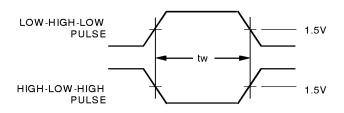
# **SET-UP, HOLD, AND RELEASE TIMES**



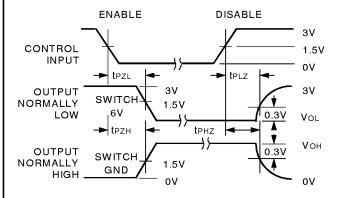
## PROPAGATION DELAY



# **SWITCH POSITION**

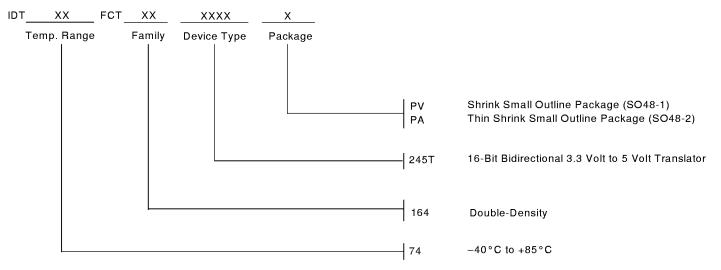

| Test            | Switch |
|-----------------|--------|
| Open Drain      |        |
| Disable Low     | 6V     |
| Enable Low      |        |
| Disable High    | GND    |
| Enable High     |        |
| All Other Tests | Open   |

#### **DEFINITIONS:**


CL = Load capacitance: includes jig and probe capacitance.

 $R\tau$  = Termination resistance: should be equal to  $Zou\tau$  of the Pulse Generator.

## **PULSEWIDTH**




## **ENABLE AND DISABLE TIMES**



- Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate  $\leq$  1.0MHz; tF  $\leq$  2.5ns; tR  $\leq$  2.5ns.

# **ORDERING INFORMATION**





**CORPORATE HEADQUARTERS** 

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com\*